
1

Expressions

2

Expressions
 Variables and constants linked with operators

 Arithmetic expressions
 Uses arithmetic operators
 Can evaluate to any numerical value

 Logical expressions
 Uses relational and logical operators
 Evaluates to 1 or 0 (true or false) only

 Assignment expression
 Uses assignment operators
 Evaluates to a value depending on assignment

2*3 + 5 – 10/3

velocity = 20

(count <= 100)

Types of Operators in Expressions

Operators

Arithmetic
Operators

Relational
Operators

Logical
Operators

4

Arithmetic Operators Binary operators
 Addition: +
 Subtraction: –
 Division: /
 Multiplication: *
 Modulus: %

 Unary operators
 Plus: +
 Minus: –

2*3 + 5 – 10/3
–1 + 3*25/5 – 7
distance / time
3.14* radius * radius
a * x * x + b*x + c
dividend / divisor
37 % 10

Few Examples

5

Integer Arithmetic
 Suppose x and y are two integer variables, whose values are 13

and 5 respectively

x + y 18
x – y 8
x * y 65
x / y 2
x % y 3

13

5

x

y

z

23%6?

6

Arithmetic Operators

 All operators except % can be used with operands of
all of the data types int, float, double, char (% can also
be used with char! We shall see what it means
later…)

 % can be used only with integer operands

7

Operator Precedence In decreasing order of priority

1. Parentheses :: ()

2. Unary minus :: –3

3. Multiplication, Division, and Modulus

4. Addition and Subtraction

 For operators of the same priority, evaluation is from left
to right as they appear

 Parentheses may be used to change the precedence of
operator evaluation

((9+5*-3)+5/4)

8

Examples:
Arithmetic Expressions

a + b * c – d / e a + (b * c) – (d / e)

a * – 10 + d % e – f a * (– 10) + (d % e) – f

a – b + c + 5 (((a – b) + c) + 5)

x * y * z ((x * y) * z)

a + 2.34 + c * d * e (a + 2.34) + ((c * d) * e)

Exercise
 3/2*5.0=

 30.0+26/10+2*3.0 =

 5+2.0*25/4+3 =

 5+25/4*2.0+3 =

30.0 +2+6.0=38.0

5+50.0/4+3 =20.5

5+6*2.0+3 =20.0

1*5.0=5.0

10

Example: Centigrade to Fahrenheit

#include <stdio.h>
int main()
{

float cent, fahr;
printf(“Enter Centigrade: “);
scanf(“%f”,¢);
fahr = cent*(9.0/5.0) + 32;
printf(“%f C equals %f F\n”, cent, fahr);
return 0;

}

Enter centigrade: 36.5
36.500000 C equals 97.699997 F

Output

11

 Caution: Since floating-point values are rounded to the maximum number
of significant digits permissible, the final value is an approximation of the
final result. This can cause strange results sometimes in comparisons.

#include <stdio.h>
int main()
{

float f1;
printf("Enter a no: ");
scanf("%f", &f1);
printf("No. entered is %f\n", f1);
if(f1 == 23.56) printf("True\n");
else printf("False\n");

}

Enter a no: 23.56
No. entered is 23.559999
False

12

Type of Value of an Arithmetic Expression

 If all operands of an operator are integers (int variables
or integer constants), the value is always integer

 Example: 9/5 will be printed as 1, not 1.8

 But if at least one operand is real, the value is real

 So 9/5.0 will be correctly printed as 1.8

#include <stdio.h>
int main()
{

int a, b;
float c;
a = 9; b = 5;
printf ("a/b is %d\n", a/b) ;
c = 5.0;
printf ("a/c is %f\n", a/c) ;
return 0;

} 13

a/b is 1
a/c is 1.800000

Output

14

This is a tricky problem!!
int a=10, b=4, c;
float x;
c = a / b;
x = a / b;

The value of c will be 2
The value of x will be 2.0
But we want 2.5 to be stored in x

15

Assignment Expression
 Uses the assignment operator (=)
 General syntax:

variable_name = expression
 Left of = is called l-value, must be a modifiable variable
 Right of = is called r-value, can be any expression
 Examples:

velocity = 20
b = 15; temp = 12.5
A = A + 10
v = u + f * t
s = u * t + 0.5 * f * t * t

16

Contd.
 Value of an assignment expression is the value

assigned to the l-value

 Example: value of

 a = 3 is 3

 b = 2*4 – 6 is 2

 n = 2*u + 3*v – w is whatever the arithmetic expression 2*u
+ 3*v – w evaluates to given the current values stored in
variables u, v, w

17

Contd.
 Several variables can be assigned the
same value using multiple assignment operators

a = b = c = 5;
flag1 = flag2 = ‘y’;
speed = flow = 0.0;

