
1

Structures

2

What is a Structure?

n Used for handling a group of logically
related data items
¨Examples:

n Student name, roll number, and marks
n Real part and complex part of a complex number

n Helps in organizing complex data in a
more meaningful way

n The individual structure elements are
called members

3

Defining a Structure
struct tag {

member 1;
member 2;
:
member m;

};

¨ struct is the required C keyword
¨ tag is the name of the structure
¨ member 1, member 2, … are individual member

declarations

4

Contd.
n The individual members can be ordinary

variables, pointers, arrays, or other structures
(any data type)
¨ The member names within a particular

structure must be distinct from one another
¨ A member name can be the same as the

name of a variable defined outside of the
structure

n Once a structure has been defined, the
individual structure-type variables can be
declared as:

struct tag var_1, var_2, …, var_n;

5

Example
n A structure definition

struct student {
char name[30];
int roll_number;
int total_marks;
char dob[10];

};

n Defining structure variables:

struct student a1, a2, a3;

A new data-type

6

A Compact Form
n It is possible to combine the declaration of the

structure with that of the structure variables:

struct tag {
member 1;
member 2;
:
member m;

} var_1, var_2,…, var_n;

n Declares three variables of type struct tag
n In this form, tag is optional

7

Accessing a Structure
n The members of a structure are processed

individually, as separate entities
¨ Each member is a separate variable

n A structure member can be accessed by writing
variable.member

where variable refers to the name of a structure-type
variable, and member refers to the name of a
member within the structure

n Examples:
a1.name, a2.name, a1.roll_number, a3.dob

8

Example: Complex number addition
void main()
{

struct complex
{

float real;
float cmplex;

} a, b, c;

scanf (“%f %f”, &a.real, &a.cmplex);
scanf (“%f %f”, &b.real, &b.cmplex);

c.real = a.real + b.real;
c.cmplex = a.cmplex + b.cmplex;
printf (“\n %f + %f j”, c.real, c.cmplex);

}

9

Operations on Structure
Variables
n Unlike arrays, a structure variable can be directly

assigned to another structure variable of the
same type

a1 = a2;
n All the individual members get assigned

n Two structure variables can not be compared
for equality or inequality

if (a1 == a2)…… this cannot be done

10

Arrays of Structures

n Once a structure has been defined, we can
declare an array of structures

struct student class[50];

¨The individual members can be accessed as:
class[i].name
class[5].roll_number

type name

11

Arrays within Structures

n A structure member can be an array

n The array element within the structure can
be accessed as:

a1.marks[2], a1.dob[3],…

struct student
{

char name[30];
int roll_number;
int marks[5];
char dob[10];

} a1, a2, a3;

12

Structure Initialization
n Structure variables may be initialized following

similar rules of an array. The values are
provided within the second braces separated
by commas

n An example:
struct complex a={1.0,2.0}, b={-3.0,4.0};

a.real=1.0; a.imag=2.0;
b.real=-3.0; b.imag=4.0;

13

Parameter Passing in a
Function
n Structure variables can be passed as parameters like

any other variables. Only the values will be copied
during function invocation

void swap (struct complex a, struct complex b)
{

struct complex tmp;

tmp=a;
a=b;
b=tmp;

}

14

Returning structures
n It is also possible to return structure values from a

function. The return data type of the function should
be as same as the data type of the structure itself

struct complex add(struct complex a, struct complex b)
{

struct complex tmp;

tmp.real = a.real + b.real;
tmp.imag = a.imag + b.imag;
return(tmp);

}

Direct arithmetic operations are not possible with structure variables

15

Defining data type: using typedef
n One may define a structure data-type with a single

name
typedef struct newtype {

member-variable1;
member-variable2;

.
member-variableN;

} mytype;
n mytype is the name of the new data-type

¨ Also called an alias for struct newtype
¨ Writing the tag name newtype is optional, can be

skipped
¨ Naming follows rules of variable naming

16

typedef : An example
typedef struct {

float real;
float imag;

} COMPLEX;

n Defined a new data type named COMPLEX. Now can
declare and use variables of this type

COMPLEX a, b, c;

17

n Note: typedef is not restricted to just structures,
can define new types from any existing type

n Example:
¨ typedef int INTEGER
¨ Defines a new type named INTEGER from the

known type int
¨ Can now define variables of type INTEGER which

will have all properties of the int type

INTEGER a, b, c;

18

The earlier program using typedef
typedef struct{

float real;
float imag;

} _COMPLEX;

void swap (_COMPLEX a, _COMPLEX b)
{

_COMPLEX tmp;

tmp = a;
a = b;
b = tmp;

}

19

Contd.
void print (_COMPLEX a)
{

printf("(%f, %f) \n",a.real,a.imag);
}

void main()
{

_COMPLEX x={4.0,5.0}, y={10.0,15.0};

print(x); print(y);
swap(x,y);
print(x); print(y);

} swap.c

20

n Output:
(4.000000, 5.000000)
(10.000000, 15.000000)
(4.000000, 5.000000)
(10.000000, 15.000000)

n x and y are not swapped! But that has got
nothing to do with structures specially. We
will see its reason shortly

21

Structures and Functions

n A structure can be passed as argument to
a function

n A function can also return a structure

22

Example: complex number addition
void main()
{

_COMPLEX a, b, c;
scanf(“%f %f”, &a.real, &a.imag);
scanf(“%f %f”, &b.real, &b.imag);
c = add (a, b) ;
printf(“\n %f %f”, c,real, c.imag);

}
_COMPLEX add(_COMPLEX x, _COMPLEX
y)
{

_COMPLEX t;

t.real = x.real + y.real;
t.imag = x.imag + y.imag ;
return (t) ;

}

23

Exercise Problems
1. Extend the complex number program to include

functions for addition, subtraction, multiplication, and
division

2. Define a structure for representing a point in two-
dimensional Cartesian co-ordinate system
• Write a function to compute the distance between

two given points
• Write a function to compute the middle point of the

line segment joining two given points
• Write a function to compute the area of a triangle,

given the co-ordinates of its three vertices

