
1

1-d Arrays

2

Array
 Many applications require multiple data

items that have common characteristics
 In mathematics, we often express such

groups of data items in indexed form:
 x1, x2, x3, …, xn

 Array is a data structure which can
represent a collection of data items which
have the same data type (float/int/char/…)

3

int a, b, c;
scanf(“%d”, &a);
scanf(“%d”, &b);
scanf(“%d”, &c);
printf(“%d ”, c);
printf(“%d ”, b);
printf(“%d \n”, a);

int a, b, c, d;
scanf(“%d”, &a);
scanf(“%d”, &b);
scanf(“%d”, &c);
scanf(“%d”, &d);
printf(“%d ”, d);
printf(“%d ”, c);
printf(“%d ”, b);
printf(“%d \n”, a);

3 numbers
4 numbers

Example: Printing Numbers in
Reverse

4

The Problem
 Suppose we have 10 numbers to handle
 Or 20
 Or 100
 Where do we store the numbers ? Use

100 variables ??
 How to tackle this problem?
 Solution:
Use arrays

Printing in Reverse Using Arrays
int main()
{
 int n, A[100], i;
 printf(“How many numbers to read? “);
 scanf(“%d”, &n);
 for (i = 0; i < n; ++i)
 scanf(“%d”, &A[i]);
 for (i = n -1; i >= 0; --i)
 printf(“%d ”, A[i]);
 printf(“\n”);
 return 0;
}

6

Using Arrays

 All the data items constituting the group
share the same name

int x[10];
 Individual elements are accessed by

specifying the index

x[0] x[1] x[2] x[9]

X is a 10-element one
dimensional array

7

A first example
int main()
{
 int i;
 int data[10];
 for (i=0; i<10; i++) data[i]= i;
 i=0;
 while (i<10)
 {
 printf("Data[%d] = %d\n", i, data[i]);
 i++;
 }
 return 0;
}

 “data refers to a block of 10
 integer variables, data[0], data[1],
 …, data[9]

8

The result

int main()
{
 int i;
 int data[10];
 for (i=0; i<10; i++) data[i]= i;
 i=0;
 while (i<10)
 {
 printf("Data[%d] = %d\n", i, data[i]);
 i++;
 }
 return 0;
}

Data[0] = 0

Data[1] = 1

Data[2] = 2

Data[3] = 3

Data[4] = 4

Data[5] = 5

Data[6] = 6

Data[7] = 7

Data[8] = 8

Data[9] = 9

 Array size should be a constant

Output

9

Declaring Arrays
 Like variables, the arrays used in a program must be

declared before they are used
 General syntax:
 type array-name [size];
 type specifies the type of element that will be

contained in the array (int, float, char, etc.)
 size is an integer constant which indicates the

maximum number of elements that can be stored
inside the array

marks is an array that can store a maximum of 5

integers

int marks[5];

10

 Examples:
 int x[10];
 char line[80];
 float points[150];
 char name[35];

 If we are not sure of the exact size of the array,
we can define an array of a large size
 int marks[50];

 though in a particular run we may only be using,
say, 10 elements

11

Accessing Array Elements
 A particular element of the array can be

accessed by specifying two things:
Name of the array
 Index (relative position) of the element in the

array
 In C, the index of an array starts from zero
 Example:
An array is defined as int x[10];
The first element of the array x can be

accessed as x[0], fourth element as x[3], tenth
element as x[9], etc.

12

Contd.

