
1

More Operators: Increment (++) and Decrement (--)
 Both of these are unary operators; they

operate on a single operand
 The increment operator causes its operand to

be increased by 1
 Example: a++, ++count

 The decrement operator causes its operand
to be decreased by 1.
 Example: i--, --distance

Pre-increment versus post-increment
 Operator written before the operand (++i, --i))

 Called pre-increment operator (also sometimes called prefix
++ and prefix --)

 Operand will be altered in value before it is utilized in the
statement

 Operator written after the operand (i++, i--)
 Called post-increment operator (also sometimes called

postfix ++ and postfix --)

 Operand will be altered in value after it is utilized in the
statement

3

Examples
Initial values :: a = 10; b = 20;

x = 50 + ++a; a = 11, x = 61
x = 50 + a++; x = 60, a = 11
x = a++ + --b; b = 19, x = 29, a = 11
x = a++ – ++a; ??

Called side effects (while calculating some values,
something else gets changed)

4

Precedence among
different operators
(there are many
other operators in C,
some of which we
will see later)

Operator Class Operators Associativity
Unary postfix++, -- Left to Right

Unary prefix ++, --
─ ! & Right to Left

Binary * / % Left to Right
Binary + ─ Left to Right

Binary < <= > >= Left to Right

Binary == != Left to Right

Binary && Left to Right

Binary || Left to Right

Assignment = += ─ =
*= /= %= Right to Left

5

Doing More Complex Mathematical Operations
 C provides some mathematical functions to use

 perform common mathematical calculations
 Must include a special header file

#include <math.h>
 Example

 printf ("%f", sqrt(900.0));
 Calls function sqrt, which returns the square root of its

argument
 Return values of math functions are of type double
 Arguments may be constants, variables, or expressions
 Similar to functions you have seen in school maths

6

Math Library Functions
double acos(double x) – Compute arc cosine of x.
double asin(double x) – Compute arc sine of x.
double atan(double x) – Compute arc tangent of x.
double atan2(double y, double x) – Compute arc tangent of y/x.
double cos(double x) – Compute cosine of angle in radians.
double cosh(double x) – Compute the hyperbolic cosine of x.
double sin(double x) – Compute sine of angle in radians.
double sinh(double x) – Compute the hyperbolic sine of x.
double tan(double x) – Compute tangent of angle in radians.
double tanh(double x) – Compute the hyperbolic tangent of x.

7

Math Library Functions
double ceil(double x) – Get smallest integral value that exceeds x.
double floor(double x) – Get largest integral value less than x.
double exp(double x) – Compute exponential of x.
double fabs (double x) – Compute absolute value of x.
double log(double x) – Compute log to the base e of x.
double log10 (double x) – Compute log to the base 10 of x.
double pow (double x, double y) – Compute x raised to the power y.
double sqrt(double x) – Compute the square root of x.

Computing distance between two points
#include <stdio.h>
#include <math.h>
int main()
{

int x1, y1, x2, y2;
double dist;
printf(“Enter coordinates of first point: “);
scanf(“%d%d”, &x1, &y1);
printf(“Enter coordinates of second point: “);
scanf(“%d%d”, &x2, &y2);
dist = sqrt(pow(x1 – x2, 2) + pow(y1 – y2, 2));
printf(“Distance = %lf\n”, dist);
return 0;

} 8

Enter coordinates of first point: 3 4
Enter coordinates of second point: 2 7
Distance = 3.162278

Output

Practice Problems
1. Read in three integers and print their average

2. Read in four integers a, b, c, d. Compute and print the value of the expression

a+b/c/d*10*5-b+20*d/c

 Explain to yourself the value printed based on precedence of operators taught

 Repeat by putting parenthesis around different parts (you choose) and first do
by hand what should be printed, and then run the program to verify if you got it
right

 Repeat similar thing for the expression a&&b||c&&d>a||c<=b

3. Read in the coordinates (real numbers) of three points in 2-d plane, and print the
area of the triangle formed by them

4. Read in the principal amount P, interest rate I, and number of years N, and print
the compound interest (compounded annually) earned by P after N years

9

10

Conditional Statements

Why Are Conditional Statements Required?
1. Sometimes execution of an instruction depends on the

outcome of testing a condition.
 Whether Outcome TRUE or FALSE.
 Example: divide a by b, if b is non-zero.
 This is also called branching.

