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Number  
Representation 
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Number System :: The Basics 

 We are accustomed to using the so-called 
decimal number system 
 Ten digits ::  0,1,2,3,4,5,6,7,8,9 
 Every digit position has a weight which is a 

power of 10 
 Base or radix is 10 

Example: 
234 =  2 x 102  +  3 x 101  +  4 x 100 

250.67 =  2 x 102  +  5 x 101  +  0 x 100  +  6 x 
10-1 +  7 x 10-2 
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Binary Number System 
 Two digits: 
 0 and 1 
 Every digit position has a weight which is a 

power of 2 
 Base or radix is 2 

 Example: 
110 =  1 x 22  +  1 x 21  +  0 x 20 

101.01 =  1 x 22  +  0 x 21  +  1 x 20  +  0 x 2-1  +  
1 x 2-2 
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Positional Number Systems (General) 

 Decimal Numbers: 
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10 
 136.25 = 1 × 102  +  3 × 101  +  6 × 100   +  2 × 10–1   +  3 × 10–2   
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Positional Number Systems (General) 

 Decimal Numbers: 
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10 
 136.25 = 1 × 102  +  3 × 101  +  6 × 100   +  2 × 10–1   +  3 × 10–2   

Binary Numbers: 
 2 Symbols {0,1}, Base or Radix is 2 
 101.01 = 1 × 22  +  0 × 21  +  1 × 20   +  0 × 2–1   +  1 × 2–2   
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Positional Number Systems (General) 

 Decimal Numbers: 
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10 
 136.25 = 1 × 102  +  3 × 101  +  6 × 100   +  2 × 10–1   +  5 × 10–2   

Binary Numbers: 
 2 Symbols {0,1}, Base or Radix is 2 
 101.01 = 1 × 22  +  0 × 21  +  1 × 20   +  0 × 2–1   +  1 × 2–2   

Octal Numbers: 
 8 Symbols {0,1,2,3,4,5,6,7},  Base or Radix is 8 
 621.03 = 6 × 82  +  2 × 81  +  1 × 80   +  0 × 8–1   +  3 × 8–2   
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Positional Number Systems (General) 

 Decimal Numbers: 
 10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10 
 136.25 = 1 × 102  +  3 × 101  +  6 × 100   +  2 × 10–1   +  3 × 10–2   

Binary Numbers: 
 2 Symbols {0,1}, Base or Radix is 2 
 101.01 = 1 × 22  +  0 × 21  +  1 × 20   +  0 × 2–1   +  1 × 2–2   

Octal Numbers: 
 8 Symbols {0,1,2,3,4,5,6,7},  Base or Radix is 8 
 621.03 = 6 × 82  +  2 × 81  +  1 × 80   +  0 × 8–1   +  3 × 8–2   

Hexadecimal Numbers: 
 16 Symbols {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, Base is 16 
6AF.3C = 6 × 162  +  10 × 161  +  15 × 160   +  3 × 16–1   +  12 × 16–2   
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Binary-to-Decimal Conversion 
 Each digit position of a binary number has 

a weight 
Some power of 2 

 A binary number: 
       B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m 

    Corresponding value in decimal: 
 

  D = Σ    bi 2i 
i = -m 

n-1 
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Examples 
101011    1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20 

    = 43 
  (101011)2 = (43)10 
 

.0101        0x2-1 + 1x2-2 + 0x2-3 + 1x2-4 

    = .3125 
  (.0101)2 = (.3125)10 
 
101.11      1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2 

    = 5.75 
  (101.11)2 = (5.75)10 
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Decimal to Binary: Integer Part 
Consider the integer and fractional parts separately. 
For the integer part: 

Repeatedly divide the given number by 2, and go on 
accumulating the remainders, until the number becomes zero. 
Arrange the remainders in reverse order. 

2 89 
2 44 1 
2 22 0 
2 11 0 
2 5 1 
2 2 1 
2 1 0 

0 1 

Base Numb Rem 

(89)10 = (1011001)2 
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Decimal to Binary: Integer Part 
Consider the integer and fractional parts separately. 
For the integer part: 

Repeatedly divide the given number by 2, and go on 
accumulating the remainders, until the number becomes zero. 
Arrange the remainders in reverse order. 

2 89 
2 44 1 
2 22 0 
2 11 0 
2 5 1 
2 2 1 
2 1 0 

0 1 

Base Numb Rem 

(89)10 = (1011001)2 

2 66 
2 33 0 
2 16 1 
2 8 0 
2 4 0 
2 2 0 
2 1 0 

0 1 

(66)10 = (1000010)2 
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Decimal to Binary: Integer Part 
Consider the integer and fractional parts separately. 
For the integer part: 

Repeatedly divide the given number by 2, and go on 
accumulating the remainders, until the number becomes zero. 
Arrange the remainders in reverse order. 

