
Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 1

PDS Class Test 2

• Date: October 27, 2016

• Time: 7pm to 8pm

• Marks: 20 (Weightage 50%)

Room Sections No of students
V1 Section 8 (All)

Section 9
(AE,AG,BT,CE, CH,CS,CY,EC,EE,EX)

101
 49

V2 Section 9 (Rest, if not allotted in V1)
Section 10 (All)

50
98

V3 Section 11 (All) 98

V4 Section 12 (All) 94

F116 Section 13 (All) 95

F142 Section 14 (All) 96

Let us establish the Pointer from
Autumn Break to PDS!!!

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 2

Example

• Consider the statement

 int xyz = 50;

– This statement instructs the compiler to allocate a location
for the integer variable xyz, and put the value 50 in that
location.

– Suppose that the address location chosen is 1380.

50 1380 xyz

Variable name
(identity to the
programmer)

Memory address
(identity to the
system)

content

Pointers

– Variables that hold memory addresses are called
pointers.

– Since a pointer is a variable, its value is also stored
in some memory location.

p = &xyz;

50 1380

xyz

1380 2545

p

Variable Value Address

 xyz 50 1380

 p 1380 2545

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 3

Declaration of pointer

• int xyz;

• int *p;

• p=&xyz;

• printf(“%d”,xyz); is equivalent to printf(“%d”,*p);

• So xyz and *p can be used for same purpose.

• Both can be declared simultaneously.
– Example:

• int xyz,*p;

Summary

int *p;

Data Type Pointer Variable

Typecasting

• Typecasting is mostly not required in a well
written C program. However, you can do this as
follows:
– char c = '5‘

– char *d = &c;

– int *e = (int*)d;

– Remember (sizeof(char) != sizeof(int))

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 4

Examples of pointer arithmetic

int a=10, b=5, *p, *q;

p=&a;

q=&b;

printf("*p=%d,p=%x\n",*p,p);

p=p-b;

printf("*p=%d,p=%x\n",*p,p);

printf("a=%d, address(a)=%x\n",a,&a);

Output:

*p=10, p=24b3f6ac

*p=4195592, p=24b3f698

a=10, address(a)=24b3f6ac

Pointers and Arrays
• Pointers can be incremented and decremented by integral values.

• After the assignment p = &A[i]; the increment p++ (or ++p) lets p one
element down the array, whereas the decrement p-- (or --p) lets p
move by one element up the array. (Here "up" means one index less,
and "down" means one index more.)

• Similarly, incrementing or decrementing p by an integer value n lets p
move forward or backward in the array by n locations. Consider the
following sequence of pointer arithmetic:
– p = A; /* Let p point to the 0-th location of the array A */

– p++; /* Now p points to the 1-st location of A */

– p = p + 6; /* Now p points to the 8-th location of A */

– p += 2; /* Now p points to the 10-th location of A */

– --p; /* Now p points to the 9-th location of A */

– p -= 5; /* Now p points to the 4-rd location of A */

– p -= 5; /* Now p points to the (-1)-nd location of A */

Remember:
Increment/
Decrement is by
data type not by
bytes.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 5

Example
• Consider the declaration:

 int *p;

 int x[5] = {1, 2, 3, 4, 5} ;

– Suppose that the base address of x is 2500, and each
integer requires 4 bytes.

 Element Value Address

 x[0] 1 2500

 x[1] 2 2504

 x[2] 3 2508

 x[3] 4 2512

 x[4] 5 2516

– Relationship between p and x:
p = &x[0] = 2500
p+1 = &x[1] = 2504
p+2 = &x[2] = 2508
p+3 = &x[3] = 2512
p+4 = &x[4] = 2516

Accessing Array elements

#include<stdio.h>
int main()
{
 int iarray[5]={1,2,3,4,5};
 int i, *ptr;
 ptr=iarray;
 for(i=0;i<5;i++) {
 printf(“iarray[%d] (%x): %d\n",i,ptr,*ptr);
 ptr++;
 printf(“iarray[%d] (%x): %d\n",i, (iarray+i),*(iarray+i));
 }
 return 0;
}

NOTE

1. The name of the array is the

starting address (base address)
of the array.

2. It is the address of the first
element in the array.

3. Thus it can be used as a normal
pointer, to access the other
elements in the array.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 6

Swapping two numbers

void main()

{

int i, j;

scanf(“%d %d”, &i, &j);

printf(“After swap: %d %d”,i,j);

swap(i,j);

printf(“After swap: %d %d”,i,j);

}

void swap(int a, int b)
{
 int temp = a;
 a = b;
 b = temp;
}

void swap(int *a, int *b)
{
 int temp = *a;
 *a = *b;
 *b = temp;
}

swap(&i,&j);

Revisited
Character Array / String

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 7

Declaring String Variables

• A string is declared like any other array:

 char string-name [size];

– size determines the number of characters in string_name.

