
1

Number
Representation

2

Number System :: The Basics

 We are accustomed to using the so-called
decimal number system
 Ten digits :: 0,1,2,3,4,5,6,7,8,9
 Every digit position has a weight which is a

power of 10
 Base or radix is 10

Example:
234 = 2 x 102 + 3 x 101 + 4 x 100

250.67 = 2 x 102 + 5 x 101 + 0 x 100 + 6 x
10-1 + 7 x 10-2

3

Binary Number System
 Two digits:
 0 and 1
 Every digit position has a weight which is a

power of 2
 Base or radix is 2

 Example:
110 = 1 x 22 + 1 x 21 + 0 x 20

101.01 = 1 x 22 + 0 x 21 + 1 x 20 + 0 x 2-1 +
1 x 2-2

4

Positional Number Systems (General)

 Decimal Numbers:
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
 136.25 = 1 × 102 + 3 × 101 + 6 × 100 + 2 × 10–1 + 3 × 10–2

5

Positional Number Systems (General)

 Decimal Numbers:
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
 136.25 = 1 × 102 + 3 × 101 + 6 × 100 + 2 × 10–1 + 3 × 10–2

Binary Numbers:
 2 Symbols {0,1}, Base or Radix is 2
 101.01 = 1 × 22 + 0 × 21 + 1 × 20 + 0 × 2–1 + 1 × 2–2

6

Positional Number Systems (General)

 Decimal Numbers:
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
 136.25 = 1 × 102 + 3 × 101 + 6 × 100 + 2 × 10–1 + 5 × 10–2

Binary Numbers:
 2 Symbols {0,1}, Base or Radix is 2
 101.01 = 1 × 22 + 0 × 21 + 1 × 20 + 0 × 2–1 + 1 × 2–2

Octal Numbers:
 8 Symbols {0,1,2,3,4,5,6,7}, Base or Radix is 8
 621.03 = 6 × 82 + 2 × 81 + 1 × 80 + 0 × 8–1 + 3 × 8–2

7

Positional Number Systems (General)

 Decimal Numbers:
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
 136.25 = 1 × 102 + 3 × 101 + 6 × 100 + 2 × 10–1 + 3 × 10–2

Binary Numbers:
 2 Symbols {0,1}, Base or Radix is 2
 101.01 = 1 × 22 + 0 × 21 + 1 × 20 + 0 × 2–1 + 1 × 2–2

Octal Numbers:
 8 Symbols {0,1,2,3,4,5,6,7}, Base or Radix is 8
 621.03 = 6 × 82 + 2 × 81 + 1 × 80 + 0 × 8–1 + 3 × 8–2

Hexadecimal Numbers:
 16 Symbols {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, Base is 16
6AF.3C = 6 × 162 + 10 × 161 + 15 × 160 + 3 × 16–1 + 12 × 16–2

8

Binary-to-Decimal Conversion
 Each digit position of a binary number has

a weight
Some power of 2

 A binary number:
 B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m

 Corresponding value in decimal:

 D = Σ bi 2i
i = -m

n-1

9

Examples
101011 1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20

 = 43
 (101011)2 = (43)10

.0101 0x2-1 + 1x2-2 + 0x2-3 + 1x2-4

 = .3125
 (.0101)2 = (.3125)10

101.11 1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2

 = 5.75
 (101.11)2 = (5.75)10

10

Decimal to Binary: Integer Part
Consider the integer and fractional parts separately.
For the integer part:

Repeatedly divide the given number by 2, and go on
accumulating the remainders, until the number becomes zero.
Arrange the remainders in reverse order.

2 89
2 44 1
2 22 0
2 11 0
2 5 1
2 2 1
2 1 0

0 1

Base Numb Rem

(89)10 = (1011001)2

11

Decimal to Binary: Integer Part
Consider the integer and fractional parts separately.
For the integer part:

Repeatedly divide the given number by 2, and go on
accumulating the remainders, until the number becomes zero.
Arrange the remainders in reverse order.

2 89
2 44 1
2 22 0
2 11 0
2 5 1
2 2 1
2 1 0

0 1

Base Numb Rem

(89)10 = (1011001)2

2 66
2 33 0
2 16 1
2 8 0
2 4 0
2 2 0
2 1 0

0 1

(66)10 = (1000010)2

12

Decimal to Binary: Integer Part
Consider the integer and fractional parts separately.
For the integer part:

Repeatedly divide the given number by 2, and go on
accumulating the remainders, until the number becomes zero.
Arrange the remainders in reverse order.

