
1

2-d Arrays

2

Two Dimensional Arrays
 We have seen that an array variable can store

a list of values
 Many applications require us to store a table

of values

75 82 90 65 76
68 75 80 70 72
88 74 85 76 80
50 65 68 40 70

Student 1

Student 2

Student 3

Student 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

3

Contd.

 The table contains a total of 20 values, five
in each line
The table can be regarded as a matrix

consisting of four rows and five columns
 C allows us to define such tables of items

by using two-dimensional arrays

4

Declaring 2-D Arrays

 General form:
type array_name [row_size][column_size];

 Examples:
int marks[4][5];
float sales[12][25];
double matrix[100][100];

5

Initializing 2-d arrays

 int a[2][3] = {1,2,3,4,5,6};
 int a[2][3] = {{1,2,3}, {4,5,6}};
 int a[][3] = {{1,2,3}, {4,5,6}};

All of the above will give the 2x3 array

1 2 3
4 5 6

6

Accessing Elements of a 2-d
Array
 Similar to that for 1-d array, but use two indices
First indicates row, second indicates column
Both the indices should be expressions which

evaluate to integer values (within range of the
sizes mentioned in the array declaration)

 Examples:
x[m][n] = 0;
c[i][k] += a[i][j] * b[j][k];
a = sqrt (a[j*3][k]);

7

Example

int a[3][5];

A two-dimensional array of 15 elements
Can be looked upon as a table of 3 rows and 5 columns

a[0][0] a[0][1] a[0][2] a[0][3] a[0][4]row0

a[1][0] a[1][1] a[1][2] a[1][3] a[1][4]row1

a[2][0] a[2][1] a[2][2] a[2][3] a[2][4]row2

col0 col1 col2 col3 col4

8

How is a 2-d array is stored in
memory?
 Starting from a given memory location, the elements

are stored row-wise in consecutive memory locations
(row-major order)

 x: starting address of the array in memory
 c: number of columns
 k: number of bytes allocated per array element

 a[i][j]  is allocated memory location at
address x + (i * c + j) * k

a[0]0] a[0][1] a[0]2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3]

Row 0 Row 1 Row 2

9

Array Addresses
int main()
{
int a[3][5];
int i,j;

for (i=0; i<3;i++)
{
for (j=0; j<5; j++) printf("%u\n", &a[i][j]);
printf("\n");

}
return 0;

}

3221224480
3221224484
3221224488
3221224492
3221224496

3221224500
3221224504
3221224508
3221224512
3221224516

3221224520
3221224524
3221224528
3221224532
3221224536

Output

10

How to read the elements of a
2-d array?
 By reading them one element at a time

for (i=0; i<nrow; i++)
for (j=0; j<ncol; j++)

scanf (“%f”, &a[i][j]);
 The ampersand (&) is necessary
 The elements can be entered all in one

line or in different lines

11

How to print the elements of a
2-d array?
 By printing them one element at a time

for (i=0; i<nrow; i++)
for (j=0; j<ncol; j++)

printf (“\n %f”, a[i][j]);
The elements are printed one per line

for (i=0; i<nrow; i++)
for (j=0; j<ncol; j++)

printf (“%f”, a[i][j]);
The elements are all printed on the same line

12

Contd.

for (i=0; i<nrow; i++)
{

printf (“\n”);
for (j=0; j<ncol; j++)

printf (“%f ”, a[i][j]);
}

The elements are printed nicely in matrix form

13

Example: Matrix Addition
int main()
{

int a[100][100], b[100][100],
c[100][100], p, q, m, n;

scanf (“%d %d”, &m, &n);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

scanf (“%d”, &a[p][q]);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

scanf (“%d”, &b[p][q]);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

c[p][q] = a[p][q] + b[p][q];

for (p=0; p<m; p++)
{

printf (“\n”);
for (q=0; q<n; q++)

printf (“%d ”, c[p][q]);
}

return 0;
}

14

Passing 2-d Arrays as Parameters

 Similar to that for 1-D arrays
The array contents are not copied into the function
Rather, the address of the first element is passed

 For calculating the address of an element in a 2-d
array, we need:
The starting address of the array in memory
Number of bytes per element
Number of columns in the array

 The above three pieces of information must be known
to the function

15

Example Usage

int main()
{

int a[15][25], b[15]25];
:
:
add (a, b, 15, 25);
:

