
Pointers
Introduction
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What is a pointer?

• Simple variables:  An int / float variable is like a box 
which can store a single int value such as 42.
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42num

•A pointer  does not store a simple value directly. 
Instead, a pointer stores a reference to another value. 

42num

numPtr
A pointer variable. The current

value is a reference to the

pointee num above.



Introduction

• A pointer is a variable that represents the 
location (rather than the value) of a data item.

• A pointer is just another kind of value

• Pointer type declaration:
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int *numPtr;

float *fp;



Basic Concept

• Every stored data item occupies one or more 
contiguous memory cells depending on its type 
(char, int, double, etc.).

• Whenever we declare a variable, the system 
allocates memory location(s) to hold the value of 
the variable.

• This location  has a unique address.
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Contd.

• Consider the statement

int xyz = 50;

– The compiler will allocate a location for the integer 
variable xyz, and put the value 50 in that location.

– Suppose that the address location chosen is 1380.
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xyz          variable

50           value

1380        address



Contd.
• Suppose we assign the address of xyz to a variable p.

p is said to point to the variable xyz.
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Variable Value Address

xyz                50             1380

p                1380           2545

int *p;
p = &xyz;

501380

xyz

13802545

p



Accessing the Address of a Variable

• The address of a variable can be 
determined using the ‘&’ operator.

p = &xyz;

• The ‘&’ operator can be used only with a 
simple variable or an array element.

&distance

&x[0]

&x[i-2]
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Contd.

• The following usages are illegal:

&235                  Pointing at constant.

int arr[20];

:

&arr Pointing at array name.

&(a+b)               Pointing at expression.
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Example
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#include  <stdio.h>
int main( ) {

int a;
float  b, c;
double  d;
char  ch;

a = 10;   b = 2.5;  c = 12.36;  d = 12345.66;  ch = ‘A’;
printf (“%d is stored in location %u \n”,  a,  &a) ;
printf (“%f is stored in location %u \n”,  b,  &b) ;
printf (“%f is stored in location %u \n”,  c,  &c) ;
printf (“%ld is stored in location %u \n”,  d,  &d) ;
printf (“%c is stored in location %u \n”,  ch,  &ch) ;

}
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Output:

10 is stored in location 3221224908

2.500000 is stored in location 3221224904

12.360000 is stored in location 3221224900

12345.660000 is stored in location 3221224892

A is stored in location 3221224891 

a

b

c

d

ch



Pointer Declarations

• Pointer variables must be declared before we use 
them.

• General form:
data_type *pointer_name;

int* ptr_a,  ptr_b;
ptr_a is of type pointer to int, ptr_b is an int!

int* ptr_a,  *ptr_b;
ptr_a and ptr_b are of type pointer to int.
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Contd.

• Once a pointer variable has been declared, it can be 
made to point to a variable using an assignment 
statement .

int *ip;
float   *fp;
int count;
float  speed;

:
ip = &count;
fp = &speed;

– This is called pointer initialization.
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Pointer Operations in C

• Creation
& variable Returns variable’s memory address

• Dereference
* pointer Returns contents stored at address

• Indirect assignment
*pointer = val Stores value at address

• Assignment
pointer = ptr Stores pointer in another variable
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Using Pointers
int i1;

int i2;

int *ptr1;

int *ptr2;

i1 = 1;

i2 = 2;

ptr1 = &i1;

ptr2 = ptr1;

*ptr1 = 3;

i2 = *ptr2;

ptr2:

i1:

i2:

ptr1:

0x1000

0x1004

0x1008

…

…

0x100C

0x1010

0x1014

1

2

0x1000

0x1000

3

3
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Using Pointers (cont.)

Type check warning:  int_ptr2 is not an int

int1 becomes 8

int int1     = 1036;   /* some data to point to  */

int int2     = 8;

int *int_ptr1 = &int1;  /* get addresses of data  */

int *int_ptr2 = &int2;

*int_ptr1 = int_ptr2;

*int_ptr1 = int2;

What happens?
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Using Pointers (cont.)

Type check warning:  *int_ptr2 is not an int *

Changes int_ptr1 – doesn’t change int1

int int1     = 1036;   /* some data to point to  */

int int2     = 8;

int *int_ptr1 = &int1;  /* get addresses of data  */

int *int_ptr2 = &int2;

int_ptr1 = *int_ptr2;

int_ptr1 = int_ptr2;

What happens?



Example Code
int x = 1, y = 2, z[10];

int *ip; // ip is a pointer to an int

ip = &x; // ip now points to where x is stored

y = *ip; // set y equal to the value pointed to by 

// ip, or y = x

*ip = 0; // change the value that ip points to to

//0, so now x=0, but  y is unchanged

ip = &z[0]; // now ip points at the 0th location in array z

*ip = *ip + 1; // (z[0]) is incremented
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Pointer Arithmetic
pointer + number pointer – number

E.g., pointer + 1 adds 1 something to a pointer

char   *p;

char    a;

char    b;

p = &a;

p += 1;

int *p;

int a;

int b;

p = &a;

p += 1;

In each, p now points to b

(Assuming compiler doesn’t 
reorder variables in memory)

Adds 1*sizeof(char) to 
the memory address

Adds 1*sizeof(int) to 
the memory address

Pointer arithmetic 
should be used 

cautiously



Scale Factor
• We have seen that an integer value can be 

added to or subtracted from a pointer 
variable.

int *p1,  *p2 ;
int i,  j;
:
p1  =  p1  +  1 ;
p2  =  p1  +  j ;
p2++ ;
p2  =  p2  – (i + j) ;

• In reality, it is not the integer value which is 
added/subtracted, but rather the scale factor 
times the value.
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Contd.

