
1 

Number  
Representation 



2 

Number System :: The Basics 

 We are accustomed to using the so-called 
decimal number system 
 Ten digits ::  0,1,2,3,4,5,6,7,8,9 
 Every digit position has a weight which is a 

power of 10 
 Base or radix is 10 

Example: 
234 =  2 x 102  +  3 x 101  +  4 x 100 

250.67 =  2 x 102  +  5 x 101  +  0 x 100  +  6 x 
10-1 +  7 x 10-2 



3 

Binary Number System 
 Two digits: 
 0 and 1 
 Every digit position has a weight which is a 

power of 2 
 Base or radix is 2 

 Example: 
110 =  1 x 22  +  1 x 21  +  0 x 20 

101.01 =  1 x 22  +  0 x 21  +  1 x 20  +  0 x 2-1  +  
1 x 2-2 

 



4 

Positional Number Systems (General) 

 Decimal Numbers: 
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10 
 136.25 = 1 × 102  +  3 × 101  +  6 × 100   +  2 × 10–1   +  3 × 10–2   



5 

Positional Number Systems (General) 

 Decimal Numbers: 
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10 
 136.25 = 1 × 102  +  3 × 101  +  6 × 100   +  2 × 10–1   +  3 × 10–2   

Binary Numbers: 
 2 Symbols {0,1}, Base or Radix is 2 
 101.01 = 1 × 22  +  0 × 21  +  1 × 20   +  0 × 2–1   +  1 × 2–2   



6 

Positional Number Systems (General) 

 Decimal Numbers: 
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10 
 136.25 = 1 × 102  +  3 × 101  +  6 × 100   +  2 × 10–1   +  5 × 10–2   

Binary Numbers: 
 2 Symbols {0,1}, Base or Radix is 2 
 101.01 = 1 × 22  +  0 × 21  +  1 × 20   +  0 × 2–1   +  1 × 2–2   

Octal Numbers: 
 8 Symbols {0,1,2,3,4,5,6,7},  Base or Radix is 8 
 621.03 = 6 × 82  +  2 × 81  +  1 × 80   +  0 × 8–1   +  3 × 8–2   



7 

Positional Number Systems (General) 

 Decimal Numbers: 
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10 
 136.25 = 1 × 102  +  3 × 101  +  6 × 100   +  2 × 10–1   +  3 × 10–2   

Binary Numbers: 
 2 Symbols {0,1}, Base or Radix is 2 
 101.01 = 1 × 22  +  0 × 21  +  1 × 20   +  0 × 2–1   +  1 × 2–2   

Octal Numbers: 
 8 Symbols {0,1,2,3,4,5,6,7},  Base or Radix is 8 
 621.03 = 6 × 82  +  2 × 81  +  1 × 80   +  0 × 8–1   +  3 × 8–2   

Hexadecimal Numbers: 
 16 Symbols {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, Base is 16 
6AF.3C = 6 × 162  +  10 × 161  +  15 × 160   +  3 × 16–1   +  12 × 16–2   



8 

Binary-to-Decimal Conversion 
 Each digit position of a binary number has 

a weight 
Some power of 2 

 A binary number: 
       B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m 

    Corresponding value in decimal: 
 

  D = Σ    bi 2i 
i = -m 

n-1 



9 

Examples 
101011    1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20 

    = 43 
  (101011)2 = (43)10 
 

.0101        0x2-1 + 1x2-2 + 0x2-3 + 1x2-4 

    = .3125 
  (.0101)2 = (.3125)10 
 
101.11      1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2 

    = 5.75 
  (101.11)2 = (5.75)10 



10 

Decimal to Binary: Integer Part 
Consider the integer and fractional parts separately. 
For the integer part: 

Repeatedly divide the given number by 2, and go on 
accumulating the remainders, until the number becomes zero. 
Arrange the remainders in reverse order. 

2 89 
2 44 1 
2 22 0 
2 11 0 
2 5 1 
2 2 1 
2 1 0 

0 1 

Base Numb Rem 

(89)10 = (1011001)2 



11 

Decimal to Binary: Integer Part 
Consider the integer and fractional parts separately. 
For the integer part: 

Repeatedly divide the given number by 2, and go on 
accumulating the remainders, until the number becomes zero. 
Arrange the remainders in reverse order. 

