
Structures

5th March 2012

Spring 2012 Programming and Data Structure 1

What is a Structure?

• It is a convenient tool for handling a group of logically
related data items.

– Student name, roll number, and marks

– Real part and complex part of a complex number

– Combine heterogeneous data to form a named
collection

• Essential for building up “interesting” data structures —
e.g., data structures of multiple values of different kinds

Spring 2012 Programming and Data Structure 2

Structures, Unions, and

Typedefs
CS-2303, C-Term 2010 3

Definition — Structure

• A collection of one or more variables, typically
of different types, grouped together under a
single name for convenient handling

• Known as struct in C

Structures, Unions, and

Typedefs
CS-2303, C-Term 2010 4

struct

• Defines a new type

• E.g.,
struct motor {

float volts;

float amps;

int phases;

float rpm;

}; //struct motor

Note:– name of type is

optional if you are just

declaring a single struct

Structures, Unions, and

Typedefs
CS-2303, C-Term 2010 5

struct

• Defines a new type

• E.g.,
struct motor {

float volts;

float amps;

int phases;

float rpm;

}; //struct motor

Members of the
struct

A member of a struct is analogous

to a field of a class in Java

Structures, Unions, and

Typedefs
CS-2303, C-Term 2010 6

Declaring struct variables

struct motor p, q, r;

• Declares and sets aside storage for three variables – p, q, and r –

each of type struct motor

struct motor M[25];

• Declares a 25-element array of struct motor; allocates 25

units of storage, each one big enough to hold the data of one
motor

struct motor *m;

• Declares a pointer to an object of type struct motor

Example
• A structure definition:

struct student {
char name[30];
int roll_number;
int total_marks;
char dob[10];

};

• Defining structure variables:
struct student a1, a2, a3;

A new data-type

Cox Structures and Unions 8

Structures
•Compound data:

•A date is
– an int month and

– an int day and

– an int year

struct ADate {

int month;

int day;

int year;

};

struct ADate date;

date.month = 9;

date.day = 1;

date.year = 2005;

Cox Structures and Unions 9

Structure Representation & Size

sizeof(struct …) =

sum of sizeof(field)

+ alignment padding
Processor- and compiler-specific

6261 EF BE AD DE

c1 c2 ipadding

struct CharCharInt {

char c1;

char c2;

int i;

} foo;

foo.c1 = ’a’;

foo.c2 = ’b’;

foo.i = 0xDEADBEEF;

x86 uses “little-endian” representation

Members

• To access the members of a structure, we use the

member access operator “.”.
strcpy (sname.first, “Aritra”);

sname.midinit = ‘K’;

strcpy (sname.last, “Saha”) ;

struct name {

char first[10];

char midinit;

char last[20];

} sname, ename;

typedef

typedef struct {

char first[10];

char midinit;

char last[20];

} NAMETYPE;

NAMETYPE sname,ename;

struct name {
char first[10];
char midinit;
char last[20];

} ;

typedef struct name nameType;

nameType name1, name2;

a typedef is a way of renaming a type

Structures, Unions, and

Typedefs
CS-2303, C-Term 2010 12

Operations on struct

• Copy/assign
struct motor p, q;

p = q;

• Get address
struct motor p;

struct motor *s

s = &p;

• Access members
p.volts;

(*s).amps; s->amps;

Things you can and can't do

• You can
Use = to assign whole struct variables

• You can
Have a struct as a function return type

• You cannot
Use == to directly compare struct variables; can

compare fields directly

• You cannot
Directly scanf or printf structs; can read fields
one by one.