2. Sometimes a set of instructions need to be executed
repeatedly:
 This is called looping
 Involves branching.
 Example: For each student compute grade

12

Statements in a C program
 Parts of C program that tell the computer what to do
 Different types

 Declaration statements
 Declares variables etc.

 Assignment statement
 Assignment expression, followed by a ;

 Control statements
 For branching and looping, like if-else, for, while, do-while (to be

seen later)
 Input/Output

 Read/print, like printf/scanf

int a, b, larger;
scanf(“%d %d”, &a, &b);
larger = b;
if (a > b){

larger = a;}
printf(“Larger number is %d\n”, larger);

Example

int a, b, larger;
scanf(“%d %d”, &a, &b);
larger = b;
if (a > b)

larger = a;
printf(“Larger number is %d\n”, larger);

Declaration statement

Assignment
statement

Control
statement

Input/Output
statement

14

Compound Statements
 A sequence of statements enclosed within { and }

 Also called a block of statements

 Each statement in a block can be an
assignment statement, control statement,
input/output statement, or another compound
statement

 There may be only one statement inside a
block also

15

Example

int n;
scanf(“%d”, &n);
while(1) {

if (n > 0) break;
scanf(“%d”, &n);

}

Compound statement

16

Conditional Statements
 Allow different sets of instructions to be executed

depending on truth or falsity of a logical condition
 Also called Branching
 How do we specify conditions?

 Using expressions
 non-zero value means condition is true
 value 0 means condition is false

 Usually logical expressions, but can be any expression
 The value of the expression will be used

 Example: if(mark>=80) grade=‘A’

17

Branching: if Statement

if (expression)
statement;

if (expression) {
Block of statements;

}

18

Branching: if Statement

if (expression)
statement;

if (expression) {
Block of statements;

}

The condition to be tested is any expression enclosed in
parentheses. The expression is evaluated, and if its value is
non-zero, the statement/block of statements is executed.

if(temp>100)
emergency=ON;

If(temp>100){
printf(“Emergency\n”);
emergency=ON;

}

19

true

false

marks >= 40

print “Passed”
print “Good luck”

Flow Chart Representation: if Statement

20

true

false

marks >= 40

print “Passed”
print “Good luck”

A decision can be
made on any
expression.

zero - false

nonzero - true

21

true

false

marks >= 40

print “Passed”
print “Good luck”

A decision can be
made on any
expression.

zero - false

nonzero - true

if (marks >= 40) {
printf(“Passed \n”);
printf(“Good luck\n”);

}
printf (“End\n”) ;

Simple “if” statement

if (aNumber != 1000)
countA++;

“if” with a block of statements

if (aValue <= 10)
{

printf("Answer is %8.2f\n", aValue);
countB++;

} // End if

24

Branching: if-else Statement

if (expression) {
Block of statements;

}
else {

Block of statements;
}

if (expression) {
Block of statements;

}
else if (expression) {

Block of statements;
}
else {

Block of statements;
}

Quiz

 Write code for the following:

 If CGPA within 0 and 10, increment validGrade, else
display error message

 Variables: int cgpa, validGrade;

25

If(cgpa>=0 && cgpa<=10)
validGrade++;

else printf(“Error\n”);

26

Grade Computation
int main() {

int marks;
scanf(“%d”, &marks);
if (marks >= 80)

printf (”Grade= A”) ;
else if (marks >= 70)

printf (” Grade= B”) ;
else if (marks >= 60)

printf (” Grade= C”) ;
else printf (”Failed”);
return 0;

}

27

int main () {
int marks;

scanf (“%d”, &marks) ;
if (marks>= 80) {

printf (“A: ”) ;
printf (“Good Job!”) ;

}
else if (marks >= 70) printf (“B ”) ;
else if (marks >= 60) printf (“C ”) ;
else {

printf (“Failed: ”) ;
printf (“Study hard!”) ;

}
return 0;

}

50
Failed: Study hard!

90
A: Good Job!

65
C

Outputs for different inputs

28

Find the larger of two numbers
START

STOP

READ X, Y

OUTPUT Y

IS
X>Y?

