
1

Stack and Queue

2

Stack

In Out

A B C C B

Data structure with Last-In First-Out (LIFO) behavior

3

Typical Operations
on Stack Push

Pop

isempty: determines if the stack has no elements
isfull: determines if the stack is full in case
 of a bounded sized stack
top: returns the top element in the stack
push: inserts an element into the stack
pop: removes the top element from the stack

 push is like inserting at the front of the list

 pop is like deleting from the front of the list

4

Creating and Initializing a Stack

#define MAX_STACK_SIZE 100
typedef struct {
 int key; /* just an example, can have
 any type of fields depending
 on what is to be stored */
} element;
typedef struct {
 element list[MAX_STACK_SIZE];
 int top; /* index of the topmost element */
 } stack;

 stack Z;

 Z.top = -1;

Declaration

Create and Initialize

5

Operations

int isfull (stack *s)
{
 if (s->top >=
 MAX_STACK_SIZE – 1)
 return 1;
 return 0;
}

 int isempty (stack *s)
 {
 if (s->top == -1)
 return 1;
 return 0;
 }

6

Operations

void push(stack *s, element e)
{
 (s->top)++;
 s->list[s->top] = e;
 }

void pop(stack *s)
 {
 (s->top)--;
 }

element top(stack *s)
 {
 return s->list[s->top];
 }

7

Application: Parenthesis Matching

 Given a parenthesized expression, test whether the
expression is properly parenthesized
Examples:

()({ } [({ } { } ())]) is proper
(){ [] is not proper
({) } is not proper
)([] is not proper
([])) is not proper

8

 Approach:
Whenever a left parenthesis is

encountered, it is pushed in the stack
Whenever a right parenthesis is

encountered, pop from stack and check
if the parentheses match

Works for multiple types of parentheses
(), { }, []

9

Parenthesis matching
 while (not end of string) do
 {
 a = get_next_token();
 if (a is ‘(‘ or ‘{‘ or ‘[‘) push (a);
 if (a is ‘)’ or ‘}’ or ‘]’)
 {
 if (is_stack_empty())
 { print (“Not well formed”); exit(); }
 x = top();
 pop();
 if (a and x do not match)
 { print (“Not well formed”); exit(); }
 }
 }
 if (not is_stack_empty()) print (“Not well formed”);

10

fib (5)

fib (3) fib (4)

fib (1)

fib (2) fib (1) fib (2)

fib (0)

fib (3)

fib (1)

fib (1) fib (2)

fib (0)

fib (0) fib (1)

 Fibonacci recurrence:
 fib(n) = 1 if n =0 or 1;
 = fib(n – 2) + fib(n – 1)
 otherwise;

Recursion can be
implemented as a stack

11

Fibonacci Recursion Stack

5 4
3

4
2
1

4
2

4
1
0

4
1

4 3
2

3
1
0

0 0 0 1 1 2 3 3 3

3
1

3 2
1

2 1
0

1
4 5 5 6 6 7 8

12

Tower of Hanoi

A B C

13

Tower of Hanoi

A B C

14

Tower of Hanoi

A B C

15

Tower of Hanoi

A B C

16

Towers of Hanoi Function
void towers (int n, char from, char to, char aux)
{
 /* Base Condition */
 if (n==1) {
 printf (“Disk 1 : %c -> %c \n”, from, to) ;
 return ;
 }
 /* Recursive Condition */
 towers (n-1, from, aux, to) ;
 printf (“Disk %d : %c -> %c\n”, n, from, to) ;
 towers (n-1, aux, to, from) ;
}

