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CS11001 Programming and Data Structures, Autumn 2014–2015
End Semester Examination

Date: 27–November–2014 Time: 09:00–12:00 hours Maximum Marks: 100

 Write your answers in the question paper. Write only in the blank spaces provided.
Do not use any extra variables. Do not change the interpretations of the variables.

Be neat and tidy. Answer all questions. Not all blanks carry equal marks.


1. (a) Write in one or two sentences what the following program prints. (4)

int f ( char *head, char * tail )

{

int count;

if (head >= tail) return 0;

count = (*head == *tail) ? 0 : 1;

return count + f(head+1,tail-1);

}

main ( )

{

char S[1000], *head, *tail;

scanf("%s", S);

head = S;

tail = S + strlen(S) - 1;

printf("%d\n", f(head, tail));

}

Let the length of S be n. The program counts and prints the number of indices i in the range 0 6 i 6 bn/2c−1
such that S[i] 6= S[n−1− i]. This is the minimum number of symbols in S that need to be changed in order
to make S palindromic.

(b) Let n be the length of the string S. Derive a recurrence relation for the running time T (n) of the function
f (S). Solve the recurrence to express T (n) in the big-Oh notation as a simple function of n. (2 + 4)

T (0) and T (1) are constant. For n > 2, a recursive call is made on a string of size n− 2 (after performing
some constant number k of elementary operations). Thus, we have

T (n) = T (n−2)+ k.

Let n = 2m+a with a ∈ {0,1}. It then follows that:

T (n) = T (n−2)+ k

= T (n−4)+2k

= T (n−6)+3k

· · ·
= T (a)+mk

= T (a)+mbn/2c .

Since T (a) and k are constant, we have T (n) = O(n).
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2. Consider two integer arrays A and B of the same size n > 2. We define a relation A ≺ B if there exists
an index j in the range 0 6 j 6 n− 1 such that A[ j] < B[ j], and for all i in the range 0 6 i < j, we have
A[i] = B[i]. Note that for any two arrays A and B of size n, exactly one of the three cases hold: (a) A ≺ B,
(b) B≺ A, or (c) A = B (that is, A and B are identical for all elements). As examples, take n = 3, and observe
that (1,2,3)≺ (1,2,4)≺ (1,4,2)≺ (3,0,0).

You are given an m× n two-dimensional array M. Treat each row of M as a one-dimensional array of size
n. The relation ≺ just defined apply to the rows of M. Your task is to bubble sort the rows of M with respect
to this relation. This means that if R1 and R2 are two rows of M with R1 ≺ R2, then R1 should appear before
R2 in the sorted output.

(a) Complete the following function which takes two arrays A and B of size n as inputs, and returns−1,1,0
according as whether A≺ B, B≺ A, or A = B, respectively. (4)

int compare ( int A[], int B[], int n )

{

int i;

for ( i=0; i<n; ++i ) { /* loop on i */

if ( A[i] < B[i] ) return -1;

if ( A[i] > B[i] ) return 1;

}

return 0 ;

}

(b) Complete the following function that bubble sorts the rows of an m× n two-dimensional array M with
respect to the relation ≺. Assume that m and n are not larger than a suitably defined MAX_SIZE. (10)

void rowsort ( int M[][MAX_SIZE], int m, int n )

{

int i, j, k, t;

for (i = m-2 ; i >= 0; i--) {

for ( j = 0 ; j <= i ; ++j ) {

if ( compare( M[j] , M[j+1] , n ) > 0 ) {

/* Swap rows */

for ( k=0; k<n; ++k ) {

t = M[j][k]; M[j][k] = M[j+1][k]; M[j+1][k] = t;

}

}

}

}

}
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3. In this exercise, we deal with linked lists which are kept sorted in the increasing order of the data values. To
this end, we define a node in the list in the usual way as:

typedef struct _node {

int data;

struct _node *next;

} node;

A list is specified by a pointer to the first node in the list. We assume that all the nodes in the list store valid
data items, that is, there is no dummy node at the beginning of the list.

