
1

CS10003:
Programming & Data Structures

Spring 2021

Dept. of Computer Science & Engineering

Course Materials
 Slides available at http://cse.iitkgp.ac.in/pds/current
 More materials available at http://cse.iitkgp.ac.in/pds

Books:
1. Programming with C

Byron Gottfried

2. The C Programming Language
Brian W Kernighan, Dennis M Ritchie

3. Data Structures
S. Lipschutz, Schaum’s Outline Series

3

Teachers and Class Timings
 Section 11, 12

 Monday (3-4:55 pm), Tuesday (3-3:55 pm)
 Teacher: Prof. Sandip Chakraborty (SC)

 Section 13, 14
 Monday (3-4:55 pm), Tuesday (3-3:55 pm)
 Teacher: Prof. Shamik Sural (SS)

 Section 15, 16
 Monday (3-4:55 pm), Tuesday (3-3:55 pm)
 Teacher: Prof. Soumya Kanti Ghosh(SKG)

 Section 17, 18
 Wednesday (10-10:55 am), Thursday (9-9:55 am), Friday (11-11:55 am)
 Teacher: Prof. Bivas Mitra (BM)

 Section 19, 20
 Wednesday (10-10:55 am), Thursday (9-9:55 am), Friday (11-11:55 am)
 Teacher: Prof. Rajib Mall (RM)

4

Introduction

5

Basic Components of a Computer

Central
Processing

Unit (CPU)

Disk

Input
Devices:
Keyboard,
mouse,…

Main
Memory (RAM)

Output
Devices:
Monitor,
printer,…

6

Programming and Software
Computer needs to be programmed to do tasks…

Programming: Writing instructions in a language that
can be understood by the computer --- so that it can
perform a desired task.

Program: A sequence of instructions to do a task ---
computer processes these instructions
sequentially one after the other

Software: Commercial programs.

Three steps in writing programs…

Step 1: Write the program in a high-level
language (in your case, C)

Step 2: Compile the program using a C compiler

Step 3: Run the program (the computer executes it)

Binary Representation
 Numbers are represented inside computers in the

base-2 system (Binary Numbers)
 Only two symbols/digits 0 and 1

 Positional weights of digits: 20, 21, 22,…from right to left for integers

 Decimal number system we use is base-10
 10 digits, from 0 to 9, Positional weights 100, 101, 102,…from right

to left for integers

 Example: 723 = 3x100 + 2x101 + 7x102

Example:1011

9

Binary NumbersDec Binary
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000

10

Binary Numbers
Binary to Decimal Conversion

101011 1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20 =
43

(101011)2 = (43)10

111001 1x25 + 1x24 + 1x23 + 0x22 + 0x21 + 1x20 =
57

(111001)2 = (57)10

10100 1x24 + 0x23 + 1x22 + 0x21 + 0x20 = 20
(10100)2 = (20)10

Dec Binary
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000

11

Bits and Bytes
 Bit – a single 1 or 0
 Byte – 8 consecutive bits

 2 bytes = 16 bits
 4 bytes = 32 bits

 Max. integer that can represented
 in 1 byte = 255 (=11111111)
 In 4 bytes = 4294967295 (= 32 1’s)

 No. of integers that can be represented in
1 byte = 256 (the integers 0, 1, 2, 3,….255)

12

Fundamentals of C

13

First C program – print on screen

Hello, World!
Output#include <stdio.h>

int main()
{

printf ("Hello, World! \n") ;
return 0;

}

Parts of Our First C Program: Hello World

#include <stdio.h>

/* This program prints “Hello World” */

main()
{

printf(“Hello World!\n”);
}

Brackets define code blocks Library command

main() means “start here”

Header

Comments are good

15

A Simple C program
#include <stdio.h>
int main()
{

int x, y, sum, max;
printf(“ Enter x and y\n”);
scanf(“%d%d”, &x, &y);
sum = x + y;
if (x > y) max = x;
else max = y;
printf (“Sum = %d\n”, sum);
printf (“Larger = %d\n”, max);
return 0;

}

15 20
Sum = 35
Larger = 20

Output after you type 15 and 20

When you run the program
Enter x and y

16

Structure of a C program
 A collection of functions (we will see those later)

 Exactly one special function named main must be
present. Program always starts from there.
 Until we study functions in detail, this is the only function

your programs will have for now

 Each function has statements for variable declarations,
assignment, condition check, looping etc.

