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2-d Arrays
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Two Dimensional Arrays
 We have seen that an array variable can store 

a list of values
 Many applications require us to store a table

of values

75 82 90 65 76
68 75 80 70 72
88 74 85 76 80
50 65 68 40 70

Student 1

Student 2

Student 3

Student 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
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Contd.

 The table contains a total of 20 values, five 
in each line
The table can be regarded as a matrix

consisting of four rows and five columns
 C allows us to define such tables of items 

by using two-dimensional arrays
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Declaring 2-D Arrays

 General form:
type   array_name [row_size][column_size];

 Examples:
int  marks[4][5];
float  sales[12][25];
double  matrix[100][100];
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Initializing 2-d arrays

 int a[2][3] =  {1,2,3,4,5,6};
 int a[2][3] = {{1,2,3}, {4,5,6}};
 int a[][3]   = {{1,2,3}, {4,5,6}};

All of the above will give the 2x3 array

1    2    3
4     5    6
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Accessing Elements of a 2-d 
Array
 Similar to that for 1-d array, but use two indices
First indicates row, second indicates column
Both the indices should be expressions which 

evaluate to integer values (within range of the 
sizes mentioned in the array declaration)

 Examples:
x[m][n] = 0;
c[i][k] += a[i][j] * b[j][k];
a = sqrt (a[j*3][k]); 
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Example

int a[3][5];

A two-dimensional array of 15 elements 
Can be looked upon as a table of 3 rows and 5 columns 

a[0][0] a[0][1] a[0][2] a[0][3] a[0][4]row0

a[1][0] a[1][1] a[1][2] a[1][3] a[1][4]row1

a[2][0] a[2][1] a[2][2] a[2][3] a[2][4]row2

col0 col1 col2 col3 col4
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How is a 2-d array is stored in 
memory?
 Starting from a given memory location, the elements 

are stored row-wise in consecutive memory locations 
(row-major order)

 x: starting address of the array in memory
 c: number of columns
 k: number of bytes allocated per array element

 a[i][j]  is allocated memory location at  
address  x + (i * c + j) * k

a[0]0] a[0][1] a[0]2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3] 

Row 0 Row 1 Row 2
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Array Addresses
int main()
{
int a[3][5];
int i,j;

for (i=0; i<3;i++)
{
for (j=0; j<5; j++) printf("%u\n", &a[i][j]);
printf("\n");

}
return 0;

}

3221224480
3221224484
3221224488
3221224492
3221224496

3221224500
3221224504
3221224508
3221224512
3221224516

3221224520
3221224524
3221224528
3221224532
3221224536

Output
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How to read the elements of a 
2-d array?
 By reading them one element at a time

for  (i=0; i<nrow; i++)
for  (j=0; j<ncol; j++)

scanf  (“%f”, &a[i][j]);
 The ampersand (&) is necessary
 The elements can be entered all in one 

line or in different lines
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How to print the elements of a 
2-d array?
 By printing them one element at a time

for  (i=0; i<nrow; i++) 
for  (j=0; j<ncol; j++)

printf  (“\n %f”, a[i][j]);
The elements are printed one per line

for  (i=0; i<nrow; i++) 
for  (j=0; j<ncol; j++)

printf  (“%f”, a[i][j]);
The elements are all printed on the same line
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Contd.

for  (i=0; i<nrow; i++)
{

printf  (“\n”);
for  (j=0; j<ncol; j++)

printf (“%f   ”, a[i][j]);
}

The elements are printed nicely in matrix form
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Example: Matrix Addition
int main()
{

int  a[100][100], b[100][100],
c[100][100], p, q, m, n;

scanf (“%d %d”, &m, &n); 

for  (p=0; p<m; p++)
for  (q=0; q<n; q++)

scanf (“%d”, &a[p][q]);

for  (p=0; p<m; p++)
for  (q=0; q<n; q++)

scanf (“%d”, &b[p][q]);

for  (p=0; p<m; p++)
for  (q=0; q<n; q++)

c[p][q] = a[p][q] + b[p][q];

for  (p=0; p<m; p++)
{

printf  (“\n”);
for  (q=0; q<n; q++)

printf (“%d   ”, c[p][q]);
}

return 0;
}
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Passing 2-d Arrays as Parameters

 Similar to that for 1-D arrays
The array contents are not copied into the function
Rather, the address of the first element is passed

 For calculating the address of an element in a 2-d 
array, we need:
The starting address of the array in memory
Number of bytes per element
Number of columns in the array