(a) Let H be a pointer to the first node in a sorted linked list. H is NULL if the list is empty. We plan to
insert a data value a in the list such that the list continues to remain sorted after the insertion. The value a to
be inserted may or may not be already present in the list. Complete the following function to carry out this
sorted insertion. The function should return a pointer to the first node in the modified list. (12)

node *sortedinsert ( node *H, int a ) {

node *p, *q;

/* Create a new node to store the new value */

p = (node *)malloc(sizeof(node)) ; /* Allocate memory */

p -> data = a ; /* Store a in the new node */

/* Handle insertion before the first node of the list. This should include

the case of insertion in an empty list. */

if ( (H == NULL) || (a <= H -> data) ) {

p -> next = H;

return p ;

}

/* Now we are in a situation where we insert after a node. We first let q point to

the node after which the data item a will be inserted. */

q = H ; /* Initialize q for the search */

/* Loop on q to locate the correct insertion position */

while ( (q -> next) && (a > q -> next -> data) ) q = q -> next;

/* Finally, insert p after q */

p -> next = q -> next; q -> next = p;

return H ;

}

(b) In this part, assume that you are given a sorted linked list with possible duplicate data items stored
in consecutive nodes. Complete the following function that removes all duplicate values (that is, if a data
value is present multiple times, the function will retain only one instance of the data). The function returns
a pointer to the updated list having no duplicate items. It uses three pointers p, q and r. Their roles are
explained as comments in the function. Notice that in the freeing loop, q is no longer needed to point to
the last node with the same data whose possible repetitions are deleted, and can be reused as a temporary
variable. The body of the outer while loop should work even if there is only one instance of a data item. (10)
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node *rmdup ( node *H )

{

node *p, *q, *r;

p = H ; /* Initialize p. It will run over the nodes in the list. */

while ( p ) { /* so long as p points to a node with data */

q = p ;

/* When the following loop breaks, q will point to the last node with the same

data as is pointed to by p */

while ( (q -> next) && (q -> next -> data == p -> data) ) q = q -> next;

r = p -> next; /* r will be used in the freeing loop */

/* Adjust pointer(s) to remove all nodes after p and before q -> next */

p -> next = q -> next;

/* Free all the nodes deleted from the list in this iteration */

while ( r != p -> next ) { /* loop on r */

q = r; r = r -> next; free(q);

}

p = p -> next; /* Advance p for the next iteration */

}

return H;

}

4. Consider a polynomial with real (floating-point) coefficients: f (X)= c0Xd0 +c1Xd1 +c2Xd2 + · · ·+ct−1Xdt−1

with integer degrees 0 6 d0 < d1 < d2 < · · · < dt−1 and with coefficients ci 6= 0. We call each ciXdi a non-
zero term in f (X). We store f as the sequence (c0,d0),(c1,d1),(c2,d2), . . . ,(ct−1,dt−1) which is sorted with
respect to the degrees (the second components in the pairs). We first define a term as follows:

typedef struct {

double coeff; /* The coefficient in a non-zero term */

int degree; /* The degree of X in the term */

} term;

A polynomial is then stored as a structure instance of the following type:

typedef struct {

int nterms; /* The number of non-zero terms */

term *termlist; /* The list of terms, that is, (coefficient,degree) pairs */

} poly;

We assume that the term-list contains a sequence of terms sorted in the increasing order of the degrees, and
that no two terms have the same degree. All coefficients are assumed to be non-zero. Moreover, the term-list
should be allocated memory just sufficient to store all the non-zero terms in the polynomial.

Let us have two polynomials f and g in the above representation. We plan to compute their sum h = f +g
again in the same representation. Before the sum is computed, the number of non-zero terms in h is not
known, so we prepare a local array sum[] to store the maximum possible number of terms that can appear
in the sum. The intermediate addition result is stored in sum[]. Finally, the term-list of h is allocated the
exact amount of memory as needed, and the local array sum[] is copied to the term-list of h.