Data Type Scale Factor = sizeof (data type)

char                     1

int 4

float                     4

double                 8

– If p1 is an integer pointer, then

p1++

will increment the value of p1 by 4.
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Passing Pointers to a Function
• Pointers are often passed to a function as 

arguments.

– Allows data items within the calling program to 
be accessed by the function, altered, and then 
returned to the calling program in altered 
form.
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Pass-by-Reference

void set_x_and_y(int *x,   int *y) {

*x = 1001;

*y = 1002;

}

void f(void) {

int a = 1;

int b = 2;

set_x_and_y( &a,&b);

} 

1

2

a

b

x

y

1001

1002



Example: passing arguments by 
value
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#include  <stdio.h>
int main() {

int a, b;
a = 5 ;   b = 20 ;
swap (a, b) ;
printf (“\n a = %d,  b = %d”, a, b);

}

void   swap  (int x, int y) {
int t ;
t = x ;
x = y ;
y = t ;

}

Output

a = 5, b = 20

x and y swap

a and b do not

swap



Example: passing arguments by 
passing the reference
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#include  <stdio.h>
int main() {

int a, b;
a = 5 ;   b = 20 ;
swap (&a, &b) ;
printf (“\n a = %d,  b = %d”, a, b);

}

void   swap  (int *x, int *y) {
int t ;
t = *x ;
*x = *y ;
*y = t ;

}

Output

a = 20, b = 5

*x and *y swap

*(&a) and *(&b)

swap



scanf Revisited

int x,  y ;

printf (“%d %d %d”,  x, y, x+y) ;

• What about scanf ?

scanf (“%d %d %d”, x, y, x+y) ;

scanf (“%d %d”, &x, &y) ;
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NO

YES



Example: Sort 3 integers

• Three-step algorithm:

1. Read in three integers x, y and z

2. Put smallest in x

• Swap x, y if necessary; then swap x, z if necessary.

3. Put second smallest in y

• Swap y, z if necessary.
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sort3 as a function
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int main() {

int x, y, z ;

………..

scanf (“%d %d %d”, &x, &y, &z) ;

sort3  (&x, &y, &z) ;

………..

}

void   sort3  (int *xp,  int *yp,  int *zp)

{

if  (*xp > *yp)   swap (xp, yp);

if  (*xp > *zp)   swap (xp, zp);

if  (*yp > *zp)   swap (yp, zp);

}

xp/yp/zp

are

pointers



Pointers and Arrays

• When an array is declared,

– The compiler allocates a base address and 
sufficient amount of storage to contain all the 
elements of the array in contiguous memory 
locations.

– The base address is the location of the first 
element (index 0) of the array.

– The compiler also defines the array name as a 
constant pointer to the first element (element 0).
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Note

same

a       &a[0]
a is a pointer only to the first element—not the whole array.

The name of an array is a pointer constant;
it cannot be used as an lvalue.



Example

• Consider the declaration:

int a[5]  =  {1, 2, 3, 4, 5} ;

Type of a is int *

– Suppose that the base address of a is 2500, 
and each integer requires 4 bytes.

Element Value Address

a[0]             1           2500

a[1]             2           2504

a[2]             3           2508

a[3]             4           2512

a[4]             5           2516
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Contd.

x    &a[0]    2500 ;

– p = a; and    p = &a[0]; are equivalent.

– We can access successive values of x by using p++ 
or p-- to move from one element to another.

• Relationship between p and x:
p      =   &a[0]   =   2500

p+1  =   &a[1]   =   2504

p+2  =   &a[2]   =   2508

. . .
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*(p+i) gives the

value of x[i]



Lect 15 P. 33 Winter Quarter

Arrays and Pointers

int a[5] = { 1, 2, 3, 4, 5 } ;

int *p; int i, j;

• Let p = A;

• Then p points to A[0]
p + i points to A[i]
&A[j] == p+j

*(p+j) is the same as A[j]
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Computer Science: A 

Structured Programming 

Approach Using C
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Given pointer, p, p ± n is a pointer to the 

value n elements away.

Note
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FIGURE 10-5 Pointer Arithmetic
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Note

a + n * (sizeof (one element)) 

a + n


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FIGURE 10-6 Pointer Arithmetic and Different Types
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FIGURE 10-7 Dereferencing Array Pointers



Computer Science: A 

Structured Programming 

Approach Using C
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The following expressions are identical.

*(a + n)   and    a[n]

Note
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Arrays and Pointers
Array  pointer to the initial 
(0th) array element

a[i]   *(a+i)

An array is passed to a function 
as a pointer

int foo(int array[ ],  int size) and

int foo(int *array,  int size) are 
identical.

Really int *array

int foo(int array[ ], int size)  {

… array*size - 1+ …

}

int main( )  {

int a[10], b[5];

… 

foo(a, 10)
… 

foo(b, 5) …

}

Must explicitly

pass the size

Passing arrays:
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Arrays and Pointers
int foo(int array[],  int size) {

…

printf(“%d\n”, sizeof(array));

}

int main(void) {

int a[10], b[5];

… 
foo(a, 10)
… 
foo(b, 5) …

printf(“%d\n”, sizeof(a));

}

What does this print?

What does this print?

8

40

... because array is really

a pointer



Example: function to find average
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int main()

{

int x[100], k, n ;

scanf (“%d”, &n) ;

for  (k=0; k<n; k++)

scanf (“%d”, &x[k]) ;

printf (“\nAverage is %f”, 

avg (x, n) );

}

float  avg (int array[ ], int size)

{

int *p, i , sum = 0;

p = array ;

for  (i=0; i<size; i++)

sum = sum + *(p+i);

return  ((float) sum / size);

}

int *array

p[i]