 Statements are executed one by one in order

int main(){
…
}

int f1(){
…
}

int f1(){
…
}

17

#include <stdio.h>
int main()
{

int x, y, sum, max;
scanf(“%d%d”, &x, &y);
sum = x + y;
if (x > y)

max = x;
else

max = y;
printf (“Sum = %d\n”, sum);
printf (“Larger = %d\n”, max);
return 0;

}

main function

Declaration statement

Input statement

Assignment statements

Control statement

Output statement

Return statement

Anatomy
of a C
program

Writing a C program
 You have to first understand what different statements do --- to

decide which ones you should use and in what order to solve
your problem

 There is a fixed format (“syntax”) for writing each statement and
other things. Need to remember the syntax …

 Do not question at the moment why you have to type exactly like this,
you just have to or it is not a C program!!

 Compiler will give error if your typed program does not match
required C syntax

 There are other rules to follow
18

Things you might need in a C program (we will look at
all these one by one)
 Variables
 Constants
 Expressions (Arithmetic, Logical, Assignment)
 Statements (Declaration, Assignment, Control

(Conditional/Branching, Looping)
 Arrays
 Functions
 Structures
 Pointers

19

20

The C Character Set
 The C language alphabet

 Uppercase letters ‘A’ to ‘Z’

 Lowercase letters ‘a’ to ‘z’

 Digits ‘0’ to ‘9’

 Certain special characters:

A C program should not contain any other characters

! # % ^ & * ()

- _ + = ~ [] \

| ; : ‘ “ { } ,

. < > / ?

whitespace characters (space, tab, …)

21

Variables
 Very important concept in programming

 It is an entity that has a value and is known to the program by
its name a=b+c;

 Can store any temporary result while executing a program

 Can have only one value assigned to it at any given time
during the execution of the program

 Variables are stored in memory

 The value of a variable can be changed during the execution of
the program

22

Contd.
 Variables are stored in memory
 Memory is a list of consecutive storage locations,

each having a unique address
 A variable is like a bin

 The content of the bin is the value of the variable
 The variable name is used to refer to the value of the

variable
 A variable is mapped to a location of the memory,

called its address

000

111

001

Memory

23

Example #include <stdio.h>
int main()
{

int x;
int y;
x=1;
y=3;
printf("x = %d, y= %d\n", x, y);
return 0;

}

000

111

001

24

Variables in Memory
Instruction executed Memory location allocated

to a variable X

T
i

m
e

X = 10

10X = 20

X = X +1

X = X*5

25

Variables in Memory
Instruction executed Memory location allocated

to a variable X

T
i

m
e

X = 10

20X = 20

X = X +1

X = X*5

26

Variables in Memory
Instruction executed Memory location allocated

to a variable X

T
i

m
e

X = 10

21X = 20

X = X +1

X = X*5

27

Variables in Memory

Instruction executed Memory location allocated
to a variable X

T
i

m
e

X = 10

105X = 20

X = X +1

X = X*5

28

Variables (contd.)

20

?

X

Y

X = 20

Y=15

X = Y+3

Y=X/6

29

Variables (contd.)

20

15

X

Y

X = 20

Y=15

X = Y+3

Y=X/6

30

Variables (contd.)

18

15

X

Y

X = 20

Y=15

X = Y+3

Y=X/6

31

Variables (contd.)

18

3

X

Y

X = 20

Y=15

X = Y+3

Y=X/6

32

Data Types
 Each variable has a type, indicates what type of

values the variable can hold…
 Four common numeric data types in C

 int - can store integers (size usually 4 bytes)
 float - can store single-precision floating point

numbers (size usually 4 bytes)
 double - can store double-precision floating

point numbers (size usually 8 bytes)
 char - can store a character (size 1 byte)

33

Contd.
 First rule of variable use: Must declare a

variable (specify its type and name) before
using it anywhere in your program

 All variable declarations should ideally be at the
beginning of the main() or other functions
 There are exceptions, we will see later

 A value can also be assigned to a variable at
the time the variable is declared.

int speed = 30;
char flag = ‘y’;

#include <stdio.h>
int main()
{

int x;
int y;
x=1;
y=3;

return 0;
}

Data types
 Three common data are typically types used:
 Integer :: can store only whole numbers
Examples: 25, -56, 1, 0