2 89 
2 44 1 
2 22 0 
2 11 0 
2 5 1 
2 2 1 
2 1 0 

0 1 

Base Numb Rem 

(89)10 = (1011001)2 

2 66 
2 33 0 
2 16 1 
2 8 0 
2 4 0 
2 2 0 
2 1 0 

0 1 

2 239 
2 119 1 
2 59 1 
2 29 1 
2 14 1 
2 7 0 
2 3 1 
2 1 1 

0 1 

(66)10 = (1000010)2 (239)10 = (11101111)2 
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Decimal to Binary: Fraction Part 
Repeatedly multiply the given fraction by 2. 

Accumulate the integer part (0 or 1). 
If the integer part is 1, chop it off. 

Arrange the integer parts in the order they are obtained. 

Example: 0.634 
.634  x  2   =   1.268 
.268  x  2   =   0.536 
.536  x  2   =   1.072 
.072  x  2   =   0.144 
.144  x  2   =   0.288 

: 
: 

(.634)10 = (.10100……)2 
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Decimal to Binary: Fraction Part 
Repeatedly multiply the given fraction by 2. 

Accumulate the integer part (0 or 1). 
If the integer part is 1, chop it off. 

Arrange the integer parts in the order they are obtained. 

Example: 0.634 
.634  x  2   =   1.268 
.268  x  2   =   0.536 
.536  x  2   =   1.072 
.072  x  2   =   0.144 
.144  x  2   =   0.288 

: 
: 

(.634)10 = (.10100……)2 

Example: 0.0625 
.0625  x  2   =   0.125 
.1250  x  2  =    0.250 
.2500  x  2   =   0.500 
.5000  x  2   =   1.000 

(.0625)10 = (.0001)2 
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Decimal to Binary: Fraction Part 
Repeatedly multiply the given fraction by 2. 

Accumulate the integer part (0 or 1). 
If the integer part is 1, chop it off. 

Arrange the integer parts in the order they are obtained. 

Example: 0.634 
.634  x  2   =   1.268 
.268  x  2   =   0.536 
.536  x  2   =   1.072 
.072  x  2   =   0.144 
.144  x  2   =   0.288 

: 
: 

(.634)10 = (.10100……)2 

Example: 0.0625 
.0625  x  2   =   0.125 
.1250  x  2  =    0.250 
.2500  x  2   =   0.500 
.5000  x  2   =   1.000 

(.0625)10 = (.0001)2 

(37)10  =  (100101)2 

(.0625)10  =  (.0001)2 

(37.0625)10  =  (100101.0001)2 
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Hexadecimal Number System 
 A compact way of representing binary numbers 
 16 different symbols (radix = 16) 

 
    0    0000 8    1000 
    1    0001 9    1001 
    2    0010 A    1010 
    3    0011 B    1011 
    4    0100 C    1100 
    5    0101 D    1101 
    6    0110 E    1110 
    7    0111 F    1111 
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Binary-to-Hexadecimal 
Conversion 
 For the integer part, 

 Scan the binary number from right to left 
 Translate each group of four bits into the 

corresponding hexadecimal digit 
 Add leading zeros if necessary 

 
 For the fractional part, 

 Scan the binary number from left to right 
 Translate each group of four bits into the 

corresponding hexadecimal digit 
 Add trailing zeros if necessary 

 



18 

Example 

1. (1011 0100 0011)2   =   (B43)16 

2. (10 1010 0001)2       =   (2A1)16 

3. (.1000 010)2             =   (.84)16 

4. (101 . 0101 111)2     =   (5.5E)16 
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Hexadecimal-to-Binary 
Conversion 
 Translate every hexadecimal digit into its 

4-bit binary equivalent 
 

 Examples: 
    (3A5)16      =   (0011 1010 0101)2 

    (12.3D)16   =   (0001 0010 . 0011 1101)2 

    (1.8)16        =   (0001 . 1000)2 
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Unsigned Binary Numbers 
 An n-bit binary number 

   B  =  bn-1bn-2 …. b2b1b0 
 2n distinct combinations are possible, 0 to 2n-1. 

 For example, for n = 3, there are 8 distinct 
combinations 
000, 001, 010, 011, 100, 101, 110, 111 

 Range of numbers that can be represented 
    n=8    0  to  28-1  (255) 
    n=16  0  to  216-1 (65535) 
    n=32  0  to  232-1 (4294967295) 
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Signed Integer Representation 

 Many of the numerical data items that are used 
in a program are signed (positive or negative) 
Question:: How to represent sign? 

