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Pointers and Arrays 
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Pointers and Arrays 

 When an array is declared, 
The compiler allocates sufficient amount of 

storage to contain all the elements of the 
array in contiguous memory locations 

The base address is the location of the first 
element (index 0) of the array 

The compiler also defines the array name as 
a constant pointer to the first element 
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Example 
 Consider the declaration: 

       int x[5] = {1, 2, 3, 4, 5}; 
 Suppose that each integer requires 4 bytes 
 Compiler allocates a contiguous storage of size 5x4 = 

20 bytes 
 Suppose the starting address of that storage is 2500 

 
     Element      Value    Address 
             x[0]             1           2500 
             x[1]             2           2504 
             x[2]             3           2508 
             x[3]             4           2512 
             x[4]             5           2516 
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Contd. 
 The array name x is the starting address of the 

array 
  Both x and &x[0] have the value 2500 
  x is a constant pointer, so cannot be changed 

 X = 3400, x++, x += 2 are all illegal 
 If int *p is declared, then 

    p = x;    and    p = &x[0];  are equivalent 
 We can access successive values of x by using 

p++ or p-- to move from one element to another 
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 Relationship between p and x: 
p      =   &x[0]   =   2500 
p+1  =   &x[1]   =   2504 
p+2  =   &x[2]   =   2508 
p+3  =   &x[3]   =   2512 
p+4  =   &x[4]   =   2516 

 C knows the type of each element in array x, so 
knows how many bytes to move the pointer to 
get to the next element 
 

In general, *(p+i) gives 
the value of x[i] 
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Example: function to find 
average 

int main() 
{ 
  int x[100], k, n; 
 
  scanf (“%d”, &n); 
 
  for (k=0; k<n; k++) 
     scanf (“%d”, &x[k]); 
 
  printf  (“\nAverage is %f”, 
                avg (x, n)); 
  return 0; 
}  
                                   

float avg (int array[], int size) 
{ 
  int  *p, i , sum = 0; 
 
  p = array; 
 
  for (i=0; i<size; i++) 
      sum = sum + *(p+i); 
    
  return ((float) sum / size); 
} 
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The pointer p can be subscripted 
also just like an array! 

int main() 
{ 
  int x[100], k, n; 
 
  scanf (“%d”, &n); 
 
  for (k=0; k<n; k++) 
     scanf (“%d”, &x[k]); 
 
  printf  (“\nAverage is %f”, 
                avg (x, n)); 
  return 0; 
}  
                                   

float avg (int array[], int size) 
{ 
  int  *p, i , sum = 0; 
 
  p = array; 
 
  for (i=0; i<size; i++) 

      sum = sum + p[i]; 
    
  return ((float) sum / size); 
} 
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Important to remember 
 Pitfall: An array in C does not know its own length, & 

bounds not checked! 
 Consequence: While traversing the elements of an array (either 

using [ ] or pointer arithmetic), we can accidentally access off the 
end of an array (access more elements than what is there in the 
array) 

 Consequence: We must pass the array and its size to a function 
which is going to traverse it, or there should be some way of 
knowing the end based on the values (Ex., a –ve value ending a 
string of +ve values) 

  Accessing arrays out of bound can cause segmentation 
faults 
 Hard to debug (already seen in lab) 
Always be careful when traversing arrays in programs 
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Pointers to 
Structures 
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Pointers to Structures 
 Pointer variables can be defined to store 

the address of structure variables 
 Example:  

 

struct student { 
               int   roll; 
               char  dept_code[25]; 
               float cgpa; 
            }; 
struct student *p; 
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 Just like other pointers, p does not point to 
anything by itself after declaration 
Need to assign the address of a structure to p 
Can use & operator on a struct student type 

variable 
Example: 
 

struct student x, *p; 
scanf(“%d%s%f”, &x.roll, x.dept_code, &x.cgpa); 
p = &x; 
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 Once p points to a structure variable, the 
members can be accessed in one of two 
ways: 
(*p).roll, (*p).dept_code, (*p).cgpa 

 Note the ( ) around *p 
p –> roll, p –> dept_code, p –> cgpa 

 The symbol –> is called the arrow operator 
 Example: 

 printf(“Roll = %d, Dept.= %s, CGPA = %f\n”, (*p).roll, 
(*p).dept_code, (*p).cgpa); 

 printf(“Roll = %d, Dept.= %s, CGPA = %f\n”, p->roll,  
   p->dept_code, p->cgpa); 
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Pointers and Array of Structures 

 Recall that the name of an array is the 
address of its 0-th element 
Also true for the names of arrays of structure 

variables. 
 Consider the declaration: 
 

struct student class[100],  *ptr ; 
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 The name class represents the address of the 0-th 
element of the structure array 
 ptr is a pointer to data objects of the type struct 

student 
 The assignment 

ptr = class; 
    will assign the address of class[0] to ptr 
 Now ptr->roll is the same as class[0].roll. Same for 

other members 
 When the pointer ptr is incremented by one (ptr++) : 

 The value of ptr is actually increased by 
sizeof(struct student) 

 It is made to point to the next record 
 Note that sizeof operator can be applied on any 

data type 
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A Warning 
 When using structure pointers, be careful of 

operator precedence 
Member operator “.” has higher precedence than “*” 

   ptr –> roll    and    (*ptr).roll    mean the same 
thing 

   *ptr.roll   will lead to error 
 The operator  “–>”  enjoys the highest priority 

among operators 
   ++ptr –> roll    will increment ptr->roll, not ptr 
   (++ptr) –> roll    will access (ptr + 1)->roll (for 

example, if you want to print the roll no. of all elements of 
the class array) 
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