 The above three pieces of information must be known 
to the function
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Example Usage

int main()
{

int  a[15][25],  b[15]25];
:
:
add (a, b, 15, 25);
:

}

void  add (int x[][25], int 
y[][25], int rows, int cols)
{

:
}

We can also write

int  x[15][25], y[15][25];

But at least 2nd dimension 
must be given
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Example: Matrix Addition with Functions

void AddMatrix( int A[][100], int B[][100], int C[][100], int x, int y)
{

int i , j;
for  (i=0; i<x; i++)

for  (j=0; j<y; j++)
C[i][j] = A[i][j] + B[i][j];

}

void ReadMatrix(int A[][100], int x, int y)
{

int i, j;
for  (i=0; i<x; i++)

for  (j=0; j<y; j++)
scanf (“%d”, &A[i][j]);

}
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int main()
{

int a[100][100], b[100][100],
c[100][100], p, q, m, n;

scanf (“%d%d”, &m, &n); 

ReadMatrix(a, m, n);
ReadMatrix(b, m, n);

AddMatrix(a, b, c, m, n);

PrintMatrix(c, m, n);
return 0;

}

void PrintMatrix(int A[][100], int x, int y)
{

int i, j;
printf(“\n”);
for  (i=0; i<x; i++)
{

for  (j=0; j<y; j++)
printf (“ %5d”, A[i][j]);

printf(“\n”);
}

}
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Practice Problems
1. Write a function that takes an n x n square matrix A as parameter (n 

< 100) and returns 1 if A is an upper-triangular matrix, 0 otherwise. 
2. Repeat 1 to check for lower-triangular matrix, diagonal matrix,  

identity matrix
3. Write a function that takes as parameter an m x n matrix A (m, n < 

100) and returns the transpose of A (modifies in A only).
4. Consider an n x n matrix containing only 0 or 1. Write a function that 

takes such a matrix and returns 1 if the number of 1’s in each row 
are the same and the number of 1’s in each column are the same; it 
returns 0 otherwise

5. Write a function that reads in an m x n matrix A and an n x p matrix 
B, and returns the product of A and B in another matrix C. Pass 
appropriate parameters. 

For each of the above, also write a main function that reads the 
matrices, calls the function, and prints the results (a message, the 
transposed matrix etc.)
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Structures
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What is a Structure?

 Used for handling a group of logically 
related data items
Examples:

 Student name, roll number, and marks
 Real part and complex part of a complex number

 Helps in organizing complex data in a 
more meaningful way

 The individual structure elements are 
called members
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Defining a Structure
struct tag {

member 1;
member 2;
:
member m;

};

 struct is the required C keyword
 tag is the name of the structure
member 1, member 2, … are individual member 

declarations
Do not forget the ; at the end!
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Contd.
 The individual members can be 

ordinary variables, pointers, arrays, or 
other structures (any data type)
The member names within a particular 

structure must be distinct from one another
A member name can be the same as the 

name of a variable defined outside of the 
structure

 Once a structure has been defined, 
the individual structure-type variables 
can be declared as:

struct tag var_1, var_2, …, var_n;
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Example
 A structure definition

struct student {
char name[30];
int  roll_number;
int  total_marks;
char dob[10];

};

 Defining structure variables:

struct student  a1, a2, a3;

A new data-type
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A Compact Form
 It is possible to combine the declaration of the 

structure with that of the structure variables:

struct tag {
member 1;
member 2;
:
member m;

}  var_1, var_2,…, var_n;

 Declares three variables of type struct tag
 In this form, tag is optional
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Accessing a Structure
 The members of a structure are processed 

individually, as separate entities
 Each member is a separate variable

 A structure member can be accessed by 
writing

variable.member

where variable refers to the name of a 
structure-type variable, and member refers to 
the name of a member within the structure

 Examples:
a1.name, a2.name, a1.roll_number, a3.dob
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Example: Complex number addition
struct  complex  

{
float  real;
float  img;

};
int main()
{

struct complex a, b, c;
scanf (“%f %f”, &a.real, &a.img);
scanf (“%f %f”, &b.real, &b.img);
c.real = a.real + b.real;
c.img = a.img + b.img;
printf (“\n %f + %f j”, c.real, c.img);
return 0;

}

Defines the structure

Declares 3 variable of type struct complex

Accessing the variables is the same 
as  any other variable, just have to 
follow the syntax to specify which field 
of the Structure you want
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Operations on Structure Variables