Floating-point :: can store numbers with fractional
values.
Examples: 3.14159, 5.0, -12345.345

Character :: can store a character
Examples: ‘A’, ‘a’, ‘*’, ‘3’, ‘ ’, ‘+’

C Data Types

Character data types

36

Variable Names
 Sequence of letters and digits
 First character must either be a letter or ‘_’
 No special characters other than ‘_’
 No blank in between
 Names are case-sensitive (max and Max are two

different names)
 Examples of valid names:

 i rank1 MAX max Min class_rank
 Examples of invalid names:

 a’s fact rec 2sqroot class,rank a&b

More Valid and Invalid Identifiers
 Valid identifiers

X
abc
simple_interest
a123
LIST
stud_name
Empl_1
Empl_2
avg_empl_salary

 Invalid identifiers
10abc
my-name
“hello”
simple interest
(area)
%rate

C Keywords

 Used by the C language, cannot be used as
variable names

 Examples:
 int, float, char, double, main, if else, for, while. do,

struct, union, typedef, enum, void, return, signed,
unsigned, case, break, sizeof,….

There are others, see textbook…

39

Example 1: Add Two Numbers
#include <stdio.h>
int main()
{

int x, y, sum;
scanf(“%d%d”,&x,&y);
sum = x + y;
printf(“%d plus %d is %d\n”, x, y, sum);
return 0;

}

Three int type variables declared

Values assigned

40

Example 2
#include <stdio.h>
int main()
{

float x, y;
int d1, d2 = 10;
scanf(“%f%f%d”,&x, &y, &d1);
printf(“%f plus %f is %f\n”, x, y, x+y);
printf(“%d minus %d is %d\n”, d1, d2, d1-d2);
return 0;

}

Assigns an initial value to d2,
can be changed later

41

Read-only Variables (Constants)
 Variables whose values can be initialized during

declaration, but cannot be changed after that
 Declared by putting the const keyword in front of

the declaration
 Storage allocated just like any variable
 Used for variables whose values need

not be changed
 Prevents accidental change of the value

42

int main() {
const int LIMIT = 10;
int n;
scanf(“%d”, &n);
if (n > LIMIT)

printf(“Out of
limit”);
return 0;

}

int main() {
const int Limit = 10;
int n;
scanf(“%d”, &n);
Limit = Limit + n;
printf(“New limit is %d”,

Limit);
return 0;

}
Correct

Incorrect: Limit changed

43

Constants
 Integer constants

 Consists of a sequence of digits, with possibly a plus or a
minus sign before it

 Embedded spaces, commas and non-digit characters are not
permitted between digits

 Floating point constants
 Two different notations:

 Decimal notation: 25.0, 0.0034, .84, -2.234
 Exponential (scientific) notation

3.45e23, 0.123e-12, 123e2

e means “10 to the power of”

44

Contd.
 Character constants

 Contains a single character enclosed within a pair of single
quote marks.

 Examples :: ‘2’, ‘+’, ‘Z’
 Some special backslash characters

‘\n’ new line
‘\t’ horizontal tab
‘\’’ single quote
‘\”’ double quote
‘\\’ backslash
‘\0’ null

45

Typical Size of Data Types char – 1 byte
 int – 4 bytes
 float – 4 bytes
 double – 8 bytes

 “Typical”, because some of them vary depending on
machine/OS type

 Never use the values (1, 4, 8) directly,
use the sizeof() operator given
 sizeof(char) will give 1, sizeof(int) will give 4 and

so on your PC/Laptop

46

Input: scanf function
 Performs input from keyboard
 It requires a format string and a list of variables into which the

value received from the keyboard will be stored
 format string = individual groups of characters (usually ‘%’

sign, followed by a conversion character), with one character
group for each variable in the list

int a, b;
float c;
scanf(“%d%d%f”, &a, &b, &c);

Format string

Variable list (note the &
before a variable name)

47

 Commonly used conversion characters
c for char type variable
d for int type variable
f for float type variable
lf for double type variable

 Examples
scanf ("%d", &size) ;
scanf ("%c", &nextchar) ;
scanf ("%f", &length) ;
scanf (“%d%d”, &a, &b);