As an example, let f (X) = 1−2X3−3X7+4X9−5X15 and g(X) = 4+3X +2X3+X9. Their sum can have
a maximum of nine non-zero terms. The sum h(X) = f (X)+g(X) = 5+3X −3X7 +5X9−5X15 actually
contains only five non-zero terms. This happens because each of the sums 1+ 4 and 4X9 +X9 introduces
only one new term. Moreover, the sum −2X3 +2X3 does not add to the sum any term involving X3.

(a) We first write a recursive helper function to generate the intermediate array sum[]. This function uses
a merging procedure as in merge sort (notice that the term-lists of f and g are sorted with respect to the
degrees of the terms). The term-lists of f and g are indexed by i and j, respectively. The result is stored in
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the intermediate array sum[], and the index k is used for writing to this array. Thus k stores the number of
non-zero terms. In the recursive calls, the indices i, j and k are changed appropriately. The outermost call
in Part (b) gets the exact number of non-zero terms in the final sum. Complete the helper function. (15)

int addhelper ( poly f, poly g, int i, int j, term *sum, int k )

{

/* If both f and g are completely read, return the number of non-zero terms */

if ((i == f.nterms) && (j == g.nterms)) return k;

/* If g is completely read (but not f), or the current term in f has lower degree

than that in g, then copy the current term in f to sum */

if ( ( j == g.nterms ) ||

( (i < f.nterms) && (f.termlist[i].degree < g.termlist[j].degree) ) ) {

sum[k] = f.termlist[i] ;

return addhelper( f, g, i+1, j, sum, k+1 );

}

/* If f is completely read (but not g), or the current term in g has lower degree

than that in f, then copy the current term in g to sum */

if ( (i == f.nterms) || (f.termlist[i].degree > g.termlist[j].degree) ) {

sum[k] = g.termlist[j] ;

return addhelper( f, g, i, j+1, sum, k+1 );

}

/* Here the current terms in both f and g have the same degree */

sum[k].degree = f.termlist[i].degree ;

sum[k].coeff = f.termlist[i].coeff + g.termlist[j].coeff ;

if (sum[k].coeff) ++k; /* Update k if needed */

return addhelper( f, g, i+1, j+1, sum , k );

}

(b) Complete the following function that adds f and g by invoking the helper function of Part (a). (4)

poly add ( poly f, poly g )

{

poly h;

term *sum;

int i;

/* Allocate the maximum possible amount of memory that may be needed for sum */

sum = (term *)malloc((f.nterms + g.nterms) * sizeof(term)) ;

h.nterms = addhelper(f,g,0,0,sum,0); /* Call the helper function */

/* Allocate the exact amount of memory to the term-list of h */

h.termlist = (term *)malloc(h.nterms * sizeof(term)) ;

/* Copy the intermediate array sum[] to the term-list of h */

for (i=0; i<h.nterms; ++i) h.termlist[i] = sum[i];

free(sum); /* Clean locally used dynamic memory */

return h;

}

— Page 5 of 10 —



5. In a doubly linked list, each node has a link in the forward direction and another link in the backward
direction. The forward link of the last node and the backward link in the first node of the list are NULL.

typedef struct _node {

int data;

struct _node *flink; /* forward link pointing to the next node */

struct _node *blink; /* backward link pointing to the previous node */

} node;

A double-ended queue is an ordered list in which insertion and deletion can occur at both the ends. Let us
represent a double-ended queue by a doubly linked list as follows. This is an array of two pointers, the first
pointer (at index zero) pointing to the first node of the linked list and the second (at index one) the last node
of the list. In an empty queue Q, both the pointers Q[0] and Q[1] are NULL.

typedef node *d_e_queue[2];

(a) Complete the following insert function which takes three arguments: a double-ended queue Q, the
integer a to be inserted, and the end (zero or one) where insertion would take place. (13)
void insert ( d_e_queue Q, int a, int end )