 Unlike arrays, a structure variable can be 
directly assigned to another structure variable 
of the same type

a1 = a2;
 All the individual members get assigned

 Two structure variables cannot be 
compared for equality or inequality

if (a1 == a2)…… this cannot be done
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Arrays of Structures

 Once a structure has been defined, we can 
declare an array of structures

struct student class[50];

The individual members can be accessed as:
class[i].name
class[5].roll_number

type name



int main()
{

struct complex A[100];
int n;
scanf(“%d”, &n);
for (i=0; i<n; i++)

scanf(“%f%f”, &A[i].real, &A[i].img);
for (i=0; i<n; i++)

printf(“%f + i%f\n”, A[i].real, A[i].img);
}

29

Example: Reading and Printing Array of Structures
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Arrays within Structures

 A structure member can be an array

 The array element within the structure can 
be accessed as:

a1.marks[2], a1.dob[3],…

struct  student  
{          

char  name[30];
int  roll_number;
int  marks[5];
char  dob[10];

}  a1, a2, a3;
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Structure Initialization
 Structure variables may be initialized 

following similar rules of an array. The 
values are provided within the second 
braces separated by commas

 An example:
struct complex a={1.0,2.0}, b={-3.0,4.0};

a.real=1.0;   a.img=2.0;
b.real=-3.0;  b.img=4.0;
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Parameter Passing in a 
Function
 Structure variables can be passed as 

parameters like any other variables. Only 
the values will be copied during function 
invocation
int chkEqual(struct complex a, struct complex b)
{

if ((a.real==b.real) && (a.img==b.img))
return 1;

else return 0;
}
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Returning Structures
 It is also possible to return structure values 

from a function. The return data type of the 
function should be as same as the data type of 
the structure itself
struct complex add(struct complex a, struct complex b)
{

struct complex tmp;

tmp.real = a.real + b.real;
tmp.img = a.img + b.img;
return(tmp);

}
Direct arithmetic operations are not possible with structure variables
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Defining Data Type: using typedef
 One may define a structure data-type with a single 

name
typedef struct newtype {

member-variable1;
member-variable2;

.
member-variableN;

} mytype;

 mytype is the name of the new data-type
 Also called an alias for struct newtype
 Writing the tag name newtype is optional, can be 

skipped
 Naming follows rules of variable naming
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typedef : An example
typedef struct {

float real;
float imag;

}  _COMPLEX;

 Defined a new data type named _COMPLEX. 
Now can declare and use variables of this type

_COMPLEX a, b, c;
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More about typedef
 Note: typedef is not restricted to just structures, 

can define new types from any existing type
 Example:
 typedef int INTEGER
Defines a new type named INTEGER from the 

known type int
Can now define variables of type INTEGER which 

will have all properties of the int type

INTEGER a, b, c;
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The earlier program using typedef
typedef struct{

float real;
float img;

} _COMPLEX;

_COMPLEX add(_COMPLEX a, _COMPLEX b)
{

_COMPLEX tmp;

tmp.real = a.real + b.real;
tmp.img = a.img + b.img;
return(tmp);

}
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Contd.
void print (_COMPLEX a)
{

printf("(%f, %f) \n",a.real,a.img);
}

int main()
{

_COMPLEX x={4.0,5.0}, y={10.0,15.0}, z;

print(x); 
print(y);
z = add(x,y); 
print(z); 
return 0;

} swap.c

(4.000000, 5.000000)
(10.000000, 15.000000)
(14.000000, 20.000000)

Output
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Practice Problems
1. Extend the complex number program to include functions for addition, 

subtraction, multiplication, and division
2. Define a structure for representing a point in two-dimensional Cartesian 

co-ordinate system. Using this structure for a point

1. Write a function to return the distance between 
two given points

2. Write a function to return the middle point of the 
line segment joining two given points

3. Write a function to compute the area of a triangle 
formed by three given points

4. Write a main function and call the functions from 
there after reading in appropriate inputs (the 
points) from the keyboard



3. Define a structure STUDENT to store the following data for a student: name (null-
terminated string of length at most 20 chars), roll no. (integer), CGPA (float). Then

1. In main, declare an array of 100 STUDENT structures. 
Read an integer n and then read in the details of n students 
in this array

2. Write a function to search the array for a student by name. 
Returns the structure for the student if found. If not found, 
return a special structure with the name field set to empty 
string (just a ‘\0’)

3. Write a function to search the array for a student by roll no.
4. Write a function to print the details of all students with 

CGPA > x for a given x
5. Call the functions from the main after reading in name/roll 

no/CGPA to search
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