}

void add (int x[][25], int
y[][25], int rows, int cols)
{

:
}

We can also write

int x[15][25], y[15][25];

But at least 2nd dimension
must be given

16

Example: Matrix Addition with Functions

void AddMatrix(int A[][100], int B[][100], int C[][100], int x, int y)
{

int i , j;
for (i=0; i<x; i++)

for (j=0; j<y; j++)
C[i][j] = A[i][j] + B[i][j];

}

void ReadMatrix(int A[][100], int x, int y)
{

int i, j;
for (i=0; i<x; i++)

for (j=0; j<y; j++)
scanf (“%d”, &A[i][j]);

}

17

int main()
{

int a[100][100], b[100][100],
c[100][100], p, q, m, n;

scanf (“%d%d”, &m, &n);

ReadMatrix(a, m, n);
ReadMatrix(b, m, n);

AddMatrix(a, b, c, m, n);

PrintMatrix(c, m, n);
return 0;

}

void PrintMatrix(int A[][100], int x, int y)
{

int i, j;
printf(“\n”);
for (i=0; i<x; i++)
{

for (j=0; j<y; j++)
printf (“ %5d”, A[i][j]);

printf(“\n”);
}

}

18

Practice Problems
1. Write a function that takes an n x n square matrix A as parameter (n

< 100) and returns 1 if A is an upper-triangular matrix, 0 otherwise.
2. Repeat 1 to check for lower-triangular matrix, diagonal matrix,

identity matrix
3. Write a function that takes as parameter an m x n matrix A (m, n <

100) and returns the transpose of A (modifies in A only).
4. Consider an n x n matrix containing only 0 or 1. Write a function that

takes such a matrix and returns 1 if the number of 1’s in each row
are the same and the number of 1’s in each column are the same; it
returns 0 otherwise

5. Write a function that reads in an m x n matrix A and an n x p matrix
B, and returns the product of A and B in another matrix C. Pass
appropriate parameters.

For each of the above, also write a main function that reads the
matrices, calls the function, and prints the results (a message, the
transposed matrix etc.)

19

Structures

20

What is a Structure?

 Used for handling a group of logically
related data items
Examples:

 Student name, roll number, and marks
 Real part and complex part of a complex number

 Helps in organizing complex data in a
more meaningful way

 The individual structure elements are
called members

21

Defining a Structure
struct tag {

member 1;
member 2;
:
member m;

};

 struct is the required C keyword
 tag is the name of the structure
member 1, member 2, … are individual member

declarations
Do not forget the ; at the end!

22

Contd.
 The individual members can be

ordinary variables, pointers, arrays, or
other structures (any data type)
The member names within a particular

structure must be distinct from one another
A member name can be the same as the

name of a variable defined outside of the
structure

 Once a structure has been defined,
the individual structure-type variables
can be declared as:

struct tag var_1, var_2, …, var_n;

23

Example
 A structure definition

struct student {
char name[30];
int roll_number;
int total_marks;
char dob[10];

};

 Defining structure variables:

struct student a1, a2, a3;

A new data-type

24

A Compact Form
 It is possible to combine the declaration of the

structure with that of the structure variables:

struct tag {
member 1;
member 2;
:
member m;

} var_1, var_2,…, var_n;

 Declares three variables of type struct tag
 In this form, tag is optional

25

Accessing a Structure
 The members of a structure are processed

individually, as separate entities
 Each member is a separate variable

 A structure member can be accessed by
writing

variable.member

where variable refers to the name of a
structure-type variable, and member refers to
the name of a member within the structure

 Examples:
a1.name, a2.name, a1.roll_number, a3.dob

26

Example: Complex number addition
struct complex

{
float real;
float img;

};
int main()
{

struct complex a, b, c;
scanf (“%f %f”, &a.real, &a.img);
scanf (“%f %f”, &b.real, &b.img);
c.real = a.real + b.real;
c.img = a.img + b.img;
printf (“\n %f + %f j”, c.real, c.img);
return 0;

}

Defines the structure

Declares 3 variable of type struct complex

Accessing the variables is the same
as any other variable, just have to
follow the syntax to specify which field
of the Structure you want