2 89 
2 44 1 
2 22 0 
2 11 0 
2 5 1 
2 2 1 
2 1 0 

0 1 

Base Numb Rem 

(89)10 = (1011001)2 

2 66 
2 33 0 
2 16 1 
2 8 0 
2 4 0 
2 2 0 
2 1 0 

0 1 

(66)10 = (1000010)2 



12 

Decimal to Binary: Integer Part 
Consider the integer and fractional parts separately. 
For the integer part: 

Repeatedly divide the given number by 2, and go on 
accumulating the remainders, until the number becomes zero. 
Arrange the remainders in reverse order. 

2 89 
2 44 1 
2 22 0 
2 11 0 
2 5 1 
2 2 1 
2 1 0 

0 1 

Base Numb Rem 

(89)10 = (1011001)2 

2 66 
2 33 0 
2 16 1 
2 8 0 
2 4 0 
2 2 0 
2 1 0 

0 1 

2 239 
2 119 1 
2 59 1 
2 29 1 
2 14 1 
2 7 0 
2 3 1 
2 1 1 

0 1 

(66)10 = (1000010)2 (239)10 = (11101111)2 



13 

Decimal to Binary: Fraction Part 
Repeatedly multiply the given fraction by 2. 

Accumulate the integer part (0 or 1). 
If the integer part is 1, chop it off. 

Arrange the integer parts in the order they are obtained. 

Example: 0.634 
.634  x  2   =   1.268 
.268  x  2   =   0.536 
.536  x  2   =   1.072 
.072  x  2   =   0.144 
.144  x  2   =   0.288 

: 
: 

(.634)10 = (.10100……)2 



14 

Decimal to Binary: Fraction Part 
Repeatedly multiply the given fraction by 2. 

Accumulate the integer part (0 or 1). 
If the integer part is 1, chop it off. 

Arrange the integer parts in the order they are obtained. 

Example: 0.634 
.634  x  2   =   1.268 
.268  x  2   =   0.536 
.536  x  2   =   1.072 
.072  x  2   =   0.144 
.144  x  2   =   0.288 

: 
: 

(.634)10 = (.10100……)2 

Example: 0.0625 
.0625  x  2   =   0.125 
.1250  x  2  =    0.250 
.2500  x  2   =   0.500 
.5000  x  2   =   1.000 

(.0625)10 = (.0001)2 



15 

Decimal to Binary: Fraction Part 
Repeatedly multiply the given fraction by 2. 

Accumulate the integer part (0 or 1). 
If the integer part is 1, chop it off. 

Arrange the integer parts in the order they are obtained. 

Example: 0.634 
.634  x  2   =   1.268 
.268  x  2   =   0.536 
.536  x  2   =   1.072 
.072  x  2   =   0.144 
.144  x  2   =   0.288 

: 
: 

(.634)10 = (.10100……)2 

Example: 0.0625 
.0625  x  2   =   0.125 
.1250  x  2  =    0.250 
.2500  x  2   =   0.500 
.5000  x  2   =   1.000 

(.0625)10 = (.0001)2 

(37)10  =  (100101)2 

(.0625)10  =  (.0001)2 

(37.0625)10  =  (100101.0001)2 



16 

Hexadecimal Number System 
 A compact way of representing binary numbers 
 16 different symbols (radix = 16) 

 
    0    0000 8    1000 
    1    0001 9    1001 
    2    0010 A    1010 
    3    0011 B    1011 
    4    0100 C    1100 
    5    0101 D    1101 
    6    0110 E    1110 
    7    0111 F    1111 



17 

Binary-to-Hexadecimal 
Conversion 
 For the integer part, 

 Scan the binary number from right to left 
 Translate each group of four bits into the 

corresponding hexadecimal digit 
 Add leading zeros if necessary 

 
 For the fractional part, 

 Scan the binary number from left to right 
 Translate each group of four bits into the 

corresponding hexadecimal digit 
 Add trailing zeros if necessary 

 



