
1

Expressions

2

Expressions
 Variables and constants linked with operators
Arithmetic expressions

 Uses arithmetic operators
 Can evaluate to any value

 Logical expressions
 Uses relational and logical operators
 Evaluates to 1 or 0 (true or false) only

Assignment expression
 Uses assignment operators
 Evaluates to value depending on assignment

3

Arithmetic Operators
 Binary operators
Addition: +
Subtraction: –
Division: /
Multiplication: *
Modulus: %

 Unary operators
Plus: +
Minus: –

 2*3 + 5 – 10/3
 –1 + 3*25/5 – 7
 distance / time
 3.14* radius * radius
 a * x * x + b*x + c
 dividend / divisor
 37 % 10

Examples

4

Contd.
 Suppose x and y are two integer variables,

whose values are 13 and 5 respectively

x + y 18
x – y 8
x * y 65
x / y 2

x % y 3

5

 All operators except % can be used with
operands of all of the data types int, float,
double, char (yes! char also! We will see
what it means later)

 % can be used only with integer operands

6

Operator Precedence
 In decreasing order of priority

1. Parentheses :: ()
2. Unary minus :: –5
3. Multiplication, Division, and Modulus
4. Addition and Subtraction

 For operators of the same priority, evaluation is
from left to right as they appear

 Parenthesis may be used to change the
precedence of operator evaluation

7

Examples:
Arithmetic expressions

a + b * c – d / e a + (b * c) – (d / e)

a * – b + d % e – f a * (– b) + (d % e) – f

a – b + c + d (((a – b) + c) + d)

x * y * z ((x * y) * z)

a + b + c * d * e (a + b) + ((c * d) * e)

8

Type of Value of an Arithmetic
Expression
 If all operands of an operator are integer

(int variables or integer constants), the
value is always integer
Example: 9/5 will be 1, not 1.8
Example:
 int a=9, b=5;
 printf(“%d”, a/b)
 will print 1 and not 1.8

9

 If at least one operand is real, the value is real
Caution: Since floating-point values are rounded to

the number of significant digits permissible, the final
value is an approximation of the final result

 Example: 1/ 3.0 * 3.0 may have the value 0.99999
and not 1.0

So checking if 1/ 3.0 * 3.0 is equal to 1.0 may
return false!!

10

 The type of the final value of the
expression can be found by applying these
rules again and again as the expression is
evaluated following operator precedence

11

We have a problem!!
int a=10, b=4, c;
float x;
c = a / b;
x = a / b;

 The value of c will be 2
 The value of x will be 2.0
 But we want 2.5 to be stored in x

We will take care of this a little later

12

Assignment Expression
 Uses the assignment operator (=)
 General syntax:

 variable_name = expression
 Left of = is called l-value, must be a modifiable

variable
 Right of = is called r-value, can be any expression
 Examples:

 velocity = 20
 b = 15; temp = 12.5
 A = A + 10
 v = u + f * t
 s = u * t + 0.5 * f * t * t

13

Contd.
 An assignment expression evaluates to a

value same as any other expression
 Value of an assignment expression is the

value assigned to the l-value
 Example: value of
a = 3 is 3
b = 2*4 – 6 is 2
n = 2*u + 3*v – w is whatever the arithmetic

expression 2*u + 3*v – w evaluates to given
the current values stored in variables u, v, w

14

Contd.
 Several variables can be assigned the same

value using multiple assignment operators
 a = b = c = 5;
 flag1 = flag2 = ‘y’;
 speed = flow = 0.0;

 Easy to understand if you remember that
 the assignment expression has a value
Multiple assignment operators are right-to-left

associative

15

Example
 Consider a= b = c = 5

 Three assignment operators
Rightmost assignment expression is c=5, evaluates

to value 5
Now you have a = b = 5
Rightmost assignment expression is b=5, evaluates

to value 5
Now you have a = 5
 Evaluates to value 5
 So all three variables store 5, the final value the

assignment expression evaluates to is 5

16

Types of l-value and r-value
 Usually should be the same
 If not, the type of the r-value will be internally

converted to the type of the l-value, and then
assigned to it

 Example:
 double a;
 a = 2*3;
Type of r-value is int and the value is 6
Type of l-value is double, so stores 6.0