 
 Three possible approaches: 
Sign-magnitude representation 
One’s complement representation 
Two’s complement representation 
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Sign-magnitude Representation 

 For an n-bit number representation 
The most significant bit (MSB) indicates sign 

   0    positive 
   1    negative 

The remaining n-1 bits represent magnitude 

b0 b1 bn-2 bn-1 

Magnitude Sign 
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Contd. 
 Range of numbers that can be 

represented: 
     Maximum  ::  + (2n-1 – 1) 
     Minimum   ::  − (2n-1 – 1) 

 
 A problem: 

     Two different representations of zero 
    +0      0 000….0 
    -0       1 000….0 
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One’s Complement 
Representation 
 Basic idea: 

 Positive numbers are represented exactly as in 
sign-magnitude form 

 Negative numbers are represented in 1’s 
complement form 

 How to compute the 1’s complement of a number? 
 Complement every bit of the number (10 and 

01) 
MSB will indicate the sign of the number 

   0    positive 
   1    negative 
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Example  ::  n=4 
0000    +0 
0001    +1 
0010    +2 
0011    +3 
0100    +4 
0101    +5 
0110    +6 
0111    +7 

1000    -7 
1001    -6 
1010    -5 
1011    -4 
1100    -3 
1101    -2 
1110    -1 
1111    -0 

 To find the representation of, say, -4, first note that 

        +4  =  0100 

        -4   =  1’s complement of 0100  =  1011 



26 

Contd. 
 Range of numbers that can be represented: 

     Maximum  ::  + (2n-1 – 1) 
     Minimum   ::  − (2n-1 – 1) 

 A problem: 
     Two different representations of zero. 

    +0      0 000….0 
    -0       1 111….1 

 Advantage of 1’s complement representation 
 Subtraction can be done using addition 
 Leads to substantial saving in circuitry 
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Two’s Complement 
Representation 
 Basic idea: 

 Positive numbers are represented exactly as in 
sign-magnitude form 

 Negative numbers are represented in 2’s 
complement form 

 How to compute the 2’s complement of a number? 
 Complement every bit of the number (10 and 

01), and then add one to the resulting number 
MSB will indicate the sign of the number 

   0    positive 
   1    negative 
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Example :  n=4 
0000    +0 
0001    +1 
0010    +2 
0011    +3 
0100    +4 
0101    +5 
0110    +6 
0111    +7 

1000    -8 
1001    -7 
1010    -6 
1011    -5 
1100    -4 
1101    -3 
1110    -2 
1111    -1 

 
To find the representation of, say, -4, first note that 

        +4  =  0100 
        -4   =  2’s complement of 0100  =  1011+1  =  1100 
Rule :  Value = – msb*2(n–1) + [unsigned value of rest] 
Example: 0110  =  0 + 6 =  6                   1110 = – 8 + 6  =  – 2 
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Contd. 
 Range of numbers that can be represented: 

     Maximum  ::  + (2n-1 – 1) 
     Minimum   ::  − 2n-1 

 Advantage: 
  Unique representation of zero 
  Subtraction can be done using addition 
  Leads to substantial saving in circuitry 

 Almost all computers today use the 2’s complement 
representation for storing negative numbers 
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Contd. 

 In C 
short int 

 16 bits      + (215-1)  to  -215 

 int or long int 
 32 bits      + (231-1)  to  -231 

 long long int 
 64 bits      + (263-1)  to  -263 
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Adding Binary Numbers 

 Basic Rules: 
0+0=0 
0+1=1 
1+0=1 
1+1=0 (carry 1) 

 Example: 
 
01101001 
00110100 
------------- 
10011101 
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Subtraction Using Addition :: 1’s 
Complement 
 How to compute A – B ? 
Compute the 1’s complement of B (say, B1). 
Compute R = A + B1  
 If the carry obtained after addition is ‘1’ 

 Add the carry back to R  (called end-around carry) 
 That is, R = R + 1 
 The result is a positive number 

    Else 
 The result is negative, and is in 1’s complement 

form 
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Example 1  ::  6 – 2 
1’s complement of 2  =  1101 
 
  6   ::   0110 
 -2   ::   1101 
          1 0011 
                   1 
             0100      +4 

Assume 4-bit 
representations 

Since there is a carry, it is 
added back to the result 

The result is positive 

End-around 
carry 

R 
B1 

A 
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Example 2  ::  3 – 5 

1’s complement of 5  =  1010 
 
  3   ::   0011 
 -5   ::   1010 
             1101                         
 
                    