 The array index must evaluate to an integer
between 0 and n-1 where n is the maximum
number of elements possible in the array
 a[x+2] = 25;
 b[3*x-y] = a[10-x] + 5;

 Remember that each array element is a
variable in itself, and can be used anywhere a
variable can be used (in expressions,
assignments, conditions,…)

13

How is an array stored in
memory?
 Starting from a given memory location, the

successive array elements are allocated space
in consecutive memory locations

 x: starting address of the array in memory
 k: number of bytes allocated per array element

a[i] is allocated memory location at
address x + i*k

Array a

14

Storage

int main()
{
 int i;
 int data[10];
 for(i=0; i<10; i++)
 printf("&Data[%d] = %u\n", i, &data[i]);
 return 0;
}

&Data[0] = 3221224480

&Data[1] = 3221224484

&Data[2] = 3221224488

&Data[3] = 3221224492

&Data[4] = 3221224496

&Data[5] = 3221224500

&Data[6] = 3221224504

&Data[7] = 3221224508

&Data[8] = 3221224512

&Data[9] = 3221224516

Output

15

Initialization of Arrays
 General form:

 type array_name[size] = { list of values };
 Examples:

 int marks[5] = {72, 83, 65, 80, 76};
 char name[4] = {‘A’, ‘m’, ‘i’, ‘t’};

 The size may be omitted. In such cases the
compiler automatically allocates enough space
for all initialized elements
 int flag[] = {1, 1, 1, 0};
 char name[] = {‘A’, ‘m’, ‘i’, ‘t’};

16

How to read the elements of an
array?
 By reading them one element at a time

 for (j=0; j<25; j++)

 scanf (“%f”, &a[j]);

 The ampersand (&) is necessary

 The elements can be entered all in one line or in

different lines

17

A Warning

 In C, while accessing array elements, array
bounds are not checked

 Example:
int marks[5];
:
:
marks[8] = 75;

The above assignment would not necessarily
cause an error

Rather, it may result in unpredictable program
results

18

Reading into an array
int main() {
 const int MAX_SIZE = 100;
 int i, size;
 float marks[MAX_SIZE];
 float total;
 scanf("%d",&size);
 for (i=0, total=0; i<size; i++)
 {
 scanf("%f",&marks[i]);
 total = total + marks[i];
 }
 printf("Total = %f \n Avg = %f\n", total,
total/size);
 return 0;
}

4

2.5

3.5

4.5

5

Total = 15.500000

 Avg = 3.875000

Output

19

How to print the elements of an
array?
 By printing them one element at a time

 for (j=0; j<25; j++)
 printf (“\n %f”, a[j]);
The elements are printed one per line
 printf (“\n”);
 for (j=0; j<25; j++)
 printf (“ %f”, a[j]);
The elements are printed all in one line

(starting with a new line)

20

How to copy the elements of one
array to another?

 By copying individual elements

 for (j=0; j<25; j++)

 a[j] = b[j];

 The element assignments will follow the rules
of assignment expressions

 Destination array must have sufficient size

21

Example 1: Find the minimum of a
set of 10 numbers

int main()
{
 int a[10], i, min;

 for (i=0; i<10; i++)
 scanf (“%d”, &a[i]);

 min = a[0];
 for (i=1; i<10; i++)
 {
 if (a[i] < min)
 min = a[i];
 }
 printf (“\n Minimum is %d”, min);
 return 0;
}

22

const int size = 10;

int main()
{
 int a[size], i, min;

 for (i=0; i<size; i++)
 scanf (“%d”, &a[i]);

 min = a[0];
 for (i=1; i<size; i++)
 {
 if (a[i] < min)
 min = a[i];
 }
 printf (“\n Minimum is %d”, min);
 return 0;
}

Alternate Version 1

Change only one
 line to change the

problem size

23

#define size 10

int main()
{
 int a[size], i, min;

 for (i=0; i<size; i++)
 scanf (“%d”, &a[i]);

 min = a[0];
 for (i=1; i<size; i++)
 {
 if (a[i] < min)
 min = a[i];
 }
 printf (“\n Minimum is %d”, min);
 return 0;
}