Structures, Unions, and

Typedefs
CS-2303, C-Term 2010 14

Operations on struct (function call)

• Passing an argument by value is an instance of copying or
assignment

• Passing a return value from a function to the caller is an
instance of copying or assignment

struct motor f(struct motor g) {

struct motor h = g;

...;

return h;

}

Struct initializers

/* typedef structs go on top */

StudentRecord s1 = {"V Singhal", "00CS1002", 167, 8.31};

Using components of struct variables

s1.height = 169;

s1.cgpa = 8.4;

scanf ("%s", s1.rollno) ;

Example: Complex number addition

typedef struct {

float real;

float imaginary;

} complex;

int main() {

complex a, b, c;

scanf (“%f %f”, &a.real, &a.imaginary);

scanf (“%f %f”, &b.real, &b.imaginary);

c.real = a.real + b.real;

c.imaginary = imaginary + b.imaginary;

printf (“\n %f + %f j”, c.real, c.imaginary);

}

Example: Complex number

#include <stdio.h>

typedef struct {

float real;

float imaginary;

} complex;

complex read_complex () {

complex c;

scanf (“%f %f”, &c.real, &c.imaginary);

return c;

}

void print_complex (complex c) {

printf (“ %f + i %f ”, c.real, c.imaginary);

}

Complex number arithmetic

complex add_complex (complex c1, complex c2) {

complex csum;

csum.real = c1.real + c2.real;

csum.imaginary = c1.imaginary + c2.imaginary;

return csum;

}

complex sub_complex (complex c1, complex c2) {

complex cdiff;

cdiff.real = c1.real + c2.real;

cdiff.imaginary = c1.imaginary + c2.imaginary;

return cdiff;

}

Complex number arithmetic
complex mult_complex (complex c1, complex c2) {

complex cprod;

cprod.real =

cprod.imaginary =

return cprod;

}

int main () {

complex c1, c2, c3, c4;

read_complex (c1) ; read_complex (c2) ;

c3 = add_complex (c1, c2) ;

printf (“Sum of”) ;

print_complex (c1) ;

printf (“and”);

print_complex (c2);

printf(“is”) ;

print_complex (c3);

}

Structures, Unions, and

Typedefs

20

Unions

• A union is like a struct, but only one of its members is
stored, not all

• I.e., a single variable may hold different types at
different times

• Storage is enough to hold largest member

• Members are overlaid on top of each other

union {

int ival;

float fval;

char *sval;

} u;

Structures, Unions, and

Typedefs

21

Unions (continued)

• It is programmer’s responsibility to keep track of
which type is stored in a union at any given time!

struct taggedItem {

enum {iType, fType, cType} tag;

union {

int ival;

float fval;

char *sval;

} u;

};

Structures, Unions, and

Typedefs

22

Unions (continued)

• It is programmer’s responsibility to keep track of
which type is stored in a union at any given time!

struct taggedItem {
enum {iType, fType, cType} tag;
union {

int ival;
float fval;
char *sval;

} u;

};

Members of struct are:–

enum tag;

union u;

Value of tag says which

member of u to use

Structures, Unions, and

Typedefs

23

Unions (continued)

• unions are used much less frequently than
structs — mostly

• in the inner details of operating system

• in device drivers

• in embedded systems where you have to access
registers defined by the hardware

Arrays of Structures

• Once a structure has been defined, we can
declare an array of structures.

struct student class[50];

– The individual members can be accessed as:

class[i].name

class[5].roll_number

struct Arrays
typedef struct {

double x;

double y;

} point;

point pentagon[5];

x
y

x
y

x
y

x
y

x
y

pentagon : an array of points

pentagon[1] : a point structure

pentagon[4].x : a double

Using Arrays of structs

StudentRecord class[MAXS];

...

for (i=0; i<nstudents; i++) {

scanf (“%d%d”, &class*i].midterm, &class[i].final);

class[i].grade = (double)(class[i].midterm + class[i].final)/50.0;

}

Passing Arrays of structs

• An array of structs is an array.

• When any array is an argument (actual parameter),
its address is passed, not copied [as for any array]

int avg (StudentRec class[MAX]) {

... …

}

int main () {

StudentRec bt01[MAX];

int average;

...

average = avg_midpt(bt01) ;

}

A function using struct array

int fail (StudentRecord slist []) {

int i, cnt=0;

for (i=0; i<CLASS_SIZE; i++)

cnt += slist[i].grade == ‘F’;

return cnt;

}

Exercise Problems

1. Define a structure for representing a point in two-
dimensional Cartesian co-ordinate system.

• Write a function to compute the distance between two
given points.

• Write a function to compute the middle point of the line
segment joining two given points.

• Write a function to compute the area of a triangle, given
the co-ordinates of its three vertices.

