
1

File Handling

2

Storage seen so far
 All variables stored in memory
 Problem: the contents of memory are wiped out

when the computer is powered off
 Example: Consider keeping students’ records

 100 students records are added in array of
structures

Machine is then powered off after sometime
When the machine is powered on, the 100 records

entered earlier are all gone!
Have to enter again if they are needed

3

Solution: Files
 A named collection of data, stored in secondary

storage like disk, CD-ROM, USB drives etc.
 Persistent storage, not lost when machine is

powered off
 Save data in memory to files if needed (file

write)
 Read data from file later whenever needed (file

read)

4

Organization of a file
 Stored as sequence of bytes, logically contiguous
May not be physically contiguous on disk, but you

do not need to worry about that
 Two kinds of files:
Text : contains ASCII codes only
Binary : can contain non-ASCII characters

 Example: Image, audio, video, executable, etc.
 We will do text files only

5

Basic operations on a file

 Open
 Read
 Write
 Close
 Mainly we want to do read or write, but a file has

to be opened before read/write, and should be
closed after all read/write is over

6

Opening a File: fopen()

 FILE * is a datatype used to represent a
pointer to a file

 fopen takes two parameters, the name of the
file to open and the mode in which it is to be
opened

 It returns the pointer to the file if the file is
opened successfully, or NULL to indicate that it
is unable to open the file

7

Example: opening file.dat for write

FILE *fptr;
char filename[]= "file2.dat";
fptr = fopen (filename,"w");
if (fptr == NULL) {
 printf (“ERROR IN FILE CREATION”);
 /* DO SOMETHING */
}

8

Modes for opening files
 The second argument of fopen is the mode in

which we open the file.

9

Modes for opening files
 The second argument of fopen is the mode in

which we open the file.
"r" : opens a file for reading (can only read)

 Error if the file does not already exists
 "r+" : allows write also

10

Modes for opening files
 The second argument of fopen is the mode in

which we open the file.
"r" : opens a file for reading (can only read)

 Error if the file does not already exists
 "r+" : allows write also

"w" : creates a file for writing (can only write)
 Will create the file if it does not exist
 Caution: writes over all previous contents if the

flle already exists
 "w+" : allows read also

11

Modes for opening files
 The second argument of fopen is the mode in

which we open the file.
"r" : opens a file for reading (can only read)

 Error if the file does not already exists
 "r+" : allows write also

"w" : creates a file for writing (can only write)
 Will create the file if it does not exist
 Caution: writes over all previous contents if the

flle already exists
 "w+" : allows read also

"a" : opens a file for appending (write at the
end of the file)
 "a+" : allows read also

12

The exit() function

 Sometimes error checking means we want
an emergency exit from a program

 Can be done by the exit() function
 The exit() function, called from anywhere

in your C program, will terminate the
program at once

13

Usage of exit()

FILE *fptr;
char filename[]= "file2.dat";
fptr = fopen (filename,"w");
if (fptr == NULL) {
 printf (“ERROR IN FILE CREATION”);
 /* Do something */
 exit(-1);
}
………rest of the program………

14

Writing to a file: fprintf()
 fprintf() works exactly like printf(), except that

its first argument is a file pointer. The
remaining two arguments are the same as
printf

 The behaviour is exactly the same, except that
the writing is done on the file instead of the
display

FILE *fptr;
fptr = fopen ("file.dat","w");
fprintf (fptr, "Hello World!\n");
fprintf (fptr, “%d %d”, a, b);

15

Reading from a file: fscanf()
 fscanf() works like scanf(), except that its first

argument is a file pointer. The remaining two
arguments are the same as scanf

 The behaviour is exactly the same, except
The reading is done from the file instead of from

the keyboard (think as if you typed the same thing
in the file as you would in the keyboard for a scanf
with the same arguments)

 Returns the number of variables successfully
read, the special value EOF if no variable can
be read because end of file is reached (nothing
left to read)

16

Reading from a file: fscanf()

FILE *fptr;
fptr = fopen (“input.dat”, “r”);
/* Check it's open */
if (fptr == NULL)
 {
 printf(“Error in opening file \n”);
 exit(-1);
 }
fscanf (fptr, “%d %d”,&x, &y);

char ch;

while (fscanf(fptr, “%c”,
&ch) != EOF)

{

 /* not end of file; read */

}

EOF checking in a loop

17

Reading lines from a file: fgets()
 Takes three parameters

 a character array str, maximum number of characters
to read size, and a file pointer fp