{

node *p;

p = (node *)malloc(sizeof(node)) ; /* Allocate memory */

p -> data = a;

if ( Q[0] == NULL ) { /* Insertion in an empty queue */

p -> flink = p -> blink = NULL; /* Set the links of p */

Q[0] = Q[1] = p; /* Set the pointers in Q */

return;

}

if (end == 0) { /* Insertion at the beginning of the list */

p -> flink = Q[0]; p -> blink = NULL; /* Set the links of p */

Q[0] -> blink = p; Q[0] = p; /* Set Q[0] */

} else { /* Insertion at the end of the list */

p -> blink = Q[1]; p -> flink = NULL; /* Set the links of p */

Q[1] -> flink = p; Q[1] = p; /* Adjust Q[1] */

}

}

(b) Complete the following deletion function that takes two arguments: a double-ended queue Q and an
end (zero/one) at which deletion occurs. Free the node being deleted. (9)
void delete ( d_e_queue Q, int end )

{

if (Q[0] == NULL) return; /* Deletion from an empty queue */

if (Q[0] == Q[1]) { /* Deletion from a queue with one element */

free(Q[0]); Q[0] = Q[1] = NULL;

return;

}

if (end == 0) { /* Deletion at the beginning of the list */

Q[0] = Q[0] -> flink; free(Q[0] -> blink); Q[0] -> blink = NULL;

} else { /* Deletion at the end of the list */

Q[1] = Q[1] -> blink; free(Q[1] -> flink); Q[1] -> flink = NULL;

}

}
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6. You start with an empty stack S, and then perform n push and n pop operations on S such that:

• You push the integers 1,2,3, . . . ,n in that order. Assume that the stack has enough memory to store n
elements, that is, no push operation fails.

• You never pop from an empty stack, that is, no pop operation fails, so after the n push and the n pop
operations S becomes empty again.

Immediately before each pop operation, you print the top of the stack, that is, the element which is going
to be popped. The above rules indicate that the integers 1,2,3, . . . ,n are printed in some order. The printed
sequence is said to be realized by a stack.

For example, let n = 5. The permutation 2,4,3,5,1 can be realized by the following sequence of push and
pop operations (the print statements are not shown): push(1), push(2), pop(), push(3), push(4), pop(), pop(),
push(5), pop(), pop(). Observe that this example sequence satisfies the specified rules. We push the integers
in the order 1,2,3,4,5. We perform the same number of pop operations and never pop from an empty stack.
Not every permutation of 1,2,3, . . . ,n can be realized by a stack. For example, convince yourself that for
n = 5 the permutation 2,4,1,3,5 cannot be realized by a stack.

The following function takes as input n and an array seq[] storing a permutation of 1,2,3, . . . ,n, and checks
whether the input sequence can be realized by a stack. There are no external push() and pop() functions.
We instead use a local array S[] as the stack, and write the codes for push and pop explicitly in the function
body. The variable top stores the index of the stack top in S[]. The variable a stores what element is to
be inserted in the stack in the next push operation. Finally, the variable i stands for how many integers are
printed (that is, how many pop operations are carried out). The function also prints the maximum-length
prefix of the input sequence that can be realized using the stack. Complete the function. (13)

void check ( int *seq, int n )

{

int a, top, i, *S;

S = (int *)malloc(n * sizeof(int)) ; /* Allocate memory */

a = 1; top = -1; i = 0; /* Initialize */

/* Repeat the following loop until explicitly broken in the body */

while (1) {

/* First check whether it is necessary to print and pop now */

if ( (top >= 0) && (seq[i] == S[top]) ) {

printf("%d ", S[top] );

--top ; /* Pop from S */

++i ; /* Another integer printed */

} else

/* Then check whether it is allowed to push another element to S */

if ( a <= n ) {

S[++top] = a ; /* Push a to S */

++a ; /* Prepare for the next push */

} else break ;

}

if ( i == n )

printf("+++ The input sequence can be realized by a stack...\n");

else

printf("+++ The input sequence cannot be realized by a stack...\n");

free(S) ; /* Clean locally allocated dynamic memory */

}
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