Alternate Version 2

Change only one
 line to change the

problem size

Used #define macro

24

#define macro
 #define X Y
 Preprocessor directive
 Compiler will first replace all occurrences of

string X with string Y in the program, then
compile the program

 Similar effect as read-only variables (const), but
no storage allocated

 We prefer you use const instead of #define

25

int main()
{
 int a[100], i, min, n;

 scanf (“%d”, &n); /* Number of elements */
 for (i=0; i<n; i++)
 scanf (“%d”, &a[i]);

 min = a[0];
 for (i=1; i<n; i++)
 {
 if (a[i] < min)
 min = a[i];
 }
 printf (“\n Minimum is %d”, min);
 return 0;
}

Alternate Version 3

Define an array of
large size and use
only the required

number of elements

26

Example 2:
Computing
cgpa

const int nsub = 6;

int main()
{
 int grade_pt[nsub], cred[nsub], i,
 gp_sum=0, cred_sum=0;
 double gpa;

 for (i=0; i<nsub; i++)
 scanf (“%d %d”, &grade_pt[i], &cred[i]);

 for (i=0; i<nsub; i++)
 {
 gp_sum += grade_pt[i] * cred[i];
 cred_sum += cred[i];
 }
 gpa = ((float) gp_sum) / cred_sum;
 printf (“\n Grade point average: is %.2lf”, gpa);
 return 0;
}

Handling two arrays
at the same time

27

Example: Binary Search
 Searching for an element k in a sorted array A with n

elements
 Idea:
Choose the middle element A[n/2]
 If k == A[n/2], we are done
 If k < A[n/2], search for k between A[0] and A[n/2 -1]
 If k > A[n/2], search for k between A[n/2 + 1] and

A[n-1]
Repeat until either k is found, or no more elements

to search
 Requires less number of comparisons than linear

search in the worst case (log2n instead of n)

28

int main() {
 int A[100], n, k, i, mid, low, high;
 scanf(“%d %d”, &n, &k);
 for (i=0; i<n; ++i) scanf(“%d”, &A[i]);
 low = 0; high = n – 1; mid = low + (high – low)/2;
 while (high >= low) {
 printf(“low = %d, high = %d, mid = %d, A[%d] = %d\n”,

low, high, mid, mid, A[mid]);
 if (A[mid] == k) {
 printf(“%d is found\n”, k);
 break;
 }
 if (k < A[mid]) high = mid – 1;
 else low = mid + 1;
 mid = low + (high – low)/2;
 }
 if (high < low) printf(“%d is not found\n”, k);
 return 0;
}

29

8 21
9 11 14 17 19 20 23 27
low = 0, high = 7, mid = 3, A[3] = 17
low = 4, high = 7, mid = 5, A[5] = 20
low = 6, high = 7, mid = 6, A[6] = 23
21 is not found

8 14
9 11 14 17 19 20 23 27
low = 0, high = 7, mid = 3, A[3] = 17
low = 0, high = 2, mid = 1, A[1] = 11
low = 2, high = 2, mid = 2, A[2] = 14
14 is found

Output

30

Example: Selection Sort
 Sort the elements of an array A with n

elements in ascending order
 Basic Idea:
Find the min of the n elements, swap it with

A[0] (so min is at A[0] now)
Now find the min of the remaining n-1

elements, swap it with A[1] (so 2nd min is at
A[1] now)

Continue until no more elements left

31

int main() {
 int A[100], n, i, j, k, min, pos, temp;
 scanf(“%d”, &n);
 for (i=0; i<n; ++i) scanf(“%d”, &A[i]);
 for (i = 0; i < n - 1; ++i) {
 min = A[i]; pos = i;
 for (j = i + 1; j < n; ++j) {
 if (A[j] < min) {
 min = A[j]; pos = j;
 }
 }
 temp = A[i];
 A[i] = A[pos];
 A[pos] = temp;
 for (k=0; k<n; ++k) printf(“%d ”, A[k]);
 printf(“\n”);
 } /* end of outer for */
 return 0;
}

32

6
7 12 5 15 17 9
5 12 7 15 17 9
5 7 12 15 17 9
5 7 9 15 17 12
5 7 9 12 17 15
5 7 9 12 15 17