OUTPUT X

STOP

YES NO

29

Find the larger of two numbers
START

STOP

READ X, Y

OUTPUT Y

IS
X>Y?

OUTPUT X

STOP

YES NO

int main () {
int x, y;
scanf (“%d%d”, &x, &y);
if (x > y)

printf (“%d\n”, x);
else

printf (“%d\n”, y);
return 0;

}

30

Largest of three numbers
START

READ X, Y, Z

IS
Max > Z?

IS
X > Y?

Max = X Max = Y

OUTPUT Max OUTPUT Z

STOP STOP

YES

YES

NO

NO

31

START

READ X, Y, Z

IS
Max > Z?

IS
X > Y?

Max = X Max = Y

OUTPUT Max OUTPUT Z

STOP STOP

YES

YES

NO

NO

int main () {
int x, y, z, max;
scanf (“%d%d%d”,&x,&y,&z);
if (x > y)

max = x;
else max = y;
if (max > z)

printf (“%d”, max) ;
else printf (“%d”,z);
return 0;

}

32

Another versionint main() {
int a,b,c;
scanf (“%d%d%d”, &a, &b, &c);
if ((a >= b) && (a >= c))

printf (“\n The largest number is: %d”, a);
if ((b >= a) && (b >= c))

printf (“\n The largest number is: %d”, b);
if ((c >= a) && (c >= b))

printf (“\n The largest number is: %d”, c);
return 0;

}

Exercise

 Read three integers and display the integer that is
neither the largest nor the smallest.

33

int main() {

int i,j,k;

scanf(“%d %d %d”, &i,&j,&k);

if((i<j && i>k)|| (i>j && i<k)) printf(“Median=%d\n”, i);

if((j<i && j>k)|| (j>i && j<k)) printf(“Median=%d\n”, j);

if((k<j && k>i)|| (k>j && k<i)) printf(“Median=%d\n”, k);

return 0;

}

Solution

Assignment

 Read principal and number of months of deposit
Compute interest,
 less than 1 month 4%,
Less than 1 year but more than a month 7%
Less than 2 years but more than 1 year 8%
Less than 5 years but more than 2 year 9%
More than 5 years 8%

36

Confusing Equality (==) and Assignment (=) Operators

 Dangerous error!
 Does not ordinarily cause syntax errors
 Any expression that produces a value can be used in

control structures
 Nonzero values are true, zero values are false

 Example:
if (payCode = 4)

printf("You get a bonus!\n");
WRONG! Will always print the line

37

Nesting of if-else Structures
 It is possible to nest if-else statements, one

within another

 All “if” statements may not be having the “else”
part
Confusion??

 Rule to be remembered:
An “else” clause is associated with the

closest preceding unmatched “if”

if (exp1) if (exp2) stmta else stmtb

38

Dangling else
problemif (exp1) if (exp2) stmta else stmtb

if (exp1) {
if (exp2)

stmta
else

stmtb
}

OR

if (exp1) {
if (exp2)

stmta
}
else

stmtb

?

Which one is the correct interpretation?
Give braces explicitly in your programs to match the
else with the correct if to remove any ambiguity

39

More Examplesif e1 s1
else if e2 s2

if e1 s1
else if e2 s2
else s3

if e1 if e2 s1
else s2
else s3

?

Lecture 5

40

41

Dangling else
problemif (exp1) if (exp2) stmta else stmtb

if (exp1) {
if (exp2)

stmta
else

stmtb
}

OR

if (exp1) {
if (exp2)

stmta
}
else

stmtb

?