17

This can cause strange problems
 int a;
 a = 2*3.2;

 Type of r-value is float/double and the value is
6.4

 Type of l-value is int, so internally converted to 6
 So a stores 6, not the correct result
 But an int cannot store fractional part anyway
 So just badly written program
 Be careful about the types on both sides

18

More Assignment Operators
 +=, -=, *=, /=, %=
 Operators for special type of assignments
 a += b is the same as a = a + b
 Same for -=, *=, /=, and %=
 Exact same rules apply for multiple

assignment operators

19

Contd.
 Suppose x and y are two integer variables,

whose values are 5 and 10 respectively.

x += y Stores 15 in x
Evaluates to 15

x –= y Stores -5 in x
Evaluates to -5

x *= y Stores 50 in x
Evaluates to 50

x /= y Stores 0 in x
Evaluates to 0

20

Logical Expressions

 Uses relational and logical operators in
addition

 Informally, specifies a condition which can
be true or false

 Evaluates to value 0 or 1
0 implies the condition is false
1 implies the condition is true

21

Logical Expressions

(count <= 100)

((math+phys+chem)/3 >= 60)

((sex == ’M’) && (age >= 21))

((marks >= 80) && (marks < 90))

((balance > 5000) | | (no_of_trans > 25))

(! (grade == ’A’))

22

Relational Operators
 Used to compare two quantities.

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to

23

Examples
10 > 20 is false, so value is 0
25 < 35.5 is true, so value is 1
12 > (7 + 5) is false, so value is 0
32 != 21 is true, so value is 1

 When arithmetic expressions are used on either
side of a relational operator, the arithmetic
expressions will be evaluated first and then the
results compared
 a + b > c – d is the same as (a + b) > (c – d)

24

Logical Operators
Logical AND (&&)

 Evalutes to true if both the operands are non-
zero

Logical OR (||)
 Result is true if at least one of the operands is

non-zero

X Y X && Y X | | Y
0 0 false false
0 non-0 false true

non-0 0 false true
non-0 non-0 true true

25

Contd

 Unary negation operator (!)
Single operand
Value is 0 if operand is non-zero
Value is 1 if operand is 0

26

Example
 (4 > 3) && (100 != 200)

 4 > 3 is true, so value 1
 100 != 200 is true so value 1
 Both operands 1 for &&, so final value 1

 (!10) && (10 + 20 != 200)
 10 is non-0, so value !10 is 0
 10 + 20 != 200 is true so value 1
 Both operands NOT 1 for &&, so final value 0

 (!10) || (10 + 20 != 200)
 Same as above, but at least one value non-0, so

final value 1

27

 a = 3 && (b = 4)
 b = 4 is an assignment expression, evaluates to 4
 && has higher precedence than =
 3 && (b = 4) evaluates to true as both operands of &&

are non-0, so final value of the logical expression is true
 a = 3 && (b = 4) is an assignment expression, evaluates

to 1 (true)

 Note that changing to b = 0 would have made the
final value 0

28

Example: Use of Logical Expressions

void main () {
 int i, j;
 scanf(“%d%d”,&i,&j);
 printf (“%d AND %d = %d, %d OR %d=%d\n”,
 i,j,i&&j, i,j, i||j) ;
}

If 3 and 0 are entered from keyboard, output will be

 3 AND 0 = 0, 3 OR 0 = 1

29

A Special Operator: AddressOf (&)
 Remember that each variable is stored at a

location with an unique address
 Putting & before a variable name gives the

address of the variable (where it is stored, not
the value)

 Can be put before any variable (with no blank in
between)

 int a =10;
 printf(“Value of a is %d, and address of a is

%d\n”, a, &a);

30

More on Arithmetic Expressions

31

Recall the earlier problem
int a=10, b=4, c;
float x;
c = a / b;
x = a / b;

 The value of c will be 2
 The value of x will be 2.0
 But we want 2.5 to be stored in x

32

Solution: Typecasting
 Changing the type of a variable during its use
 General form

 (type_name) variable_name
 Example

 x = ((float) a)/ b;

Now x will store 2.5 (type of a is considered to be

float for this operation only, now it is a mixed-
mode expression, so real values are generated)