18 

Example 

1. (1011 0100 0011)2   =   (B43)16 

2. (10 1010 0001)2       =   (2A1)16 

3. (.1000 010)2             =   (.84)16 

4. (101 . 0101 111)2     =   (5.5E)16 



19 

Hexadecimal-to-Binary 
Conversion 
 Translate every hexadecimal digit into its 

4-bit binary equivalent 
 

 Examples: 
    (3A5)16      =   (0011 1010 0101)2 

    (12.3D)16   =   (0001 0010 . 0011 1101)2 

    (1.8)16        =   (0001 . 1000)2 



20 

Unsigned Binary Numbers 
 An n-bit binary number 

   B  =  bn-1bn-2 …. b2b1b0 
 2n distinct combinations are possible, 0 to 2n-1. 

 For example, for n = 3, there are 8 distinct 
combinations 
000, 001, 010, 011, 100, 101, 110, 111 

 Range of numbers that can be represented 
    n=8    0  to  28-1  (255) 
    n=16  0  to  216-1 (65535) 
    n=32  0  to  232-1 (4294967295) 



21 

Signed Integer Representation 

 Many of the numerical data items that are used 
in a program are signed (positive or negative) 
Question:: How to represent sign? 

 
 Three possible approaches: 
Sign-magnitude representation 
One’s complement representation 
Two’s complement representation 



22 

Sign-magnitude Representation 

 For an n-bit number representation 
The most significant bit (MSB) indicates sign 

   0    positive 
   1    negative 

The remaining n-1 bits represent magnitude 

b0 b1 bn-2 bn-1 

Magnitude Sign 



23 

Contd. 
 Range of numbers that can be 

represented: 
     Maximum  ::  + (2n-1 – 1) 
     Minimum   ::  − (2n-1 – 1) 

 
 A problem: 

     Two different representations of zero 
    +0      0 000….0 
    -0       1 000….0 



24 

One’s Complement 
Representation 
 Basic idea: 

 Positive numbers are represented exactly as in 
sign-magnitude form 

 Negative numbers are represented in 1’s 
complement form 

 How to compute the 1’s complement of a number? 
 Complement every bit of the number (10 and 

01) 
MSB will indicate the sign of the number 

   0    positive 
   1    negative 



25 

Example  ::  n=4 
0000    +0 
0001    +1 
0010    +2 
0011    +3 
0100    +4 
0101    +5 
0110    +6 
0111    +7 

1000    -7 
1001    -6 
1010    -5 
1011    -4 
1100    -3 
1101    -2 
1110    -1 
1111    -0 

 To find the representation of, say, -4, first note that 

        +4  =  0100 

        -4   =  1’s complement of 0100  =  1011 



26 

Contd. 
 Range of numbers that can be represented: 

     Maximum  ::  + (2n-1 – 1) 
     Minimum   ::  − (2n-1 – 1) 

 A problem: 
     Two different representations of zero. 

    +0      0 000….0 
    -0       1 111….1 

 Advantage of 1’s complement representation 
 Subtraction can be done using addition 
 Leads to substantial saving in circuitry 



27 

Two’s Complement 
Representation 
 Basic idea: 

 Positive numbers are represented exactly as in 
sign-magnitude form 

 Negative numbers are represented in 2’s 
complement form 

 How to compute the 2’s complement of a number? 
 Complement every bit of the number (10 and 

01), and then add one to the resulting number 
MSB will indicate the sign of the number 

   0    positive 
   1    negative 



28 

Example :  n=4 
0000    +0 
0001    +1 
0010    +2 
0011    +3 
0100    +4 
0101    +5 
0110    +6 
0111    +7 

1000    -8 
1001    -7 
1010    -6 
1011    -5 
1100    -4 
1101    -3 
1110    -2 
1111    -1 

 
To find the representation of, say, -4, first note that 

        +4  =  0100 
        -4   =  2’s complement of 0100  =  1011+1  =  1100 
Rule :  Value = – msb*2(n–1) + [unsigned value of rest] 
Example: 0110  =  0 + 6 =  6                   1110 = – 8 + 6  =  – 2 



29 

Contd. 
 Range of numbers that can be represented: 

     Maximum  ::  + (2n-1 – 1) 
     Minimum   ::  − 2n-1 

 Advantage: 
  Unique representation of zero 
  Subtraction can be done using addition 
  Leads to substantial saving in circuitry 

 Almost all computers today use the 2’s complement 
representation for storing negative numbers 



30 

Contd. 