 Reads from the file fp into the array str until any
one of these happens
No. of characters read = size - 1
 \n is read (the char \n is added to str)
 EOF is reached or an error occurs

 ‘\0’ added at end of str if no error
 Returns NULL on error or EOF, otherwise returns

pointer to str

18

Reading lines from a file: fgets()

FILE *fptr;
char line[1000];
/* Open file and check it is open */
while (fgets(line,1000,fptr) != NULL)
{
 printf ("Read line %s\n",line);
}

19

Writing lines to a file: fputs()
 Takes two parameters
A string str (null terminated) and a file pointer

fp
 Writes the string pointed to by str into the

file
 Returns non-negative integer on success,

EOF on error

20

Reading/Writing a character:
fgetc(), fputc()
 Equivalent of getchar(), putchar() for

reading/writing char from/to keyboard
 Exactly same, except that the first

parameter is a file pointer
 Equivalent to reading/writing a byte (the

char)
 int fgetc(FILE *fp);
 int fputc(int c, FILE *fp);
 Example:

 char c;
 c = fgetc(fp1); fputc(c, fp2);

21

Formatted and Un-formatted I/O

 Formatted I/O
Using fprintf/fscanf
Can specify format strings to directly read as

integers, float etc.
 Unformatted I/O

Using fgets/fputs/fgetc/fputc
No format string to read different data types
Need to read as characters and convert explicitly

22

Closing a file
 Should close a file when no more read/write

to a file is needed in the rest of the program
 File is closed using fclose() and the file

pointer

FILE *fptr;
char filename[]= "myfile.dat";
fptr = fopen (filename,"w");
fprintf (fptr,"Hello World of filing!\n");
…. Any more read/write to myfile.dat….
fclose (fptr);

23

Command Line
Arguments

24

What are they?
 A program can be executed by directly

typing a command with parameters at the
prompt
 $ cc –o test test.c
 $./a.out in.dat out.dat
 $ prog_name param_1 param_2 param_3

..
The individual items specified are

separated from one another by spaces
 First item is the program name

25

What do they mean?

 Recall that main() is also a function
 It can also take parameters, just like other

C function
 The items in the command line are passed

as parameters to main
 Parameters argc and argv in main keeps

track of the items specified in the
command line

26

How to access them?
 int main (int argc, char *argv[]);

Argument
Count

Array of strings
as command line

arguments including
the command itself.

The parameters are filled up with the command line
arguments typed when the program is run

They can now be accessed inside main just like any
other variable

27

Example: Contd.
$./a.out s.dat d.dat

argc=3 ./a.out
s.dat
d.dat

argv

argv[0] = “./a.out” argv[1] = “s.dat” argv[2] = “d.dat”

28

Contd.
 Still there is a problem
All the arguments are passed as strings in argv[]
But the intention may have been to pass an

int/float etc.
 Solution: Use sscanf()
Exactly same as scanf, just reads from a string

(char *) instead of from the keyboard
The first parameter is the string pointer, the next

two parameters are exactly the same as scanf

29

Example
 Write a program that takes as command line

arguments 2 integers, and prints their sum

int main(int argc, char *argv[])
{
 int i, n1, n2;
 printf(“No. of arg is %d\n”, argc);
 for (i=0; i<argc; ++i)
 printf(“%s\n”, argv[i]);
 sscanf(argv[1], “%d”, &n1);
 sscanf(argv[2], “%d”, &n2);
 printf(“Sum is %d\n”, n1 + n2);
 return 0;
}

$./a.out 32 54

No. of arg is 3

./a.out

32

54

Sum is 86

	File Handling
	Storage seen so far
	Solution: Files
	Organization of a file
	Basic operations on a file
	Opening a File: fopen()
	Example: opening file.dat for write
	Modes for opening files
	Modes for opening files
	Modes for opening files
	Modes for opening files
	The exit() function
	Usage of exit()
	Writing to a file: fprintf()
	Reading from a file: fscanf()
	Reading from a file: fscanf()
	Reading lines from a file: fgets()
	Reading lines from a file: fgets()
	Writing lines to a file: fputs()
	Reading/Writing a character: fgetc(), fputc()
	Formatted and Un-formatted I/O
	Closing a file
	Command Line Arguments
	What are they?
	What do they mean?
	How to access them?
	Example: Contd.
	Contd.
	Example