Which one is the correct interpretation?
Give braces explicitly in your programs to match the
else with the correct if to remove any ambiguity

42

Answers
if e1 s1 if e1 s1
else if e2 s2 else { if e2 s2 }

if e1 s1 if e1 s1
else if e2 s2 else { if e2 s2
else s3 else s3 }

if e1 if e2 s1 if e1 { if e2 s1
else s2 else s2 }
else s3 else s3

While programming, it is always good to explicitly give the { and } to
avoid any mistakes

Example
int main()
{

int x;
scanf(“%d”, &x);
if (x >= 0)

if (x <= 100)
printf(“ABC\n”);

else
printf(“XYZ\n”);

return 0;
} 43

Print “ABC” if a number is
between 0 and 100, or “XYZ”
if it is –ve. Do not print
anything in other cases.

Example
int main()
{

int x;
scanf(“%d”, &x);
if (x >= 0)

if (x <= 100)
printf(“ABC\n”);

else
printf(“XYZ\n”);

return 0;
} 44

Not what we want,
should have printed
XYZ

Print “ABC” if a number is
between 0 and 100, or “XYZ”
if it is –ve. Do not print
anything in other cases.

150
XYZ

Outputs for different inputs

-20

Not what we want, should
not have printed anything

int main()
{

int x;
scanf(“%d”, &x);
if (x >= 0)
{

if (x <= 100)
printf(“ABC\n”);

}
else

printf(“XYZ\n”);
return 0;

} 45

Correct Program

150
Outputs for different inputs

-20
XYZ

46

The Conditional Operator ?:
 Cryptic if-then-else, but sometimes elegant

 Example: instead of writing

if (balance > 5000)

interest = balance * 0.2;

else interest = balance * 0.1;

We can just write
interest = (balance > 5000) ? balance * 0.2 : balance * 0.1;

Ternary conditional operator (?:)
 Takes three arguments (condition, value if true, value

if false)
 Returns the evaluated value.

(marks >= 60) ? printf(“Passed\n”) : printf(“Failed\n”);

(condition)? (action 1): (action 2);
Example:

interest = (balance>5000) ? balance*0.2 : balance*0.1;

Returns a value

48

Express Using Ternary Operator
 if (((a >10) && (b < 5))

x = a + b;
else x = 0;

x = ((a > 10) && (b < 5)) ? a + b : 0

 if (marks >= 60)
printf(“Passed \n”);

else printf(“Failed \n”);

(marks >= 60) ? printf(“Passed\n”) : printf(“Failed\n”);

Exercise
 Write a ternary conditional expression to express the

following:

 If class attendance is 100% add 5 to the marks else
add 3 to marks.

 Assume following variable declaration:

 int marks;

 int percent_attendance;

49

50

The switch Statement
 An alternative to writing lots of if-else in some

special cases

 This causes a particular group of statements to be
chosen from several available groups based on
equality tests only

 Uses switch statement and case labels

51

 Syntax
 expression is any integer-valued

expression
 const-expr-1, const-expr-2,…are any

constant integer-valued expressions
 Values must be distinct

 S-1, S-2, …,S-m, S are
statements/compound statements

 Default is optional, and can come
anywhere (not necessarily at the end as
shown)

switch (expression) {
case const-expr-1: S-1
case const-expr-2: S-2

:
case const-expr-m: S-m
default: S

}

52

Behavior of switch
 expression is first evaluated
 It is then compared with const-expr-1, const-expr-

2,…for equality in order
 If it matches any one, all statements from that

point till the end of the switch are executed
(including statements for default, if present)
 Use break statements if you do not want this (see

example)
 Statements corresponding to default, if present,

are executed if no other expression matches

53

Example
int main()
{

int x;
scanf(“%d”, &x);
switch (x) {

case 1: printf(“One\n”);
case 2: printf(“Two\n”);

default: printf(“Not one or two\n”);
};

}

If x = 1 is entered, this will print

One
Two
Not one or two

Not what we want

54

Correct Program
int main()
{

int x;
scanf(“%d”, &x);
switch (x) {

case 1: printf(“One\n”);
break;

case 2: printf(“Two\n”);
break;

default: printf(“Not one or two\n”);
};

}

If x = 1 is entered, this will
print:

One

55

Rounding a Digit
switch (digit) {

case 0:
case 1:
case 2:
case 3:
case 4: result = 0; printf (“Round down\n”); break;
case 5:
case 6:
case 7:
case 8:
case 9: result = 10; printf(“Round up\n”); break;

}

Since there isn’t a break statement
here, the control passes to the next
statement without checking
the next condition.

