
Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 1

PDS Class Test 2

• Date: October 27, 2016

• Time: 7pm to 8pm

• Marks: 20 (Weightage 50%)

Room Sections No of students
V1 Section 8 (All)

Section 9
(AE,AG,BT,CE, CH,CS,CY,EC,EE,EX)

101
 49

V2 Section 9 (Rest, if not allotted in V1)
Section 10 (All)

50
98

V3 Section 11 (All) 98

V4 Section 12 (All) 94

F116 Section 13 (All) 95

F142 Section 14 (All) 96

Pointer to Pointer
 int **p;

 p=(int **) malloc(3 * sizeof(int *));

 p[0]=(int *) malloc(5 * sizeof(int));

p[1]=(int *) malloc(5 * sizeof(int));

p[2]=(int *) malloc(5 * sizeof(int));

p[2]

p[1]

p[0]

p int **

int *

int *

int *

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 2

Linked List

• A completely different way to represent a list:

– Make each item in the list part of a structure.

– The structure contains the item and a pointer or
link to the structure containing the next item.

– This type of list is called a linked list.

Structure Variable 1

item

Structure Variable 2

item

Structure Variable 3

item

Array versus Linked Lists

• Arrays are suitable for:
– Inserting/deleting an element at the end.

– Randomly accessing any element.

– Searching the list for a particular value.

• Linked lists are suitable for:
– Inserting an element.

– Deleting an element.

– Applications where sequential access is required.

– In situations where the number of elements cannot
be predicted beforehand.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 3

Linked List Facts

• Each structure of the list is called a node, and
consists of two fields:
– Item(s).

– Address of the next item in the list.

• The data items comprising a linked list need not
be contiguous in memory.
– They are ordered by logical links that are stored as

part of the data in the structure itself.

– The link is a pointer to another structure of the
same type.

Declaration of a linked list

struct node
 {
 int item;
 struct node *next;
 } ;

• Such structures which contain a member field
pointing to the same structure type are called
self-referential structures.

item

node

next

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 4

Illustration

• Consider the structure:
 struct stud
 {
 int roll;
 char name[30];
 int age;
 struct stud *next;
 };

• Also assume that the list consists of three nodes
n1, n2 and n3.
 struct stud n1, n2, n3;

Illustration

• To create the links between nodes, we can
write:
 n1.next = &n2 ;

 n2.next = &n3 ;

 n3.next = NULL ; /* No more nodes follow */

• Now the list looks like:

n1 n2 n3

roll
name

age
next

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 5

Example

#include <stdio.h>
struct stud
 {
 int roll;
 char name[30];
 int age;
 struct stud *next;
 };

main()
{
 struct stud n1, n2, n3;
 struct stud *p;

 scanf (“%d %s %d”, &n1.roll,
 n1.name, &n1.age);
 scanf (“%d %s %d”, &n2.roll,
 n2.name, &n2.age);
 scanf (“%d %s %d”, &n3.roll,
 n3.name, &n3.age);

 n1.next = &n2 ;
 n2.next = &n3 ;
 n3.next = NULL ;

/* Now traverse the list and print
 the elements */

 p = &n1 ; /* point to 1st element */
 while (p != NULL)
 {
 printf (“\n %d %s %d”,
 p->roll, p->name, p->age);
 p = p->next;
 }
}

Linked List

Structure Variable 1

item

Structure Variable 2

item

Structure Variable 3

item

• Where to start and where to stop?

Head / Start

End / Last

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 6

Linked List

item item item

Head / Start

End / Last

Traverse a linked list

item item item

Head

item item item NULL

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 7

Example
#include <stdio.h>
struct stud
 {
 int roll;
 char name[30];
 int age;
 struct stud *next;
 };

main()
{
 struct stud n1, n2, n3, *p;
……………..
 p = &n1 ; /* point to 1st element */
 while (p != NULL)
 {
 printf (“\n %d %s %d”, p->roll, p->name, p->age);
 p = p->next;
 }
……………
}

Insert into a linked list
Step 1: Create a new node.