 In C 
short int 

 16 bits      + (215-1)  to  -215 

 int or long int 
 32 bits      + (231-1)  to  -231 

 long long int 
 64 bits      + (263-1)  to  -263 

 



31 

Adding Binary Numbers 

 Basic Rules: 
0+0=0 
0+1=1 
1+0=1 
1+1=0 (carry 1) 

 Example: 
 
01101001 
00110100 
------------- 
10011101 



32 

Subtraction Using Addition :: 1’s 
Complement 
 How to compute A – B ? 
Compute the 1’s complement of B (say, B1). 
Compute R = A + B1  
 If the carry obtained after addition is ‘1’ 

 Add the carry back to R  (called end-around carry) 
 That is, R = R + 1 
 The result is a positive number 

    Else 
 The result is negative, and is in 1’s complement 

form 
 



33 

Example 1  ::  6 – 2 
1’s complement of 2  =  1101 
 
  6   ::   0110 
 -2   ::   1101 
          1 0011 
                   1 
             0100      +4 

Assume 4-bit 
representations 

Since there is a carry, it is 
added back to the result 

The result is positive 

End-around 
carry 

R 
B1 

A 



34 

Example 2  ::  3 – 5 

1’s complement of 5  =  1010 
 
  3   ::   0011 
 -5   ::   1010 
             1101                         
 
                    

Assume 4-bit representations 

Since there is no carry, the 
result is negative 

1101 is the 1’s complement of 
0010, that is, it represents –2 

A 

B1 

R 

-2 



35 

Subtraction Using Addition :: 2’s 
Complement 
 How to compute A – B ? 
Compute the 2’s complement of B (say, B2) 
Compute R = A + B2  
 If the carry obtained after addition is ‘1’ 

 Ignore the carry 
 The result is a positive number 

    Else 
 The result is negative, and is in 2’s complement 

form 
 



36 

Example 1  ::  6 – 2 

2’s complement of 2  =  1101 + 1  =  1110 
 
  6   ::   0110 
 -2   ::   1110 
          1 0100 
                    
              

Assume 4-bit 
representations 

Presence of carry indicates 
that the result is positive 

No need to add the end-
around carry like in 1’s 
complement 

A 

B2 

R 

Ignore carry 
+4 



37 

Example 2  ::  3 – 5 

2’s complement of 5  =  1010 + 1  =  1011 
 
  3   ::   0011 
 -5   ::   1011 
            1110                       
 
                    

Assume 4-bit representations 

Since there is no carry, the 
result is negative 

1110 is the 2’s complement of 
0010, that is, it represents –2 

A 
B2 

R 

-2 



38 

2’s complement arithmetic: More 
Examples 
 Example 1: 18-11 = ? 
 18 is represented as 00010010 
 11 is represented as 00001011 
 1’s complement of 11 is 11110100 
 2’s complement of 11 is 11110101 

 Add 18 to 2’s complement of 11 

    00010010 
+  11110101 
---------------- 
    00000111 (with a carry of 1 
                     which is ignored) 

00000111 is 7 



39 

 Example 2: 7 - 9 = ? 
 7 is represented as 00000111 
 9 is represented as 00001001 
 1’s complement of 9 is 11110110 
 2’s complement of 9 is 11110111 
 Add 7 to 2’s complement of 9 

    00000111 
+  11110111 
---------------- 
    11111110 (with a carry of 0 
                     which is ignored) 

11111110 is -2 



40 

  Overflow/Underflow:  
 Adding two +ve (-ve) numbers  should not produce a  
  –ve (+ve) number. If it does, overflow  (underflow) occurs 



41 

   Another equivalent condition : carry in and carry 
out from Most Significant Bit (MSB) differ. 