 Easy to understand if you remember that
 The assignment expression has a value
Multiple assignment operators are right-to-left
associative

18

Example
 Consider a = b = c = 5

 Three assignment operators
 Rightmost assignment expression is c=5, evaluates to

value 5
 Now you have a = b = 5
 Rightmost assignment expression is b=5, evaluates to

value 5
 Now you have a = 5
 Evaluates to value 5
 So all three variables store 5, the final value the assignment

expression evaluates to is 5

19

Types of l-value and r-value
 Usually should be the same
 If not, the type of the r-value will be internally converted to

the type of the l-value, and then assigned to it
 Example:

double a;
a = 2*3;

Type of r-value is int and the value is 6
Type of l-value is double, so stores 6.0

20

Can Give Strange Unintended Results,
Unless You are Careful!

int a;
a = 2*3.2;

 Type of r-value is float/double and the value is 6.4

 Type of l-value is int, so internally converted to 6

 So a stores 6, not the correct result

 An int cannot store fractional part anyway

 Be careful about the types on both sides

21

Short hand Assignment Operators

 +=, -=, *=, /=, %=

 Operators for special type of assignments

 a += b is the same as a = a + b

 Same for -=, *=, /=, and %=

22

Examples
 Suppose x and y are two integer variables,

and x=5; y=10;

x += y Stores 15 in x
Evaluates to 15

x –= y Stores -5 in x
Evaluates to -5

x *= y Stores 50 in x
Evaluates to 50

x /= y Stores 0 in x
Evaluates to 0

Exercise
 Find the values of

x,y, and z
x = 5;
z = 12;
x *= x;
x += z * z;
y = x % z;

x y z
5 ? ?
5 ? 12

25 ? 12
169 ? 12
169 1 12

24

Logical Expressions
 Uses relational and logical operators

 Informally, specifies a condition which can be true or
false

 Evaluates to value 0 if the condition is false

 Evaluates to some non-zero value if the condition is
true

25

Relational Operators
 Used to compare two quantities

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to

26

Examples10 > 20 is false, so value is 0
25 < 35.5 is true, so value is non-zero
12 > (7 + 5) is false, so value is 0
32 != 21 is true, so value is non-zero

 When arithmetic expressions are used on either side of a
relational operator, the arithmetic expressions will be evaluated
first and then the results compared

a + b > c – d is the same as (a + b) > (c – d)
 Note: The value corresponding to true can be any non-zero

value, not necessarily 1
 Will print 1 in most cases, but should not assume it will

27

Logical Operators
 Logical AND (&&)

 Evaluates to true (1) if both the operands are non-zero

 Logical OR (||)
 Evaluates to true (1) if at least one of the operands is

non-zero

X Y X && Y X | | Y
0 0 false false
0 non-0 false true

non-0 0 false true
non-0 non-0 true true

28

Contd.
 Unary negation operator (!)

 Single operand

 Value is 0 if operand is non-zero

 Value is 1 if operand is 0

29

Examples of Logical Expressions
 (count <= 100)

 ((math+phys+chem)/3 >= 60)

 ((sex == ’M’) && (age >= 21))

 ((marks >= 80) && (marks < 90))

 ((balance > 5000) | | (no_of_trans > 25))

 (! (grade == ’A’))

30

 a = 3 && (b = 4)
 b = 4 is an assignment expression, evaluates to 4

 && has higher precedence than =

 3 && (b = 4) evaluates to true as both operands of &&
are non-0, so final value of the logical expression is
true

 a = 3 && (b = 4) is an assignment expression,
evaluates to 1 (true)

 Note that changing to b = 0 would have made the
final value 0

31

Example: AND and OR

#include <stdio.h>
int main ()
{

int i, j;
scanf(“%d%d”,&i,&j);
printf (“%d AND %d = %d, %d OR %d=%d\n”, i, j, i&&j, i, j, i||j) ;
return 0;

}

3 0
3 AND 0 = 0, 3 OR 0 = 1

Output

 Logical expressions are used in control statements

 We will see more examples of logical expressions
when we study control statements next

32

33

More on Arithmetic Expressions

34

Recall the earlier problem
int a=10, b=4, c;
float x;
c = a / b;
x = a / b;

The value of c will be 2
The value of x will be 2.0
But we want 2.5 to be stored in x

35

Solution: Typecasting
 Changing the type of a variable during its use
 General form

(type_name) variable_name
 Example

x = ((float) a)/ b;

Now x will store 2.5 (type of a is considered to be float
for this operation only, now it is a mixed-mode
expression, so real values are generated)

36

 Not everything can be typecast to anything without
losing value or accuracy
 float/double should not be typecast to int (as an int

cannot store everything a float/double can store)

 int should not be typecast to char (same reason)