• When a character string is assigned to a character
array, it automatically appends the null character
(‘\0’) at the end of the string.
– size should be equal to the number of characters in the

string plus one.

Examples

 char name[30];

 char city[15];

 char dob[11];

• A string may be initialized at the time of
declaration.
 char city[15] = “Calcutta”;

 char city[15] = {‘C’, ‘a’, ‘l’, ‘c’, ‘u’, ‘t’, ‘t’, ‘a’};

 char dob[] = “12-10-1975”;

Equivalent

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 8

Reading “words”

• scanf can be used with the “%s” format
specification.
 char name[30];
 :
 :
 scanf (“%s”, name);

– The ampersand (&) is not required before the variable name

with “%s”.

– The problem here is that the string is taken to be upto the
first white space (blank, tab, carriage return, etc.)

• If we type “Amit Ray”
• name will be assigned the string “Amit”

Reading a “line of text”

• In many applications, we need to read in an
entire line of text (including blank spaces).

• We can use the getchar() or gets() function for
the purpose.

• Terminating criterion will be ‘\n’.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 9

Writing Strings to the Screen

• We can use printf with the “%s” format
specification.

 char name[50];

 :

 :

 printf (“\n %s”, name);

Processing Character Strings

• There exists a set of C library functions for
character string manipulation.
– strcpy :: string copy

– strlen :: string length

– strcmp :: string comparison

– strtcat :: string concatenation

– …….

• It is required to include the following
 #include <string.h>

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 10

strcpy()

• Works very much like a string assignment operator.
 strcpy (string1, string2);
– Assigns the contents of string2 to string1.

• Examples:

 strcpy (city, “Calcutta”);
 strcpy (city, mycity);

• Warning:

– Assignment operator do not work for strings.
 city = “Calcutta”;  INVALID

strlen()

• Counts and returns the number of characters
in a string.

 len = strlen (string); /* Returns an integer */

– The null character (‘\0’) at the end is not counted.

– Counting ends at the first null character.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 11

strcmp()

• Compares two character strings.
 int strcmp (string1, string2);
– Compares the two strings and returns 0 if they are

identical; non-zero otherwise.

• Examples:
 if (strcmp (city, “Delhi”) = = 0)
 { ……. }

 if (strcmp (city1, city2) ! = 0)
 { ……. }

strcat()

• Joins or concatenates two strings together.
 strcat (string1, string2);

– string2 is appended to the end of string1.

– The null character at the end of string1 is
removed, and string2 is joined at that point.

• Example:
 strcpy (name1, “Amit “);

 strcpy (name2, “Ray“);

 strcat (name1, name2);
‘\0’ y a R

‘\0’ i m A t

‘\0’ y a R

i m A t

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 12

Multi Dimensional Arrays

Two Dimensional Arrays

• We have seen that an array variable can store a list of
values.

• Many applications require us to store a table of values.

• The table contains a total of 20 values, five in each line.

– The table can be regarded as a matrix consisting of four rows
and five columns.

• C allows us to define such tables of items by using two-
dimensional arrays.

75 82 90 65 76

68 75 80 70 72

88 74 85 76 80

50 65 68 40 70

Student 1

Student 2

Student 3

Student 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 13

Declaring 2-D Arrays

• General form:

 data_type array_name [row_size][column_size];

• Examples:

 int marks[4][5];

 float sales[12][25];

 double matrix[100][100];

Accessing Elements of a 2-D Array

• Similar to that for 1-D array, but use two indices.

– First indicates row, second indicates column.

– Both the indices should be expressions which evaluate to
integer values.

• Examples:

 x[m][n] = 0;

 c[i][k] += a[i][j] * b[j][k];

 a = sqrt (a[j*3][k]);

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 14

Read the elements of a 2-D array

• By reading them one element at a time
 for (i=0; i<nrow; i++) {

 for (j=0; j<ncol; j++) {

 scanf (“%d”, &a[i][j]);

 }

 }

• The ampersand (&) is necessary.

• The elements can be entered all in one line or in
different lines.