Assume 4-bit representations 

Since there is no carry, the 
result is negative 

1101 is the 1’s complement of 
0010, that is, it represents –2 

A 

B1 

R 

-2 
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Subtraction Using Addition :: 2’s 
Complement 
 How to compute A – B ? 
Compute the 2’s complement of B (say, B2) 
Compute R = A + B2  
 If the carry obtained after addition is ‘1’ 

 Ignore the carry 
 The result is a positive number 

    Else 
 The result is negative, and is in 2’s complement 

form 
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Example 1  ::  6 – 2 

2’s complement of 2  =  1101 + 1  =  1110 
 
  6   ::   0110 
 -2   ::   1110 
          1 0100 
                    
              

Assume 4-bit 
representations 

Presence of carry indicates 
that the result is positive 

No need to add the end-
around carry like in 1’s 
complement 

A 

B2 

R 

Ignore carry 
+4 
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Example 2  ::  3 – 5 

2’s complement of 5  =  1010 + 1  =  1011 
 
  3   ::   0011 
 -5   ::   1011 
            1110                       
 
                    

Assume 4-bit representations 

Since there is no carry, the 
result is negative 

1110 is the 2’s complement of 
0010, that is, it represents –2 

A 
B2 

R 

-2 
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2’s complement arithmetic: More 
Examples 
 Example 1: 18-11 = ? 
 18 is represented as 00010010 
 11 is represented as 00001011 
 1’s complement of 11 is 11110100 
 2’s complement of 11 is 11110101 

 Add 18 to 2’s complement of 11 

    00010010 
+  11110101 
---------------- 
    00000111 (with a carry of 1 
                     which is ignored) 

00000111 is 7 
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 Example 2: 7 - 9 = ? 
 7 is represented as 00000111 
 9 is represented as 00001001 
 1’s complement of 9 is 11110110 
 2’s complement of 9 is 11110111 
 Add 7 to 2’s complement of 9 

    00000111 
+  11110111 
---------------- 
    11111110 (with a carry of 0 
                     which is ignored) 

11111110 is -2 
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  Overflow/Underflow:  
 Adding two +ve (-ve) numbers  should not produce a  
  –ve (+ve) number. If it does, overflow  (underflow) occurs 
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   Another equivalent condition : carry in and carry 
out from Most Significant Bit (MSB) differ. 

  Overflow/Underflow:  
 Adding two +ve (-ve) numbers  should not produce a  
  –ve (+ve) number. If it does, overflow  (underflow) occurs 
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   Another equivalent condition : carry in and carry 
out from Most Significant Bit (MSB) differ. 

(64)  01000000 
( 4)   00000100 
        -------------- 
 (68) 01000100 

carry (out)(in) 
           0    0 

  Overflow/Underflow:  
 Adding two +ve (-ve) numbers  should not produce a  
  –ve (+ve) number. If it does, overflow  (underflow) occurs 
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   Another equivalent condition : carry in and carry 
out from Most Significant Bit (MSB) differ. 

(64)  01000000 
( 4)   00000100 
        -------------- 
 (68) 01000100 

carry (out)(in) 
           0    0 

(64)  01000000 
(96)  01100000 
        -------------- 
(-96) 10100000 

carry  out in 
           0   1 

differ: 

overflow 

  Overflow/Underflow:  
 Adding two +ve (-ve) numbers  should not produce a  
  –ve (+ve) number. If it does, overflow  (underflow) occurs 
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Floating-point Numbers 
 The representations discussed so far applies only to 

integers 
 Cannot represent numbers with fractional parts 

 We can assume a decimal point before a signed 
number 
 In that case, pure fractions (without integer parts) 

can be represented 
 We can also assume the decimal point somewhere in 

between 
 This lacks flexibility 
 Very large and very small numbers cannot be 

represented 
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Representation of Floating-Point 
Numbers 
 A floating-point number F is represented by a 

doublet  <M,E> : 
    F  =  M  x  BE 

 B    exponent base (usually 2) 
 M    mantissa 
 E    exponent 

M is usually represented in 2’s complement 
form, with an implied binary point before it 

 For example,  
    In decimal,  0.235 x 106 

    In binary,    0.101011 x 20110 
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Example  ::  32-bit representation 

M represents a 2’s complement fraction 
    1  >  M  >  -1 

 E represents the exponent (in 2’s complement form) 
   127  >  E  >  -128 

 Points to note: 
 The number of significant digits depends on the 

number of bits in M 
 6 significant digits for 24-bit mantissa 

 The range of the number depends on the number of 
bits in E 
 1038  to  10-38  for 8-bit exponent. 