27

Operations on Structure Variables

 Unlike arrays, a structure variable can be
directly assigned to another structure variable
of the same type

a1 = a2;
 All the individual members get assigned

 Two structure variables cannot be
compared for equality or inequality

if (a1 == a2)…… this cannot be done

28

Arrays of Structures

 Once a structure has been defined, we can
declare an array of structures

struct student class[50];

The individual members can be accessed as:
class[i].name
class[5].roll_number

type name

int main()
{

struct complex A[100];
int n;
scanf(“%d”, &n);
for (i=0; i<n; i++)

scanf(“%f%f”, &A[i].real, &A[i].img);
for (i=0; i<n; i++)

printf(“%f + i%f\n”, A[i].real, A[i].img);
}

29

Example: Reading and Printing Array of Structures

30

Arrays within Structures

 A structure member can be an array

 The array element within the structure can
be accessed as:

a1.marks[2], a1.dob[3],…

struct student
{

char name[30];
int roll_number;
int marks[5];
char dob[10];

} a1, a2, a3;

31

Structure Initialization
 Structure variables may be initialized

following similar rules of an array. The
values are provided within the second
braces separated by commas

 An example:
struct complex a={1.0,2.0}, b={-3.0,4.0};

a.real=1.0; a.img=2.0;
b.real=-3.0; b.img=4.0;

32

Parameter Passing in a
Function
 Structure variables can be passed as

parameters like any other variables. Only
the values will be copied during function
invocation
int chkEqual(struct complex a, struct complex b)
{

if ((a.real==b.real) && (a.img==b.img))
return 1;

else return 0;
}

33

Returning Structures
 It is also possible to return structure values

from a function. The return data type of the
function should be as same as the data type of
the structure itself
struct complex add(struct complex a, struct complex b)
{

struct complex tmp;

tmp.real = a.real + b.real;
tmp.img = a.img + b.img;
return(tmp);

}
Direct arithmetic operations are not possible with structure variables

34

Defining Data Type: using typedef
 One may define a structure data-type with a single

name
typedef struct newtype {

member-variable1;
member-variable2;

.
member-variableN;

} mytype;

 mytype is the name of the new data-type
 Also called an alias for struct newtype
 Writing the tag name newtype is optional, can be

skipped
 Naming follows rules of variable naming

35

typedef : An example
typedef struct {

float real;
float imag;

} _COMPLEX;

 Defined a new data type named _COMPLEX.
Now can declare and use variables of this type

_COMPLEX a, b, c;

36

More about typedef
 Note: typedef is not restricted to just structures,

can define new types from any existing type
 Example:
 typedef int INTEGER
Defines a new type named INTEGER from the

known type int
Can now define variables of type INTEGER which

will have all properties of the int type

INTEGER a, b, c;

37

The earlier program using typedef
typedef struct{

float real;
float img;

} _COMPLEX;

_COMPLEX add(_COMPLEX a, _COMPLEX b)
{

_COMPLEX tmp;

tmp.real = a.real + b.real;
tmp.img = a.img + b.img;
return(tmp);

}

38

Contd.
void print (_COMPLEX a)
{

printf("(%f, %f) \n",a.real,a.img);
}

int main()
{

_COMPLEX x={4.0,5.0}, y={10.0,15.0}, z;

print(x);
print(y);
z = add(x,y);
print(z);
return 0;

} swap.c

(4.000000, 5.000000)
(10.000000, 15.000000)
(14.000000, 20.000000)

Output

39

Practice Problems
1. Extend the complex number program to include functions for addition,

subtraction, multiplication, and division
2. Define a structure for representing a point in two-dimensional Cartesian

co-ordinate system. Using this structure for a point

1. Write a function to return the distance between
two given points

2. Write a function to return the middle point of the
line segment joining two given points

3. Write a function to compute the area of a triangle
formed by three given points

4. Write a main function and call the functions from
there after reading in appropriate inputs (the
points) from the keyboard

3. Define a structure STUDENT to store the following data for a student: name (null-
terminated string of length at most 20 chars), roll no. (integer), CGPA (float). Then

1. In main, declare an array of 100 STUDENT structures.
Read an integer n and then read in the details of n students
in this array

2. Write a function to search the array for a student by name.
Returns the structure for the student if found. If not found,
return a special structure with the name field set to empty
string (just a ‘\0’)

3. Write a function to search the array for a student by roll no.
4. Write a function to print the details of all students with

CGPA > x for a given x
5. Call the functions from the main after reading in name/roll

no/CGPA to search

40