17

 TOH Recursion Stack

3,A,B,C

2,A,C,B
A to B

2,C,B,A

1,A,B,C
A to C

1,B,C,A
A to B

2,C,B,A

A to B
A to C

1,B,C,A
A to B

2,C,B,A

A to C
1,B,C,A
A to B

2,C,B,A

1,B,C,A
A to B

2,C,B,A

B to C
A to B

2,C,B,A
A to B

2,C,B,A 2,C,B,A

1,C,A,B
C to B

1,A,B,C

18

Queue

In
Out

A C B
A B

Data structure with First-In First-Out (FIFO) behavior

19

Typical Operations
on Queue

isempty: determines if the queue is empty
isfull: determines if the queue is full
 in case of a bounded size queue
front: returns the element at front of the queue
enqueue: inserts an element at the rear
dequeue: removes the element in front

Enqueue

Dequeue

REAR

FRONT

20

Possible Implementations
 Linear Arrays:
 (static/dynamicaly allocated)

front rear

 Circular Arrays:
 (static/dynamically allocated)

 Can be implemented by a 1-d
 array using modulus operations

front rear

 Linked Lists: Use a linear
 linked list with insert_rear
 and delete_front operations

21

Circular Queue

[1]

[2]

[3] [4]

[0]

[5]

[6]

[7]

front=0
rear=0

22

Circular Queue

front=0 [0]

[1]

[2]

[3]

[5]

[4]

[6]

[7]

rear = 4

After insertion
 of A, B, C, D A

B
C D

[1]

[2]

[3] [4]

[0]

[5]

[6]

[7]

front=0
rear=0

23

Circular Queue

front=0 [0]

[1]

[2]

[3]

[5]

[4]

[6]

[7]

rear = 4

After insertion
 of A, B, C, D A

B
C D

front=2

[0]

[1]

[2]

[3]

[5]

[4]

[6]

[7]

rear = 4

After deletion of
 of A, B

C D

[1]

[2]

[3] [4]

[0]

[5]

[6]

[7]

front=0
rear=0

24

front: index of queue-head (always empty – why?)
rear: index of last element, unless rear = front

Queue Empty Condition: front == rear
Queue Full Condition: front == (rear + 1) % MAX_Q_SIZE

front=0
rear=0

[0]

[1]

[2]

[3]

[5]

[4]

[6]

[7]

Queue Empty

front=4

Queue Full

rear = 3
[4]

[0]

[1]

[2]

[3]

[5]

[6]

[7]

25

Creating and Initializing a Circular
Queue

#define MAX_Q_SIZE 100
typedef struct {
 int key; /* just an example, can have
 any type of fields depending
 on what is to be stored */
} element;
typedef struct {
 element list[MAX_Q_SIZE];
 int front, rear;
 } queue;

 queue Q;

 Q.front = 0;

 Q.rear = 0;

Declaration

Create and Initialize

26

Operations
int isfull (queue *q)
{
 if (q->front == ((q->rear + 1) %
 MAX_Q_SIZE))
 return 1;
 return 0;
}

 int isempty (queue *q)
 {
 if (q->front == q->rear)
 return 1;
 return 0;
 }

27

Operations

void enqueue(queue *q, element e)
 {
 q->rear = (q->rear + 1)%
 MAX_Q_SIZE;
 q->list[q->rear] = e;
 }

void dequeue(queue *q)
 {
 q-> front =
 (q-> front + 1)%
 MAX_Q_SIZE;
 }

element front(queue *q)
 {
 return q->list[(q->front + 1) % MAX_Q_SIZE];
 }

28

Exercises

• Implement the Queue as a linked list.
• Implement a Priority Queue which maintains the

items in an order (ascending/ descending) and
has additional functions like remove_max and
remove_min

• Maintain a Doctor’s appointment list

	Stack and Queue
	Stack
	Typical Operations �on Stack
	Creating and Initializing a Stack
	Operations
	Operations
	Application: Parenthesis Matching
	Slide Number 8
	Parenthesis matching
	Slide Number 10
	Fibonacci Recursion Stack
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Towers of Hanoi Function
	 TOH Recursion Stack
	Queue
	Typical Operations �on Queue
	Possible Implementations
	Circular Queue
	Circular Queue
	Circular Queue
	Slide Number 24
	Creating and Initializing a Circular Queue
	Operations
	Operations
	Exercises