2 89
2 44 1
2 22 0
2 11 0
2 5 1
2 2 1
2 1 0

0 1

Base Numb Rem

(89)10 = (1011001)2

2 66
2 33 0
2 16 1
2 8 0
2 4 0
2 2 0
2 1 0

0 1

2 239
2 119 1
2 59 1
2 29 1
2 14 1
2 7 0
2 3 1
2 1 1

0 1

(66)10 = (1000010)2 (239)10 = (11101111)2

13

Decimal to Binary: Fraction Part
Repeatedly multiply the given fraction by 2.

Accumulate the integer part (0 or 1).
If the integer part is 1, chop it off.

Arrange the integer parts in the order they are obtained.

Example: 0.634
.634 x 2 = 1.268
.268 x 2 = 0.536
.536 x 2 = 1.072
.072 x 2 = 0.144
.144 x 2 = 0.288

:
:

(.634)10 = (.10100……)2

14

Decimal to Binary: Fraction Part
Repeatedly multiply the given fraction by 2.

Accumulate the integer part (0 or 1).
If the integer part is 1, chop it off.

Arrange the integer parts in the order they are obtained.

Example: 0.634
.634 x 2 = 1.268
.268 x 2 = 0.536
.536 x 2 = 1.072
.072 x 2 = 0.144
.144 x 2 = 0.288

:
:

(.634)10 = (.10100……)2

Example: 0.0625
.0625 x 2 = 0.125
.1250 x 2 = 0.250
.2500 x 2 = 0.500
.5000 x 2 = 1.000

(.0625)10 = (.0001)2

15

Decimal to Binary: Fraction Part
Repeatedly multiply the given fraction by 2.

Accumulate the integer part (0 or 1).
If the integer part is 1, chop it off.

Arrange the integer parts in the order they are obtained.

Example: 0.634
.634 x 2 = 1.268
.268 x 2 = 0.536
.536 x 2 = 1.072
.072 x 2 = 0.144
.144 x 2 = 0.288

:
:

(.634)10 = (.10100……)2

Example: 0.0625
.0625 x 2 = 0.125
.1250 x 2 = 0.250
.2500 x 2 = 0.500
.5000 x 2 = 1.000

(.0625)10 = (.0001)2

(37)10 = (100101)2

(.0625)10 = (.0001)2

(37.0625)10 = (100101.0001)2

16

Hexadecimal Number System
 A compact way of representing binary numbers
 16 different symbols (radix = 16)

 0 0000 8 1000
 1 0001 9 1001
 2 0010 A 1010
 3 0011 B 1011
 4 0100 C 1100
 5 0101 D 1101
 6 0110 E 1110
 7 0111 F 1111

17

Binary-to-Hexadecimal
Conversion
 For the integer part,

 Scan the binary number from right to left
 Translate each group of four bits into the

corresponding hexadecimal digit
 Add leading zeros if necessary

 For the fractional part,

 Scan the binary number from left to right
 Translate each group of four bits into the

corresponding hexadecimal digit
 Add trailing zeros if necessary

18

Example

1. (1011 0100 0011)2 = (B43)16

2. (10 1010 0001)2 = (2A1)16

3. (.1000 010)2 = (.84)16

4. (101 . 0101 111)2 = (5.5E)16

19

Hexadecimal-to-Binary
Conversion
 Translate every hexadecimal digit into its

4-bit binary equivalent

 Examples:
 (3A5)16 = (0011 1010 0101)2

 (12.3D)16 = (0001 0010 . 0011 1101)2

 (1.8)16 = (0001 . 1000)2

20

Unsigned Binary Numbers
 An n-bit binary number

 B = bn-1bn-2 …. b2b1b0
 2n distinct combinations are possible, 0 to 2n-1.

 For example, for n = 3, there are 8 distinct
combinations
000, 001, 010, 011, 100, 101, 110, 111

 Range of numbers that can be represented
 n=8 0 to 28-1 (255)
 n=16 0 to 216-1 (65535)
 n=32 0 to 232-1 (4294967295)

21

Signed Integer Representation

 Many of the numerical data items that are used
in a program are signed (positive or negative)
Question:: How to represent sign?