It will come here if digit is any of 0 to 4.
Round to 0, then break as done.

56

The break Statement
 Used to exit from a switch or terminate from a loop

 With respect to “switch”, the “break” statement
causes a transfer of control out of the entire
“switch” statement, to the first statement following
the “switch” statement

 Can be used with other statements also …(will
discuss later)

Switch Statement: Exercise

 Read a number between 0 and 6 and
display the corresponding day of the
week: Sunday, Monday, … , Saturday.

switch (day){
case 0: printf (“Sunday\n”) ;

break ;
case 1: printf (“Monday\n”) ;

break ;
case 2: printf (“Tuesday\n”) ;

break ;
case 3: printf (“Wednesday\n”) ;

break ;
case 4: printf (“Thursday\n”) ;

break ;
case 5: printf (“Friday\n”) ;

break ;
case 6: printf (“Saturday\n”) ;

break ;
default: printf (“Error -- invalid day.\n”) ;

break ;
}

if (day == 0) {
printf (“Sunday”) ;

} else if (day == 1) {
printf (“Monday”) ;

} else if (day == 2) {
printf (“Tuesday”) ;

} else if (day == 3) {
printf (“Wednesday”) ;

} else if (day == 4) {
printf (“Thursday”) ;

} else if (day == 5) {
printf (“Friday”) ;

} else if (day == 6) {
printf (“Saturday”) ;

} else {
printf (“Error - invalid day.\n”) ;

}

Is the if-else structure more
elegant than the
corresponding switch
statement? Why?

Equivalent If-else code

Homework 1
 Write a program that prompts the

user to input the boiling point in
degree Celsius.

 The program should output the
substance corresponding to the
boiling point listed in the table.

 The program should output the
message “substance unknown”
when it does not match any
substance.

Substance Boiling
point

Water 100°C

Mercury 357°C

Copper 1187°C

Silver 2193°C

Gold 2660°C

 Read student mark out of
100.

 Print grade to be awarded
as per the rule shown.

Mark Grade

0 to 35 F

35 to 50 P

50 to 60 D

60 to 70 C

70 to 80 B

80 to 90 A

90 to 100 EX

Why Use a switch Statement?

 A nested if-else structure is just as
efficient as a switch statement.

A switch statement is easier to read.

Also, it is easier to add new cases to a
switch statement than to a nested if-else
structure.

63

The break Statement
 Used to exit from a switch or terminate from a

loop
 With respect to “switch”, the “break” statement

causes a transfer of control out of the entire
“switch” statement, to the first statement following
the “switch” statement

 Can be used with other statements also …(will
show later)

64

More on Data Types

65

More Data Types in C
 Some of the basic data types can be augmented by

using certain data type qualifiers:
 short
 long
 signed
 unsigned

 Typical examples:
 short int (usually 2 bytes)
 long int (usually 4 bytes)
 unsigned int (usually 4 bytes, but cannot store + or -)

size qualifier

sign qualifier

66

Integer data
type #Bits Minimum value Maximum value

char 8 -27 = -128 27-1 = 127
short int 16 -215 = -32768 215-1 = 32767
int 32 -231 = -2147483648 231-1 = 2147483647
long int 32 -231 = -2147483648 231-1 = 2147483647

long long int 64 -263= -9223372036854775808 263-1 = 9223372036854775807

unsigned char 8 0 28-1 = 255
unsigned short int 16 0 216-1 = 65535
unsigned int 32 0 232-1 = 4294967295
unsigned long int 32 0 232-1 = 4294967295

unsigned long long int 64 0 264-1 = 18446744073709551615

Some typical sizes (some of these can vary depending on
type of machine)

67

More on the char type
 Is actually stored as an integer internally
 Each character has an integer code associated

with it (ASCII code value)
 Internally, storing a character means storing its

integer code
 All operators on int are allowed on char

 32 + ‘a’ will evaluate to 32 + 97 (the integer ascii code
of the character ‘a’) = 129