  Overflow/Underflow:  
 Adding two +ve (-ve) numbers  should not produce a  
  –ve (+ve) number. If it does, overflow  (underflow) occurs 



42 

   Another equivalent condition : carry in and carry 
out from Most Significant Bit (MSB) differ. 

(64)  01000000 
( 4)   00000100 
        -------------- 
 (68) 01000100 

carry (out)(in) 
           0    0 

  Overflow/Underflow:  
 Adding two +ve (-ve) numbers  should not produce a  
  –ve (+ve) number. If it does, overflow  (underflow) occurs 



43 

   Another equivalent condition : carry in and carry 
out from Most Significant Bit (MSB) differ. 

(64)  01000000 
( 4)   00000100 
        -------------- 
 (68) 01000100 

carry (out)(in) 
           0    0 

(64)  01000000 
(96)  01100000 
        -------------- 
(-96) 10100000 

carry  out in 
           0   1 

differ: 

overflow 

  Overflow/Underflow:  
 Adding two +ve (-ve) numbers  should not produce a  
  –ve (+ve) number. If it does, overflow  (underflow) occurs 



44 

Floating-point Numbers 
 The representations discussed so far applies only to 

integers 
 Cannot represent numbers with fractional parts 

 We can assume a decimal point before a signed 
number 
 In that case, pure fractions (without integer parts) 

can be represented 
 We can also assume the decimal point somewhere in 

between 
 This lacks flexibility 
 Very large and very small numbers cannot be 

represented 



45 

Representation of Floating-Point 
Numbers 
 A floating-point number F is represented by a 

doublet  <M,E> : 
    F  =  M  x  BE 

 B    exponent base (usually 2) 
 M    mantissa 
 E    exponent 

M is usually represented in 2’s complement 
form, with an implied binary point before it 

 For example,  
    In decimal,  0.235 x 106 

    In binary,    0.101011 x 20110 



46 

Example  ::  32-bit representation 

M represents a 2’s complement fraction 
    1  >  M  >  -1 

 E represents the exponent (in 2’s complement form) 
   127  >  E  >  -128 

 Points to note: 
 The number of significant digits depends on the 

number of bits in M 
 6 significant digits for 24-bit mantissa 

 The range of the number depends on the number of 
bits in E 
 1038  to  10-38  for 8-bit exponent. 

M E 

24 8 



47 

A Warning 
 The representation for floating-point numbers as 

shown is just for illustration 
 The actual representation is a little more 

complex 
 Example: IEEE 754 Floating Point format 



48 

IEEE 754 Floating-Point Format 
(Single Precision) 

S: Sign (0 is +ve, 1 is –ve)  
E: Exponent (More bits gives a higher range) 
M: Mantissa (More bits means higher precision) 
[8 bytes are used for double precision]  

S 
(31) 

E (Exponent) 
(30 … 23) 

M (Mantissa) 
(22 … 0) 

 
Value of a Normal Number: 

(-1)S× (1.0 + 0.M) × 2(E – 127) 



49 

An example 
S 

(31) 
E (Exponent) 

(30 … 23) 
M (Mantissa) 

(22 … 0) 

 

Value of a Normal Number: 
 = (-1)S× (1.0 + 0.M) × 2(E – 127) 

 = (-1)1× (1.0 + 0.1101100) × 2(10001100 – 1111111) 
 

 = − 1.1101100 × 21101  = − 11101100000000  
 = − 15104.0 ( in decimal) 

1 10001100 11011000000000000000000 



50 

Representing 0.3 
S 

(31) 
E (Exponent) 

(30 … 23) 
M (Mantissa) 

(22 … 0) 

 

0.3 (decimal) 
= 0.0100100100100100100100100… 
= 1.00100100100100100100100100… × 2 −2  
= 1.00100100100100100100100100… × 2 125 −127  
= (-1)S× (1.0 + 0.M) × 2(E – 127) 
  

0 01111101 00100100100100100100100 

What are the largest and smallest numbers that 
can be represented in this scheme? 