 Three possible approaches:
Sign-magnitude representation
One’s complement representation
Two’s complement representation

22

Sign-magnitude Representation

 For an n-bit number representation
The most significant bit (MSB) indicates sign

 0 positive
 1 negative

The remaining n-1 bits represent magnitude

b0 b1 bn-2 bn-1

Magnitude Sign

23

Contd.
 Range of numbers that can be

represented:
 Maximum :: + (2n-1 – 1)
 Minimum :: − (2n-1 – 1)

 A problem:

 Two different representations of zero
 +0 0 000….0
 -0 1 000….0

24

One’s Complement
Representation
 Basic idea:

 Positive numbers are represented exactly as in
sign-magnitude form

 Negative numbers are represented in 1’s
complement form

 How to compute the 1’s complement of a number?
 Complement every bit of the number (10 and

01)
MSB will indicate the sign of the number

 0 positive
 1 negative

25

Example :: n=4
0000 +0
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7

1000 -7
1001 -6
1010 -5
1011 -4
1100 -3
1101 -2
1110 -1
1111 -0

 To find the representation of, say, -4, first note that

 +4 = 0100

 -4 = 1’s complement of 0100 = 1011

26

Contd.
 Range of numbers that can be represented:

 Maximum :: + (2n-1 – 1)
 Minimum :: − (2n-1 – 1)

 A problem:
 Two different representations of zero.

 +0 0 000….0
 -0 1 111….1

 Advantage of 1’s complement representation
 Subtraction can be done using addition
 Leads to substantial saving in circuitry

27

Two’s Complement
Representation
 Basic idea:

 Positive numbers are represented exactly as in
sign-magnitude form

 Negative numbers are represented in 2’s
complement form

 How to compute the 2’s complement of a number?
 Complement every bit of the number (10 and

01), and then add one to the resulting number
MSB will indicate the sign of the number

 0 positive
 1 negative

28

Example : n=4
0000 +0
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7

1000 -8
1001 -7
1010 -6
1011 -5
1100 -4
1101 -3
1110 -2
1111 -1

To find the representation of, say, -4, first note that

 +4 = 0100
 -4 = 2’s complement of 0100 = 1011+1 = 1100
Rule : Value = – msb*2(n–1) + [unsigned value of rest]
Example: 0110 = 0 + 6 = 6 1110 = – 8 + 6 = – 2

29

Contd.
 Range of numbers that can be represented:

 Maximum :: + (2n-1 – 1)
 Minimum :: − 2n-1

 Advantage:
 Unique representation of zero
 Subtraction can be done using addition
 Leads to substantial saving in circuitry

 Almost all computers today use the 2’s complement
representation for storing negative numbers

30

Contd.

 In C
short int

 16 bits + (215-1) to -215

 int or long int
 32 bits + (231-1) to -231

 long long int
 64 bits + (263-1) to -263

31

Adding Binary Numbers

 Basic Rules:
0+0=0
0+1=1
1+0=1
1+1=0 (carry 1)

 Example:

01101001
00110100

10011101

32

Subtraction Using Addition :: 1’s
Complement
 How to compute A – B ?
Compute the 1’s complement of B (say, B1).
Compute R = A + B1
 If the carry obtained after addition is ‘1’

 Add the carry back to R (called end-around carry)
 That is, R = R + 1
 The result is a positive number

 Else
 The result is negative, and is in 1’s complement

form

33

Example 1 :: 6 – 2
1’s complement of 2 = 1101

 6 :: 0110
 -2 :: 1101
 1 0011
 1
 0100 +4

Assume 4-bit
representations

Since there is a carry, it is
added back to the result

The result is positive

End-around
carry

R
B1

A

34

Example 2 :: 3 – 5

1’s complement of 5 = 1010

 3 :: 0011
 -5 :: 1010
 1101

Assume 4-bit representations

Since there is no carry, the
result is negative

1101 is the 1’s complement of
0010, that is, it represents –2

A

B1

R

-2

35

Subtraction Using Addition :: 2’s
Complement
 How to compute A – B ?
Compute the 2’s complement of B (say, B2)
Compute R = A + B2
 If the carry obtained after addition is ‘1’