 Same for other operators
 Can switch on chars constants in switch, as they

are integer constants

68

Another example

Will print 302 (99*3 + 5)
(ASCII code of ‘c’ = 99)

int a;
a = ‘c’ * 3 + 5;
printf(“%d”, a);

char c = ‘A’;
printf(“%c = %d”, c, c);

Will print A = 65
(ASCII code of ‘A’ = 65)

Assigning char to int is fine. But other way round
is dangerous, as size of int is larger

69

ASCII Code
 Each character is assigned a unique integer value (code)

between 32 and 127
 The code of a character is represented by an 8-bit unit.

 Since an 8-bit unit can hold a total of 28=256 values and the
computer character set is much smaller than that, some values of
this 8-bit unit do not correspond to visible characters

 But not a good idea to remember exact ASCII codes while
programming. Use the facts that
 C stores characters as integers
 Ascii codes of some important characters are contiguous

(digits, lowercase alphabets, uppercase alphabets)

70

Decimal Hex Binary Character Decimal Hex Binary Character

32 20 00100000 SPACE 80 50 01010000 P

33 21 00100001 ! 81 51 01010001 Q

34 22 00100010 " 82 52 01010010 R

35 23 00100011 # 83 53 01010011 S

36 24 00100100 $ 84 54 01010100 T

37 25 00100101 % 85 55 01010101 U

38 26 00100110 & 86 56 01010110 V

39 27 00100111 ' 87 57 01010111 W

40 28 00101000 (88 58 01011000 X

41 29 00101001) 89 59 01011001 Y

42 2a 00101010 * 90 5a 01011010 Z

43 2b 00101011 + 91 5b 01011011 [

44 2c 00101100 , 92 5c 01011100 \

45 2d 00101101 - 93 5d 01011101]

46 2e 00101110 . 94 5e 01011110 ^

47 2f 00101111 / 95 5f 01011111 _

48 30 00110000 0 96 60 01100000 `

49 31 00110001 1 97 61 01100001 a

50 32 00110010 2 98 62 01100010 b

71

51 33 00110011 3 99 63 01100011 c

52 34 00110100 4 100 64 01100100 d

53 35 00110101 5 101 65 01100101 e

54 36 00110110 6 102 66 01100110 f

55 37 00110111 7 103 67 01100111 g

56 38 00111000 8 104 68 01101000 h

57 39 00111001 9 105 69 01101001 i

58 3a 00111010 : 106 6a 01101010 j

59 3b 00111011 ; 107 6b 01101011 k

60 3c 00111100 < 108 6c 01101100 l

61 3d 00111101 = 109 6d 01101101 m

62 3e 00111110 > 110 6e 01101110 n

63 3f 00111111 ? 111 6f 01101111 o

64 40 01000000 @ 112 70 01110000 p

65 41 01000001 A 113 71 01110001 q

66 42 01000010 B 114 72 01110010 r

67 43 01000011 C 115 73 01110011 s

68 44 01000100 D 116 74 01110100 t

69 45 01000101 E 117 75 01110101 u

70 46 01000110 F 118 76 01110110 v

72

71 47 01000111 G 119 77 01110111 w

72 48 01001000 H 120 78 01111000 x

73 49 01001001 I 121 79 01111001 y

74 4a 01001010 J 122 7a 01111010 z

75 4b 01001011 K 123 7b 01111011 {

76 4c 01001100 L 124 7c 01111100 |

77 4d 01001101 M 125 7d 01111101 }

78 4e 01001110 N 126 7e 01111110 ~

79 4f 01001111 O 127 7f 01111111 DELETE

Quiz…
Expression Value?

