
1

Pointers and Arrays

2

Pointers and Arrays

 When an array is declared,
The compiler allocates sufficient amount of

storage to contain all the elements of the
array in contiguous memory locations

The base address is the location of the first
element (index 0) of the array

The compiler also defines the array name as
a constant pointer to the first element

3

Example
 Consider the declaration:

 int x[5] = {1, 2, 3, 4, 5};
 Suppose that each integer requires 4 bytes
 Compiler allocates a contiguous storage of size 5x4 =

20 bytes
 Suppose the starting address of that storage is 2500

 Element Value Address
 x[0] 1 2500
 x[1] 2 2504
 x[2] 3 2508
 x[3] 4 2512
 x[4] 5 2516

4

Contd.
 The array name x is the starting address of the

array
 Both x and &x[0] have the value 2500
 x is a constant pointer, so cannot be changed

 X = 3400, x++, x += 2 are all illegal
 If int *p is declared, then

 p = x; and p = &x[0]; are equivalent
 We can access successive values of x by using

p++ or p-- to move from one element to another

5

 Relationship between p and x:
p = &x[0] = 2500
p+1 = &x[1] = 2504
p+2 = &x[2] = 2508
p+3 = &x[3] = 2512
p+4 = &x[4] = 2516

 C knows the type of each element in array x, so
knows how many bytes to move the pointer to
get to the next element

In general, *(p+i) gives
the value of x[i]

6

Example: function to find
average

int main()
{
 int x[100], k, n;

 scanf (“%d”, &n);

 for (k=0; k<n; k++)
 scanf (“%d”, &x[k]);

 printf (“\nAverage is %f”,
 avg (x, n));
 return 0;
}

float avg (int array[], int size)
{
 int *p, i , sum = 0;

 p = array;

 for (i=0; i<size; i++)
 sum = sum + *(p+i);

 return ((float) sum / size);
}

7

The pointer p can be subscripted
also just like an array!

int main()
{
 int x[100], k, n;

 scanf (“%d”, &n);

 for (k=0; k<n; k++)
 scanf (“%d”, &x[k]);

 printf (“\nAverage is %f”,
 avg (x, n));
 return 0;
}

float avg (int array[], int size)
{
 int *p, i , sum = 0;

 p = array;

 for (i=0; i<size; i++)

 sum = sum + p[i];

 return ((float) sum / size);
}

8

Important to remember
 Pitfall: An array in C does not know its own length, &

bounds not checked!
 Consequence: While traversing the elements of an array (either

using [] or pointer arithmetic), we can accidentally access off the
end of an array (access more elements than what is there in the
array)

 Consequence: We must pass the array and its size to a function
which is going to traverse it, or there should be some way of
knowing the end based on the values (Ex., a –ve value ending a
string of +ve values)

 Accessing arrays out of bound can cause segmentation
faults
 Hard to debug (already seen in lab)
Always be careful when traversing arrays in programs

9

Pointers to
Structures

10

Pointers to Structures
 Pointer variables can be defined to store

the address of structure variables
 Example:

struct student {
 int roll;
 char dept_code[25];
 float cgpa;
 };
struct student *p;

11

 Just like other pointers, p does not point to
anything by itself after declaration
Need to assign the address of a structure to p
Can use & operator on a struct student type

variable
Example:

struct student x, *p;
scanf(“%d%s%f”, &x.roll, x.dept_code, &x.cgpa);
p = &x;

12

 Once p points to a structure variable, the
members can be accessed in one of two
ways:
(*p).roll, (*p).dept_code, (*p).cgpa

 Note the () around *p
p –> roll, p –> dept_code, p –> cgpa

 The symbol –> is called the arrow operator
 Example:

 printf(“Roll = %d, Dept.= %s, CGPA = %f\n”, (*p).roll,
(*p).dept_code, (*p).cgpa);

 printf(“Roll = %d, Dept.= %s, CGPA = %f\n”, p->roll,
 p->dept_code, p->cgpa);

13

Pointers and Array of Structures

 Recall that the name of an array is the
address of its 0-th element
Also true for the names of arrays of structure

variables.
 Consider the declaration:

struct student class[100], *ptr ;

14

 The name class represents the address of the 0-th
element of the structure array
 ptr is a pointer to data objects of the type struct

student
 The assignment

ptr = class;
 will assign the address of class[0] to ptr
 Now ptr->roll is the same as class[0].roll. Same for

other members
 When the pointer ptr is incremented by one (ptr++) :

 The value of ptr is actually increased by
sizeof(struct student)

 It is made to point to the next record
 Note that sizeof operator can be applied on any

data type

15

A Warning
 When using structure pointers, be careful of

operator precedence
Member operator “.” has higher precedence than “*”

 ptr –> roll and (*ptr).roll mean the same
thing

 *ptr.roll will lead to error
 The operator “–>” enjoys the highest priority

among operators
 ++ptr –> roll will increment ptr->roll, not ptr
 (++ptr) –> roll will access (ptr + 1)->roll (for

example, if you want to print the roll no. of all elements of
the class array)

	Pointers and Arrays
	Pointers and Arrays
	Example
	Contd.
	Slide Number 5
	Example: function to find average
	The pointer p can be subscripted also just like an array!
	Important to remember
	Pointers to Structures
	Pointers to Structures
	Slide Number 11
	Slide Number 12
	Pointers and Array of Structures
	Slide Number 14
	A Warning