Print the elements of a 2-D array

 for (i=0; i<nrow; i++)

 for (j=0; j<ncol; j++)

 printf (“\n %d”, a[i][j]);

– The elements are printed one per line.

 for (i=0; i<nrow; i++)

 for (j=0; j<ncol; j++)

 printf (“%d”, a[i][j]);

– The elements are all printed on the same line.

 for (i=0; i<nrow; i++) {

 printf (“\n”);

 for (j=0; j<ncol; j++)

 printf (“%d ”, a[i][j]);

 }

– The elements are printed nicely in matrix form.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 15

Example: Matrix Addition

#include <stdio.h>

void main()
{
 int a[100][100], b[100][100],
 c[100][100], p, q, m, n;

 scanf (“%d %d”, &m, &n);

 for (p=0; p<m; p++) {
 for (q=0; q<n; q++) {
 scanf (“%d”, &a[p][q]);
 }
 }

 for (p=0; p<m; p++) {
 for (q=0; q<n; q++) {
 scanf (“%d”, &b[p][q]);

 }
 }

 for (p=0; p<m; p++) {
 for (q=0; q<n; q++) {
 c[p][q] = a[p][q] + b[p][q];
 }
 }

 for (p=0; p<m; p++) {
 printf (“\n”);

 for (q=0; q<n; q++) {

 printf (“%d ”, a[p][q]);

 }

 }

}

 How to print three matrices side by
side?

2 3 4 1 2 3 3 5 7
2 1 3 6 7 5 8 8 8
2 1 5 3 3 3 5 4 8

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 16

Passing 2-D Arrays

• Similar to that for 1-D arrays.
– The array contents are not copied into the function.

– Rather, the address of the first element is passed.

• For calculating the address of an element in a 2-D
array, we need:
– The starting address of the array in memory.

– Number of bytes per element.

– Number of columns in the array.

• The above three pieces of information must be
known to the function.

The Actual Mechanism

• When an array is passed to a function, the values
of the array elements are not passed to the
function.

– The array name is interpreted as the address of the

first array element.
– The formal argument therefore becomes a pointer

to the first array element.
– When an array element is accessed inside the

function, the address is calculated using the
formula stated before.

– Changes made inside the function are thus also
reflected in the calling program.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 17

Example Usage

#include <stdio.h>

main()
{
 int a[15][25], b[15]25];
 :
 :
 add (a, b, 15, 25);
 :
}

void add (int x[][25],int y[][25], int rows, int cols)
{
 :
}

We can also write

int x[15][25], y[15][25];

Number of columns

Example: Transpose of a matrix

void transpose (int x[][100], int n)
{
 int p, q;

 for (p=0; p<n; p++) {
 for (q=0; q<n; q++)
 {
 t = x[p][q];
 x[p][q] = x[q][p];
 x[q][p] = t;
 }
 }
}

10 20 30

40 50 60

70 80 90

10 20 30

40 50 60

70 80 90

transpose(a,3)

a[100][100]

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 18

The Correct Version

void transpose (int x[][100], n)
{
 int p, q;

 for (p=0; p<n; p++)
 for (q=p; q<n; q++)
 {
 t = x[p][q];
 x[p][q] = x[q][p];
 x[q][p] = t;
 }
}

10 20 30

40 50 60

70 80 90

10 40 70

20 50 80

30 60 90

Multi-Dimensional Arrays

• How can you add more than two dimensions?

– int a[100];

– int b[100][100];

– int c[100][100][100];

– …….

– How long?

– Can you add any dimension?

– Can you add any size?

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 19

Exercise

• Write a function to multiply two matrices of
orders m x n and n x p respectively.

Homework

• Step -1: Read the number of persons from the user.
• Step -2: Read the first name of each of the persons.
• Step -3: Alphabetically sort their names.
• Step -4: Print the sorted list.

• Input:
– Enter the number of persons: 3
– Enter their first name:

• Tridha
• Susmita
• Pranab

• Output:
• Pranab
• Susmita
• Tridha

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 20

Multi Dimensional Array Initialization

• Example 1
int values[3][4] = {

 {1,2,3,4},

 {5,6,7,8},

 {9,10,11,12}

 };

• Example 2
int values[3][4]={1,2,3,4,5,6,7,8,9,10,11,12};

2D array to 1D array

• How?
– Example 2D array

1 2 3
4 5 6
7 8 9

– Row-wise representation
1 2 3 4 5 6 7 8 9

– Column-wise representation
1 4 7 2 5 8 3 6 9

• Why?
– Chunk of memory is required.
– May not be available.
– 2D array of size 50X50 is available, but not 1D array of size 2500

– POSSIBLE??
– 1D array of size 2500 is available, but not 2D array of size 50X50

– POSSIBLE??

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 21

2-D array representation in C

• Starting from a given memory location, the elements
are stored row-wise in consecutive memory
locations.