M E 

24 8 
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A Warning 
 The representation for floating-point numbers as 

shown is just for illustration 
 The actual representation is a little more 

complex 
 Example: IEEE 754 Floating Point format 
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IEEE 754 Floating-Point Format 
(Single Precision) 

S: Sign (0 is +ve, 1 is –ve)  
E: Exponent (More bits gives a higher range) 
M: Mantissa (More bits means higher precision) 
[8 bytes are used for double precision]  

S 
(31) 

E (Exponent) 
(30 … 23) 

M (Mantissa) 
(22 … 0) 

 
Value of a Normal Number: 

(-1)S× (1.0 + 0.M) × 2(E – 127) 
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An example 
S 

(31) 
E (Exponent) 

(30 … 23) 
M (Mantissa) 

(22 … 0) 

 

Value of a Normal Number: 
 = (-1)S× (1.0 + 0.M) × 2(E – 127) 

 = (-1)1× (1.0 + 0.1101100) × 2(10001100 – 1111111) 
 

 = − 1.1101100 × 21101  = − 11101100000000  
 = − 15104.0 ( in decimal) 

1 10001100 11011000000000000000000 
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Representing 0.3 
S 

(31) 
E (Exponent) 

(30 … 23) 
M (Mantissa) 

(22 … 0) 

 

0.3 (decimal) 
= 0.0100100100100100100100100… 
= 1.00100100100100100100100100… × 2 −2  
= 1.00100100100100100100100100… × 2 125 −127  
= (-1)S× (1.0 + 0.M) × 2(E – 127) 
  

0 01111101 00100100100100100100100 

What are the largest and smallest numbers that 
can be represented in this scheme? 
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Representing 0 
S 

(31) 
E (Exponent) 

(30 … 23) 
M (Mantissa) 

(22 … 0) 

 

0 00000000 00000000000000000000000 

1 00000000 00000000000000000000000 

Representing Inf (∝) 

0 11111111 00000000000000000000000 

1 11111111 00000000000000000000000 

Representing NaN (Not a Number) 
0 11111111 Non zero 

1 11111111 Non zero 
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Representation of Characters 
 Many applications have to deal with non-numerical data. 

 Characters and strings 
 There must be a standard mechanism to represent 

alphanumeric and other characters in memory 
 Three standards in use: 

 Extended Binary Coded Decimal Interchange Code 
(EBCDIC) 
 Used in older IBM machines 

 American Standard Code for Information Interchange 
(ASCII) 
 Most widely used today 

 UNICODE 
 Used to represent all international characters. 
 Used by Java 
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ASCII Code 
 Each individual character is numerically encoded into a 

unique 7-bit binary code 
 A total of 27 or 128 different characters 
 A character is normally encoded in a byte (8 bits), 

with the MSB not been used. 
 The binary encoding of the characters follow a regular 

ordering 
 Digits are ordered consecutively in their proper 

numerical sequence (0 to 9) 
 Letters (uppercase and lowercase) are arranged 

consecutively in their proper alphabetic order 
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Some Common ASCII Codes 

‘A’  ::  41 (H)   65 (D) 
‘B’  ::  42 (H)   66 (D) 
……….. 
‘Z’  ::  5A (H)  90 (D) 
 
‘a’  ::  61 (H)   97 (D) 
‘b’  ::  62 (H)   98 (D) 
……….. 
‘z’  ::  7A (H)  122 (D) 
 

‘0’  ::  30 (H)   48 (D) 
‘1’  ::  31 (H)   49 (D) 
……….. 
‘9’  ::  39 (H)   57 (D) 
 
‘(‘   ::  28 (H)  40 (D) 
‘+’  ::  2B (H)  43 (D) 
‘?’  ::   3F (H)  63 (D) 
‘\n’ ::  0A (H)  10 (D) 
‘\0’ ::   00 (H)  00 (D) 
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Character Strings 
 Two ways of representing a sequence of characters in 

memory 
 
 

 The first location contains the number of characters in 
the string, followed by the actual characters 
 

 
 The characters follow one another, and is terminated 

by a special delimiter 

  

o e H 5 l l 

⊥ l e H o l 
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String Representation in C 
 In C, the second approach is used 

 The ‘\0’ character is used as the string delimiter 
 

 Example: 
“Hello”        
 

 A null string “” occupies one byte in memory. 
Only the ‘\0’ character 

‘\0’ l e H o l 
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