Examples Explained scanf ("%d", &size) ;
 Reads one integer from keyboard into an int type variable named

size

 scanf ("%c", &nextchar) ;
 Reads one character from keyboard into a char type variable named

nextchar

 scanf ("%f", &length) ;
 Reads one floating point (real) number from keyboard into a float

type variable named length

 scanf (“%d%d”, &a, &b);
 Reads two integers from keyboard, the first one in an int

type variable named a and the second one in an int type
variable named b 48

 Important:
 scanf will wait for you to type the input from the

keyboard

 You must type the same number of inputs as the
number of %’s in the format string

 Example: if you have scanf(“%d%d”,…), then
you must type two integers (in same line or
different lines), or scanf will just wait and the next
statement will not be executed

49

50

Reading a single character
 A single character can be read using scanf with %c
 It can also be read using the getchar() function

char c;
c = getchar();

 Program waits at the getchar() line until
a character is typed, and then reads it
and stores it in c.

51

Output: printf function
 Performs output to the standard output device (usually defined

to be the screen)

 It requires a format string in which we can specify:
 The text to be printed out

 Specifications on how to print the values

printf ("The number is %d\n", num);

 The format specification %d causes the value listed after the format
string to be embedded in the output as a decimal number in place of
%d

 Output will appear as: The number is 125

52

Contd.
 General syntax:

printf (format string, arg1, arg2, …, argn);
 format string refers to a string containing formatting

information and data types of the arguments to be output

 the arguments arg1, arg2, … represent list of
variables/expressions whose values are to be printed

 The conversion characters are the same as
in scanf

53

 Examples:
printf (“Average of %d and %d is %f”, a, b, avg);
printf (“Hello \nGood \nMorning \n”);
printf(“%3d %3d %5d”, a, b, a*b+2);
printf(“%7.2f %5.1f”, x, y);

 Many more format options are available for both printf
and scanf
 Read from the book
 Practice them in your computer!

More Examples
(Explain the outputs to test if you understood format strings etc.)

54

55

More print

#include <stdio.h>
int main()
{

printf ("Hello, World! ") ;
printf ("Hello \n World! \n") ;
return 0;

}

Hello, World! Hello
World!

Output

56

Some more print

#include <stdio.h>
int main()
{

printf ("Hello, World! \n") ;
printf ("Hello \n World! \n") ;
printf ("Hell\no \t World! \n") ;
return 0;

}

Hello, World!
Hello
World!

Hell
o World!

Output

57

Some more print
#include <stdio.h>
int main()
{

float f1, f2;
int x1, x2;
printf(“Enter values for f1 and f2: \n”);
scanf(“%f%f”, &f1, &f2);

printf(“Enter values for x1 and x2: \n”);
scanf(“%d%d”, &x1, &x2);

printf(“f1 = %f, f2 = %5.2f\n”, f1, f2);
printf(“x1 = %d, x2 = %10d\n”, x1, x2);
return 0;

}

Enter values for f1 and f2:
23.5 14.326
Enter values for x1 and x2:
54 7
f1 = 23.500000, f2 = 14.33
x1 = 54, x2 = 7

Output

Can you explain why 14.326 got printed
as 14.33?

58

Some more print
#include <stdio.h>
int main()
{

char c1, c2;
scanf(“%c%c”, &c1, &c2);
printf(“%c%c”, c1, c2);
return 0;

}

ab
ab

Output

59

What about this?
#include <stdio.h>
int main()
{

char c1, c2;
scanf(“%c%c”, &c1, &c2);
printf(“%c%c”, c1, c2);
return 0;

}

a b
a

Output

Can you explain why only ‘a’ was
printed this time, even though it is the
same program as in the last slide?
Note the difference from the last slide
carefully. Also note that two characters
were read this time also, or scanf
would have waited

Practice Problems
 Write C programs to:

1. Read two integers and two floating point numbers, each in a separate scanf()
statement (so 4 scanf’s) and print them with separate printf statements (4
printf’s) with some nice message

2. Repeat 1, but now read all of them in a single scanf statement and print them
in a single printf statement

3. Repeat 1 and 2 with other data types like double and char
4. Repeat 1 and 2, but now print all real numbers with only 3 digits after the

decimal point
5. Read 4 integers in a single scanf statement, and print them (using a single

printf statement) in separate lines such that the last digit of each integer is
exactly 10 spaces away from the beginning of the line it is printed in (the 9
spaces before will be occupied by blanks or other digits of the integer).
Remember that different integers can have different number of digits

6. Repeat 5, but now the first integer of each integer should be exactly 8 spaces
away from the beginning of the line it is printed in. 60