Example:

int A[5][4];

A[0][0] A[0][1] A[0][2] A[0][3]

A[1][0] A[1][1] A[1][2] A[1][3]

A[2][0] A[2][1] A[2][2] A[2][3]

A[3][0] A[3][1] A[3][2] A[3][3]

A[4][0] A[4][1] A[4][2] A[4][3]

2-D array representation in C

• x: starting address of the array in memory

• c: number of columns

• k: number of bytes allocated per array element

a[i][j]  is allocated at x + (i * c + j) * k

A[0]0] A[0][1] A[0]2] A[0][3] A[1][0] A[1][1] A[1][2] A[1][3] A[2][0] A[2][1] A[2][2] A[2][3]

Row 0 Row 1 Row 2

A[0][0] A[0][1] A[0][2] A[0][3]

A[1][0] A[1][1] A[1][2] A[1][3]

A[2][0] A[2][1] A[2][2] A[2][3]

A[3][0] A[3][1] A[3][2] A[3][3]

A[4][0] A[4][1] A[4][2] A[4][3]

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 22

Problems

1. Write a C program to multiply two matrices
of orders m x n and n x p respectively.

2. Write a C program to multiply to large
matrices.

#include <stdlib.h>

void main()

{

 int **mat,nrows,ncols,i;

 ……….

 mat=(int **)malloc(sizeof(int *)*nrows);

 for(i=0;i<nrows;i++)

 mat[i]=(int *)malloc(sizeof(int)*ncols);

 ……………

 ……………

 for(i=0;i<nrows;i++)

 free(mat[i]);

 free(mat);

}

Interactive Input

Memory allocation
(2D pointer)

Memory allocation
(1D pointer)

Memory deallocation
(2D pointer)

Memory deallocation
(1D pointer)

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 23

2-D Array Allocation

#include <stdio.h>
#include <stdlib.h>

int **allocate(int h, int w)
 {
 int **p;
 int i,j;

 p=(int **) calloc(h, sizeof (int *));
 for(i=0;i<h;i++)
 p[i]=(int *) calloc(w,sizeof (int));
 return(p);
 }

void read_data(int **p,int h,int w)
 {
 int i,j;
 for(i=0;i<h;i++)
 for(j=0;j<w;j++)
 scanf ("%d",&p[i][j]);
 }

Allocate array
of pointers

Allocate array of
integers for each

row

Elements accessed
like 2-D array elements.

void print_data(int **p,int h,int w)
 {
 int i,j;
 for(i=0;i<h;i++)
 {
 for(j=0;j<w;j++)
 printf("%5d ",p[i][j]);
 printf("\n");
 }
}

void main()
{
 int **p;
 int M,N;

 printf("Give M and N \n");
 scanf("%d%d",&M,&N);
 p=allocate(M,N);
 read_data(p,M,N);
 printf("\n The array read as \n");
 print_data(p,M,N);
}

Give M and N
3 3
1 2 3
4 5 6
7 8 9

 The array read as
 1 2 3
 4 5 6
 7 8 9

2-D Array Allocation

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 24

Pointer to Pointer
 int **p;

 p=(int **) malloc(3 * sizeof(int *));

 p[0]=(int *) malloc(5 * sizeof(int));

p[1]=(int *) malloc(5 * sizeof(int));

p[2]=(int *) malloc(5 * sizeof(int));

p[2]

p[1]

p[0]

p int **

int *

int *

int *

Linked List :: Basic Concepts

• A list refers to a set of items organized sequentially.

– An array is an example of a list.

• The array index is used for accessing and manipulation
of array elements.

– Problems with array:

• The array size has to be specified at the beginning.

• Deleting an element or inserting an element may
require shifting of elements.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 25

Linked List

• A completely different way to represent a list:

– Make each item in the list part of a structure.

– The structure contains the item and a pointer or
link to the structure containing the next item.

– This type of list is called a linked list.

Structure Variable 1

item

Structure Variable 2

item

Structure Variable 3

item

Linked List

Structure Variable 1

item

Structure Variable 2

item

Structure Variable 3

item

• Where to start and where to stop?

Head / Start

End / Last

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 26

Linked List Facts

• Each structure of the list is called a node, and
consists of two fields:
– Item(s).

– Address of the next item in the list.

• The data items comprising a linked list need not
be contiguous in memory.
– They are ordered by logical links that are stored as

part of the data in the structure itself.

– The link is a pointer to another structure of the
same type.

Declaration of a linked list

struct node
 {
 int item;
 struct node *next;
 } ;

• Such structures which contain a member field
pointing to the same structure type are called
self-referential structures.

item

node

next