‘9’ >= ‘0’ 1 (true)

‘a’ < ‘e’ 1 (true)

‘Z’ == ‘z’ 0 (false)

‘a’ <= ‘A’ 0 (false)

Example: checking if a character is a lowercase alphabet
int main()
{ /* Read a character and display whether it is lower case or upper case */

char c1;
scanf(“%c”, &c1);

/* the ascii code of c1 must lie between the
ascii codes of ‘a’ and ‘z’ */

if (c1 >= ‘a’ && c1<= ‘z’)
printf(“%c is a lowercase alphabet\n”, c1);

else printf(“%c is not a lowercase alphabet\n”, c1);
return 0;

}
74

Example: converting a character from lowercase to uppercase
int main()
{

char c1;
scanf(“%c”, &c1);
/* convert to uppercase if lowercase, else leave as it is */
if (c1 >= ‘a’ && c1<= ‘z’)
/* since ascii codes of uppercase letters are contiguous, the

uppercase version of c1 will be as far away from the ascii code
of ‘A’ as it is from the ascii code of ‘a’ */

c1 = ‘A’ + (c1 – ‘a’);
printf((“The letter is %c\n”, c1);
return 0;

} 75

Exercise

 Write a program that:

 When the user enters a or A, displays “First letter”

When the user enters z or Z, displays “last letter”.

 For any other letter entered by the user it displays
“middle letter”.

76

77

Switching with char type
char letter;
scanf(“%c”, &letter);
switch (letter) {

case 'A':
printf ("First letter \n");
break;

case 'Z':
printf ("Last letter \n");
break;

default :
printf ("Middle letter \n");

}

78

Switching with char typechar letter;
scanf(“%c”, &letter);
switch (letter) {

case 'A':
printf ("First letter \n");
break;

case 'Z':
printf ("Last letter \n");
break;

default :
printf ("Middle letter \n");

}

Will print this statement
for all letters other than
A or Z

79

Another Example
switch (choice = getchar()) {

case ‘r’ :
case ‘R’: printf(“Red”);

break;
case ‘b’ :
case ‘B’ : printf(“Blue”);

break;
case ‘g’ :
case ‘G’: printf(“Green”);

break;
default: printf(“Black”);

}

80

Another Example
switch (choice = getchar()) {

case ‘r’ :
case ‘R’: printf(“Red”);

break;
case ‘b’ :
case ‘B’ : printf(“Blue”);

break;
case ‘g’ :
case ‘G’: printf(“Green”);

break;
default: printf(“Black”);

}

Since there isn’t a break statement
here, the control passes to the next
statement (printf) without checking
the next condition.

81

int main () {
int operand1, operand2;
int result = 0;
char operation ;
/* Get the input values */
printf (“Enter operand1 :”);
scanf(“%d”,&operand1) ;
printf (“Enter operation :”);
scanf (“\n%c”,&operation);
printf (“Enter operand 2 :”);
scanf (“%d”, &operand2);
switch (operation) {
case ‘+’ :

result=operand1+operand2;
break;

case ‘-’ :
result=operand1-operand2;
break;

case ‘*’ :
result=operand1*operand2;
break;

case ‘/’ :
if (operand2 !=0)

result=operand1/operand2;
else

printf(“Divide by 0 error”);
break;

default:
printf(“Invalid operation\n”);

return;
}
printf (“The answer is %d\n”,result);
return 0;

}

Evaluating expressions

Practice Problems
1. Read in 3 integers and print a message if any one of them is equal to the sum of the other two.

2. Read in the coordinates of two points and print the equation of the line joining them in y = mx +c form.

3. Read in the coordinates of 3 points in 2-d plane and check if they are collinear. Print a suitable
message.

4. Read in the coordinates of a point, and the center and radius of a circle. Check and print if the point is
inside or outside the circle.

5. Read in the coefficients a, b, c of the quadratic equation ax2 + bx + c = 0, and print its roots nicely (for
imaginary roots, print in x + iy form)

6. Suppose the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are mapped to the lowercase letters a, b, c, d, e, f, g, h, i, j
respectively. Read in a single digit integer as a character (using %c in scanf) and print its
corresponding lowercase letter. Do this both using switch and without using switch (two programs). Do
not use any ascii code value directly.

7. Suppose that you have to print the grades of a student, with >= 90 marks getting EX, 80-89 getting A,
70-79 getting B, 60-69 getting C, 50-59 getting D, 35-49 getting P and <30 getting F. Read in the
marks of a student and print his/her grade.

82