Step 2: Copy the item.

Step 3: Make the link/next as NULL (point nowhere)

Step 4:
 Case 1: If there does not exists any linked list.
 Step 4a: Make the new node as head node.
 Step 4b: Go to End.

 Case 2: Else
 Step 4c: Locate the insertion point.
 Step 4d: Insert the new node.
 Step 4e: Adjust the link.
 Step 4f: Go to End.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 8

Insert into a linked list

item NULL

Step 1: Create a new node.

Step 2: Copy the item.

Step 3: Make the link/next as NULL (point nowhere)

Step 4:
 Case 1: If there does not exists any linked list.
 Step 4a: Make the new node as head node.
 Step 4b: Go to End.

Head

Insert into a linked list

item NULL

Step 1: Create a new node.
Step 2: Copy the item.
Step 3: Make the link/next as NULL (point nowhere)
Step 4:
 Case 2: Else
 Step 4c: Locate the insertion point.
 Step 4d: Insert the new node.
 Step 4e: Adjust the link.
 Step 4f: Go to End.

item item item

Head

NULL

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 9

Insert into a linked list: Head Node

item NULL

Step 4ci: Make the next of new node as the address of existing head node.
Step 4cii: Copy the address of the new node as the head node.

item item item

Head

NULL

Head

Insert into a linked list: End Node

item NULL

Step 4ci: Traverse till last/end node.
Step 4cii: Make the next of last node as the address of new node.

item item item

Head

NULL

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 10

Insert into a sorted linked list

12 14 16

Head

19 22

18

NULL

Insert 18

prev curr prev prev curr

curr

32

Delete a specific node from linked list

12 14 16

Head

19 22

18

NULL

Delete 18

prev

curr

32

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 11

Delete End Node from linked list

item NULL

item item item

Head prev

curr

Delete Head Node from a linked list

item

item item item

Head

NULL

Head

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 12

Linked list and Dynamic Memory
Allocation

item item item

Head

item item item NULL

Linked list and Dynamic Memory Allocation

1. We need not have to know how many nodes are there.

2. Dynamic memory allocation provides a flexibility on the
length of a linked list.

3. Example,
 struct node {

 int item;
 struct node *next;
 };
 struct node *head, *temp;

 temp=(struct node *)malloc(sizeof(struct node)*1);
 temp->next=NULL;
 temp->item=10;
 head=temp;

 free(temp);

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 13

Types of Lists

• Depending on the way in which the links are
used to maintain adjacency, several different
types of linked lists are possible.

– Linear singly-linked list (or simply linear list)

• One we have discussed so far.

A B C

head

– Circular linked list

• The pointer from the last element in the list points back
to the first element.

• No need for NULL link.

• How do you keep track of traversal?

A B C

head

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 14

– Doubly linked list

• Pointers exist between adjacent nodes in both
directions.

• The list can be traversed either forward or backward.

• Usually two pointers (prev and next) are maintained to
keep track of the list, head and tail.

A B C

head end

struct node {
 int item;
 struct node *prev, *next;
 };
struct node *head, *temp;

Basic Operations on a List

• Creating a list

• Traversing the list

• Inserting an item in the list

• Deleting an item from the list

• Concatenating two lists into one

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 15

A B C

head

Insert into circular linked list

 X

Delete a specific node from linked list

12 14 16

Head

19 22

18

NULL

Delete 18

prev

curr

32

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 16

Delete End Node from linked list

item NULL

item item item

Head prev

curr

Delete Head Node from a linked list

item

item item item

Head

NULL

Head

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 17

Delete a node and free memory

• Do not forget to free() memory location dynamically
allocated for a node after deletion of that node.

• It is programmer’s responsibility to free that memory
location.

• Failure to do so may create a dangling pointer – a
memory location that is not used either by the
programmer or by the system.

• The content of a free memory location is not erased.

Concatenating two linked lists

item item item NULL

Head2

item item item

Head1

NULL