 General rule: make sure the final type can store any
value of the initial type

37

Example: Finding
Average of 2 Integers

int a, b;
float avg;
scanf(“%d%d”, &a, &b);
avg = (a + b)/2;
printf(“%f\n”, avg);

int a, b;
float avg;
scanf(“%d%d”, &a, &b);
avg = ((float) (a + b))/2;
printf(“%f\n”, avg);

int a, b;
float avg;
scanf(“%d%d”, &a, &b);
avg = (a + b)/2.0;
printf(“%f\n”, avg);

Wrong program

Correct programs

average-1.c

38

More Operators: Increment (++) and Decrement (--)
 Both of these are unary operators; they

operate on a single operand
 The increment operator causes its operand to

be increased by 1
 Example: a++, ++count

 The decrement operator causes its operand
to be decreased by 1.
 Example: i--, --distance

39

Pre-increment versus post-increment
 Operator written before the operand (++i, --i))

 Called pre-increment operator (also sometimes called prefix
++ and prefix --)

 Operand will be altered in value before it is utilized in the
statement

 Operator written after the operand (i++, i--)
 Called post-increment operator (also sometimes called

postfix ++ and postfix --)

 Operand will be altered in value after it is utilized in the
statement

40

Examples
Initial values :: a = 10; b = 20;

x = 50 + ++a; a = 11, x = 61
x = 50 + a++; x = 60, a = 11
x = a++ + --b; b = 19, x = 29, a = 11
x = a++ – ++a; ??

Called side effects (while calculating some values,
something else gets changed)

41

Precedence among
different operators
(there are many
other operators in C,
some of which we
will see later)

Operator Class Operators Associativity
Unary postfix++, -- Left to Right

Unary prefix ++, --
─ ! & Right to Left

Binary * / % Left to Right
Binary + ─ Left to Right

Binary < <= > >= Left to Right

Binary == != Left to Right

Binary && Left to Right

Binary || Left to Right

Assignment = += ─ =
*= /= %= Right to Left

42

Doing More Complex Mathematical Operations
 C provides some mathematical functions to use

 perform common mathematical calculations
 Must include a special header file

#include <math.h>
 Example

 printf ("%f", sqrt(900.0));
 Calls function sqrt, which returns the square root of its

argument
 Return values of math functions are of type double
 Arguments may be constants, variables, or expressions
 Similar to functions you have seen in school maths

43

Math Library Functions
double acos(double x) – Compute arc cosine of x.
double asin(double x) – Compute arc sine of x.
double atan(double x) – Compute arc tangent of x.
double atan2(double y, double x) – Compute arc tangent of y/x.
double cos(double x) – Compute cosine of angle in radians.
double cosh(double x) – Compute the hyperbolic cosine of x.
double sin(double x) – Compute sine of angle in radians.
double sinh(double x) – Compute the hyperbolic sine of x.
double tan(double x) – Compute tangent of angle in radians.
double tanh(double x) – Compute the hyperbolic tangent of x.

44

Math Library Functions
double ceil(double x) – Get smallest integral value that exceeds x.
double floor(double x) – Get largest integral value less than x.
double exp(double x) – Compute exponential of x.
double fabs (double x) – Compute absolute value of x.
double log(double x) – Compute log to the base e of x.
double log10 (double x) – Compute log to the base 10 of x.
double pow (double x, double y) – Compute x raised to the power y.
double sqrt(double x) – Compute the square root of x.

Computing distance between two points
#include <stdio.h>
#include <math.h>
int main()
{

int x1, y1, x2, y2;
double dist;
printf(“Enter coordinates of first point: “);
scanf(“%d%d”, &x1, &y1);
printf(“Enter coordinates of second point: “);
scanf(“%d%d”, &x2, &y2);
dist = sqrt(pow(x1 – x2, 2) + pow(y1 – y2, 2));
printf(“Distance = %lf\n”, dist);
return 0;

} 45

Enter coordinates of first point: 3 4
Enter coordinates of second point: 2 7
Distance = 3.162278

Output

Practice Problems
1. Read in three integers and print their average

2. Read in four integers a, b, c, d. Compute and print the value of the expression

a+b/c/d*10*5-b+20*d/c

 Explain to yourself the value printed based on precedence of operators taught

 Repeat by putting parenthesis around different parts (you choose) and first do
by hand what should be printed, and then run the program to verify if you got it
right

 Repeat similar thing for the expression a&&b||c&&d>a||c<=b

3. Read in the coordinates (real numbers) of three points in 2-d plane, and print the
area of the triangle formed by them

4. Read in the principal amount P, interest rate I, and number of years N, and print
the compound interest (compounded annually) earned by P after N years

46