8
9 8 7 6 5 4 3 2
2 8 7 6 5 4 3 9
2 3 7 6 5 4 8 9
2 3 4 6 5 7 8 9
2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9

Output

33

Things you cannot do

 You cannot
use = to assign one array variable to another

 a = b; /* a and b are arrays */
use == to directly compare array variables

 if (a = = b) ………..
directly scanf or printf arrays

 printf (“……”, a);

34

Character Arrays and Strings
 char C[8] = { 'a', 'b', 'h', 'i', 'j', 'i', 't', '\0' };

 C[0] gets the value 'a', C[1] the value 'b', and so on.
The last (7th) location receives the null character ‘\0’

 Null-terminated (last character is ‘\0’) character arrays
are also called strings

 Strings can be initialized in an alternative way. The
last declaration is equivalent to:

 char C[8] = "abhijit";
 The trailing null character is missing here. C

automatically puts it at the end if you define it like this
 Note also that for individual characters, C uses single

quotes, whereas for strings, it uses double quotes

35

Reading strings: %s format

int main()
{
 char name[25];
 scanf("%s", name);
 printf("Name = %s \n", name);
 return 0;
}

 %s reads a string into a character array
given the array name or start address.

It ends the string with ‘\0’

36

An example
int main()
{
 #define SIZE 25
 int i, count=0;
 char name[SIZE];
 scanf("%s", name);
 printf("Name = %s \n", name);
 for (i=0; name[i]!='\0'; i++)
 if (name[i] == 'a') count++;
 printf("Total a's = %d\n", count);
 return 0;
}

Satyanarayana

Name = Satyanarayana

Total a's = 6

 Note that character strings read
in %s format end with ‘\0’

Seen on screen

Typed as input

Printed by program

37

Palindrome Checking
int main()
{
 const int SIZE = 25;
 int i, flag, count=0;
 char name[SIZE];
 scanf("%s", name); /* Read Name */
 for (i=0; name[i]!='\0'; i++); /* Find Length of String */
 printf("Total length = %d\n",i);
 count=i; flag = 0;
 /* Loop below checks for palindrome by comparison*/
 for(i=0; i<count; i++) if (name[i]!=name[count-i-1]) flag = 1;
 if (flag ==0) printf ("%s is a Palindrome\n", name);
 else printf("%s is NOT a Palindrome\n", name);
 return 0;
}

38

Some Exercises
1. Write a C program that reads an integer n and stores the

first n Fibonacci numbers in an array.
2. Write a C program that reads an integer n and uses an

array to efficiently find out the first n prime numbers.
3. Read in an integer n, read in n integers and print the integer

with the highest frequency.
4. Read in an integer n, read in n numbers and find out the

mean, median and mode.
5. Read in two names and compare them and print them in

lexicographic (dictionary) order.
6. Read in an integer n, read in n names and print the last

name when compared in lexicographic order.

	1-d Arrays
	Array
	Example: Printing Numbers in Reverse
	The Problem
	Printing in Reverse Using Arrays
	Using Arrays
	A first example
	The result
	Declaring Arrays
	Slide Number 10
	Accessing Array Elements
	Contd.
	How is an array stored in memory?
	Storage
	Initialization of Arrays
	How to read the elements of an array?
	A Warning
	Reading into an array
	How to print the elements of an array?
	How to copy the elements of one array to another?
	Example 1: Find the minimum of a set of 10 numbers
	Slide Number 22
	Slide Number 23
	#define macro
	Slide Number 25
	Example 2:�Computing cgpa
	Example: Binary Search
	Slide Number 28
	Slide Number 29
	Example: Selection Sort
	Slide Number 31
	Slide Number 32
	Things you cannot do
	Character Arrays and Strings
	Reading strings: %s format
	An example
	Palindrome Checking
	Some Exercises