 Ignore the carry
 The result is a positive number

 Else
 The result is negative, and is in 2’s complement

form

36

Example 1 :: 6 – 2

2’s complement of 2 = 1101 + 1 = 1110

 6 :: 0110
 -2 :: 1110
 1 0100

Assume 4-bit
representations

Presence of carry indicates
that the result is positive

No need to add the end-
around carry like in 1’s
complement

A

B2

R

Ignore carry
+4

37

Example 2 :: 3 – 5

2’s complement of 5 = 1010 + 1 = 1011

 3 :: 0011
 -5 :: 1011
 1110

Assume 4-bit representations

Since there is no carry, the
result is negative

1110 is the 2’s complement of
0010, that is, it represents –2

A
B2

R

-2

38

2’s complement arithmetic: More
Examples
 Example 1: 18-11 = ?
 18 is represented as 00010010
 11 is represented as 00001011
 1’s complement of 11 is 11110100
 2’s complement of 11 is 11110101

 Add 18 to 2’s complement of 11

 00010010
+ 11110101

 00000111 (with a carry of 1
 which is ignored)

00000111 is 7

39

 Example 2: 7 - 9 = ?
 7 is represented as 00000111
 9 is represented as 00001001
 1’s complement of 9 is 11110110
 2’s complement of 9 is 11110111
 Add 7 to 2’s complement of 9

 00000111
+ 11110111

 11111110 (with a carry of 0
 which is ignored)

11111110 is -2

40

 Overflow/Underflow:
 Adding two +ve (-ve) numbers should not produce a
 –ve (+ve) number. If it does, overflow (underflow) occurs

41

 Another equivalent condition : carry in and carry
out from Most Significant Bit (MSB) differ.

 Overflow/Underflow:
 Adding two +ve (-ve) numbers should not produce a
 –ve (+ve) number. If it does, overflow (underflow) occurs

42

 Another equivalent condition : carry in and carry
out from Most Significant Bit (MSB) differ.

(64) 01000000
(4) 00000100

 (68) 01000100

carry (out)(in)
 0 0

 Overflow/Underflow:
 Adding two +ve (-ve) numbers should not produce a
 –ve (+ve) number. If it does, overflow (underflow) occurs

43

 Another equivalent condition : carry in and carry
out from Most Significant Bit (MSB) differ.

(64) 01000000
(4) 00000100

 (68) 01000100

carry (out)(in)
 0 0

(64) 01000000
(96) 01100000

(-96) 10100000

carry out in
 0 1

differ:

overflow

 Overflow/Underflow:
 Adding two +ve (-ve) numbers should not produce a
 –ve (+ve) number. If it does, overflow (underflow) occurs

44

Floating-point Numbers
 The representations discussed so far applies only to

integers
 Cannot represent numbers with fractional parts

 We can assume a decimal point before a signed
number
 In that case, pure fractions (without integer parts)

can be represented
 We can also assume the decimal point somewhere in

between
 This lacks flexibility
 Very large and very small numbers cannot be

represented

45

Representation of Floating-Point
Numbers
 A floating-point number F is represented by a

doublet <M,E> :
 F = M x BE

 B exponent base (usually 2)
 M mantissa
 E exponent

M is usually represented in 2’s complement
form, with an implied binary point before it

 For example,
 In decimal, 0.235 x 106

 In binary, 0.101011 x 20110

46

Example :: 32-bit representation

M represents a 2’s complement fraction
 1 > M > -1

 E represents the exponent (in 2’s complement form)
 127 > E > -128

 Points to note:
 The number of significant digits depends on the

number of bits in M
 6 significant digits for 24-bit mantissa

 The range of the number depends on the number of
bits in E
 1038 to 10-38 for 8-bit exponent.

M E

24 8

47

A Warning
 The representation for floating-point numbers as

shown is just for illustration
 The actual representation is a little more

complex
 Example: IEEE 754 Floating Point format

48

IEEE 754 Floating-Point Format
(Single Precision)

S: Sign (0 is +ve, 1 is –ve)
E: Exponent (More bits gives a higher range)
M: Mantissa (More bits means higher precision)
[8 bytes are used for double precision]

S
(31)

E (Exponent)
(30 … 23)

M (Mantissa)
(22 … 0)

Value of a Normal Number:

(-1)S× (1.0 + 0.M) × 2(E – 127)

49

An example
S

(31)
E (Exponent)

(30 … 23)
M (Mantissa)

(22 … 0)

Value of a Normal Number:
 = (-1)S× (1.0 + 0.M) × 2(E – 127)

 = (-1)1× (1.0 + 0.1101100) × 2(10001100 – 1111111)

 = − 1.1101100 × 21101 = − 11101100000000
 = − 15104.0 (in decimal)

1 10001100 11011000000000000000000

50

Representing 0.3
S

(31)
E (Exponent)

(30 … 23)
M (Mantissa)

(22 … 0)

0.3 (decimal)
= 0.0100100100100100100100100…
= 1.00100100100100100100100100… × 2 −2
= 1.00100100100100100100100100… × 2 125 −127
= (-1)S× (1.0 + 0.M) × 2(E – 127)

0 01111101 00100100100100100100100

What are the largest and smallest numbers that
can be represented in this scheme?