51 

Representing 0 
S 

(31) 
E (Exponent) 

(30 … 23) 
M (Mantissa) 

(22 … 0) 

 

0 00000000 00000000000000000000000 

1 00000000 00000000000000000000000 

Representing Inf (∝) 

0 11111111 00000000000000000000000 

1 11111111 00000000000000000000000 

Representing NaN (Not a Number) 
0 11111111 Non zero 

1 11111111 Non zero 



52 

Representation of Characters 
 Many applications have to deal with non-numerical data. 

 Characters and strings 
 There must be a standard mechanism to represent 

alphanumeric and other characters in memory 
 Three standards in use: 

 Extended Binary Coded Decimal Interchange Code 
(EBCDIC) 
 Used in older IBM machines 

 American Standard Code for Information Interchange 
(ASCII) 
 Most widely used today 

 UNICODE 
 Used to represent all international characters. 
 Used by Java 



53 

ASCII Code 
 Each individual character is numerically encoded into a 

unique 7-bit binary code 
 A total of 27 or 128 different characters 
 A character is normally encoded in a byte (8 bits), 

with the MSB not been used. 
 The binary encoding of the characters follow a regular 

ordering 
 Digits are ordered consecutively in their proper 

numerical sequence (0 to 9) 
 Letters (uppercase and lowercase) are arranged 

consecutively in their proper alphabetic order 
 



54 

Some Common ASCII Codes 

‘A’  ::  41 (H)   65 (D) 
‘B’  ::  42 (H)   66 (D) 
……….. 
‘Z’  ::  5A (H)  90 (D) 
 
‘a’  ::  61 (H)   97 (D) 
‘b’  ::  62 (H)   98 (D) 
……….. 
‘z’  ::  7A (H)  122 (D) 
 

‘0’  ::  30 (H)   48 (D) 
‘1’  ::  31 (H)   49 (D) 
……….. 
‘9’  ::  39 (H)   57 (D) 
 
‘(‘   ::  28 (H)  40 (D) 
‘+’  ::  2B (H)  43 (D) 
‘?’  ::   3F (H)  63 (D) 
‘\n’ ::  0A (H)  10 (D) 
‘\0’ ::   00 (H)  00 (D) 
 



55 

Character Strings 
 Two ways of representing a sequence of characters in 

memory 
 
 

 The first location contains the number of characters in 
the string, followed by the actual characters 
 

 
 The characters follow one another, and is terminated 

by a special delimiter 

  

o e H 5 l l 

⊥ l e H o l 



56 

String Representation in C 
 In C, the second approach is used 

 The ‘\0’ character is used as the string delimiter 
 

 Example: 
“Hello”        
 

 A null string “” occupies one byte in memory. 
Only the ‘\0’ character 

‘\0’ l e H o l 


	Number �Representation
	Number System :: The Basics
	Binary Number System
	Positional Number Systems (General)
	Positional Number Systems (General)
	Positional Number Systems (General)
	Positional Number Systems (General)
	Binary-to-Decimal Conversion
	Examples
	Decimal to Binary: Integer Part
	Decimal to Binary: Integer Part
	Decimal to Binary: Integer Part
	Decimal to Binary: Fraction Part
	Decimal to Binary: Fraction Part
	Decimal to Binary: Fraction Part
	Hexadecimal Number System
	Binary-to-Hexadecimal Conversion
	Example
	Hexadecimal-to-Binary Conversion
	Unsigned Binary Numbers
	Signed Integer Representation
	Sign-magnitude Representation
	Contd.
	One’s Complement Representation
	Example  ::  n=4
	Contd.
	Two’s Complement Representation
	Example :  n=4
	Contd.
	Contd.
	Adding Binary Numbers
	Subtraction Using Addition :: 1’s Complement
	Example 1  ::  6 – 2
	Example 2  ::  3 – 5
	Subtraction Using Addition :: 2’s Complement
	Example 1  ::  6 – 2
	Example 2  ::  3 – 5
	2’s complement arithmetic: More Examples
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Floating-point Numbers
	Representation of Floating-Point Numbers
	Example  ::  32-bit representation
	A Warning
	IEEE 754 Floating-Point Format�(Single Precision)
	An example
	Representing 0.3
	Representing 0
	Representation of Characters
	ASCII Code
	Some Common ASCII Codes
	Character Strings
	String Representation in C