33

 Not everything can be typecast to anything
 float/double should not be typecast to int (as

an int cannot store everything a float/double
can store)

 int should not be typecast to char (same
reason)

 General rule: make sure the final type can
store any value of the initial type

34

Example: Finding Average of 2
Integers

 int a, b;
 float avg;
 scanf(“%d%d”, &a, &b);
 avg = (a + b)/2;
 printf(“%f\n”, avg);

 int a, b;
 float avg;
 scanf(“%d%d”, &a, &b);
 avg = ((float) (a + b))/2;
 printf(“%f\n”, avg);

 int a, b;
 float avg;
 scanf(“%d%d”, &a, &b);
 avg = (a + b)/2.0;
 printf(“%f\n”, avg);

Wrong program

Correct programs

average-1.c

average-2.c

35

More Operators: Increment (++)
and Decrement (--)
 Both of these are unary operators; they

operate on a single operand
 The increment operator causes its operand

to be increased by 1
 Example: a++, ++count

 The decrement operator causes its operand
to be decreased by 1.
 Example: i--, --distance

36

Pre-increment versus post-
increment
 Operator written before the operand (++i, --i))
Called pre-increment operator (also sometimes

called prefix ++ and prefix --)
Operand will be altered in value before it is utilized

in the program
 Operator written after the operand (i++, i--)
Called post-increment operator (also sometimes

called postfix ++ and postfix --)
Operand will be altered in value after it is utilized in

the program

37

Examples
 Initial values :: a = 10; b = 20;

 x = 50 + ++a; a = 11, x = 61
 x = 50 + a++; x = 60, a = 11
 x = a++ + --b; b = 19, x = 29, a = 11
 x = a++ – ++a; ??

Called side effects (while calculating some values,
something else gets changed)

38

Precedence
among different
operators (there
are many other
operators in C,
some of which we
will see later)

Operator Class Operators Associativity
Unary postfix++, -- Left to Right

Unary prefix ++, --
─ ! & Right to Left

Binary * / % Left to Right
Binary + ─ Left to Right

Binary < <= > >= Left to Right

Binary == != Left to Right
Binary && Left to Right
Binary || Left to Right

Assignment = += ─ =
*= /= %= Right to Left

39

Statements in a C program
 Parts of C program that tell the computer what to do
 Different types

 Declaration statements
 Declares variables etc.

 Assignment statement
 Assignment expression, followed by a ;

 Control statements
 For branching and looping, like if-else, for, while, do-

while (to be seen later)
 Input/Output

 Read/print, like printf/scanf

40

Example

int a, b, larger;
scanf(“%d %d”, &a, &b);
larger = b;
if (a > b)
 larger = a;
printf(“Larger number is %d\n”, larger);

Declaration statement

Assignment
statement

Control
statement

Input/Output
statement

41

 Compound statements
A sequence of statements enclosed within {

and }
Each statement can be an assignment

statement, control statement, input/output
statement, or another compound statement

We will also call it block of statements
sometimes informally

42

Example

int n;
scanf(“%d”, &n);
while(1) {
 if (n > 0) break;
 scanf(“%d”, &n);
}

Compound statement

	Expressions
	Expressions
	Arithmetic Operators
	Contd.
	Slide Number 5
	Operator Precedence
	Examples: �Arithmetic expressions
	Type of Value of an Arithmetic Expression
	Slide Number 9
	Slide Number 10
	We have a problem!!
	Assignment Expression
	Contd.
	Contd.
	Example
	Types of l-value and r-value
	This can cause strange problems
	More Assignment Operators
	Contd.
	Logical Expressions
	Logical Expressions
	Relational Operators
	Examples
	Logical Operators
	Contd
	Example
	Slide Number 27
	Example: Use of Logical Expressions
	A Special Operator: AddressOf (&)
	More on Arithmetic Expressions
	Recall the earlier problem
	Solution: Typecasting
	Slide Number 33
	Example: Finding Average of 2 Integers
	More Operators: Increment (++) and Decrement (--)
	Pre-increment versus post-increment
	Examples
	Precedence among different operators (there are many other operators in C, some of which we will see later)
	Statements in a C program
	Example
	Slide Number 41
	Example