51

Representing 0
S

(31)
E (Exponent)

(30 … 23)
M (Mantissa)

(22 … 0)

0 00000000 00000000000000000000000

1 00000000 00000000000000000000000

Representing Inf (∝)

0 11111111 00000000000000000000000

1 11111111 00000000000000000000000

Representing NaN (Not a Number)
0 11111111 Non zero

1 11111111 Non zero

52

Representation of Characters
 Many applications have to deal with non-numerical data.

 Characters and strings
 There must be a standard mechanism to represent

alphanumeric and other characters in memory
 Three standards in use:

 Extended Binary Coded Decimal Interchange Code
(EBCDIC)
 Used in older IBM machines

 American Standard Code for Information Interchange
(ASCII)
 Most widely used today

 UNICODE
 Used to represent all international characters.
 Used by Java

53

ASCII Code
 Each individual character is numerically encoded into a

unique 7-bit binary code
 A total of 27 or 128 different characters
 A character is normally encoded in a byte (8 bits),

with the MSB not been used.
 The binary encoding of the characters follow a regular

ordering
 Digits are ordered consecutively in their proper

numerical sequence (0 to 9)
 Letters (uppercase and lowercase) are arranged

consecutively in their proper alphabetic order

54

Some Common ASCII Codes

‘A’ :: 41 (H) 65 (D)
‘B’ :: 42 (H) 66 (D)
………..
‘Z’ :: 5A (H) 90 (D)

‘a’ :: 61 (H) 97 (D)
‘b’ :: 62 (H) 98 (D)
………..
‘z’ :: 7A (H) 122 (D)

‘0’ :: 30 (H) 48 (D)
‘1’ :: 31 (H) 49 (D)
………..
‘9’ :: 39 (H) 57 (D)

‘(‘ :: 28 (H) 40 (D)
‘+’ :: 2B (H) 43 (D)
‘?’ :: 3F (H) 63 (D)
‘\n’ :: 0A (H) 10 (D)
‘\0’ :: 00 (H) 00 (D)

55

Character Strings
 Two ways of representing a sequence of characters in

memory

 The first location contains the number of characters in
the string, followed by the actual characters

 The characters follow one another, and is terminated

by a special delimiter

o e H 5 l l

⊥ l e H o l

56

String Representation in C
 In C, the second approach is used

 The ‘\0’ character is used as the string delimiter

 Example:
“Hello”

 A null string “” occupies one byte in memory.
Only the ‘\0’ character

‘\0’ l e H o l

	Number �Representation
	Number System :: The Basics
	Binary Number System
	Positional Number Systems (General)
	Positional Number Systems (General)
	Positional Number Systems (General)
	Positional Number Systems (General)
	Binary-to-Decimal Conversion
	Examples
	Decimal to Binary: Integer Part
	Decimal to Binary: Integer Part
	Decimal to Binary: Integer Part
	Decimal to Binary: Fraction Part
	Decimal to Binary: Fraction Part
	Decimal to Binary: Fraction Part
	Hexadecimal Number System
	Binary-to-Hexadecimal Conversion
	Example
	Hexadecimal-to-Binary Conversion
	Unsigned Binary Numbers
	Signed Integer Representation
	Sign-magnitude Representation
	Contd.
	One’s Complement Representation
	Example :: n=4
	Contd.
	Two’s Complement Representation
	Example : n=4
	Contd.
	Contd.
	Adding Binary Numbers
	Subtraction Using Addition :: 1’s Complement
	Example 1 :: 6 – 2
	Example 2 :: 3 – 5
	Subtraction Using Addition :: 2’s Complement
	Example 1 :: 6 – 2
	Example 2 :: 3 – 5
	2’s complement arithmetic: More Examples
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Floating-point Numbers
	Representation of Floating-Point Numbers
	Example :: 32-bit representation
	A Warning
	IEEE 754 Floating-Point Format�(Single Precision)
	An example
	Representing 0.3
	Representing 0
	Representation of Characters
	ASCII Code
	Some Common ASCII Codes
	Character Strings
	String Representation in C

