Pointers
Introduction

What is a pointer?

* Simple variables: An int / float variable is like a box
which can store a single int value such as 42.

num 42

*A pointer does not store a simple value directly.
Instead, a pointer stores a reference to another value.

num 42 >
numPtr | A pointer variable. The current

value is a reference to the

pointee num above.

Introduction

* A pointeris a variable that represents the
location (rather than the value) of a data item.

* A pointer is just another kind of value
* Pointer type declaration:

int *numPtr;
float *fp;

Basic Concept

e Every stored data item occupies one or more
contiguous memory cells depending on its type
(char, int, double, etc.).

* Whenever we declare a variable, the system
allocates memory location(s) to hold the value of

the variable.

* This location has a unique address.

Contd.

e Consider the statement
int xyz =50;

— The compiler will allocate a location for the integer
variable xyz, and put the value 50 in that location.

— Suppose that the address location chosen is 1380.

Xyz variable
50 value
1380 address

Spring 2012 Programming and Data Structure

Contd.

e Suppose we assign the address of xyz to a variable p.
int *p;
p = &xyz;
p is said to point to the variable xyz.
Variable Value Address

XYz 50 1380
P 1380 2545
2545 1380 1380 50

P Xyz

Spring 2012 Programming and Data Structure

Accessing the Address of a Variable

 The address of a variable can be
determined using the ‘&’ operator.

p = &xyz;

 The ‘& operator can be used only with a
simple variable or an array element.

&distance
&x[0]
&x[i-2]

Contd.

* The following usages are illegal:
&235 Pointing at constant.

int arr[20];

&arr Pointing at array name.

&(a+b) Pointing at expression.

Spring 2012 Programming and Data Structure

Example

#include <stdio.h>
int main() {
int a;
float b, c;
double d;
char ch;

a=10; b=2.5; c=12.36; d =12345.66; ch ="‘A’;
printf (“%d is stored in location %u \n”, a, &a);
printf (“%f is stored in location %u \n”, b, &b);
printf (“%f is stored in location %u \n”, ¢, &c);
printf (“%ld is stored in location %u \n”, d, &d);
printf (“%c is stored in location %u \n”, ch, &ch);

Output:

10 is stored in location 3221224908

2.500000 is stored in location 3221224904
12.360000 is stored in location 3221224900
12345.660000 is stored in location 3221224892
A 1s stored In location 3221224891

OO [|T||D

ch

Spring 2012 Programming and Data Structure

10

Pointer Declarations

Pointer variables must be declared before we use
them.

General form:
data_type *pointer _name;

int* ptr_a, ptr_b;
ptr_a is of type pointer to int, ptr_b is an int!

int* ptr_a, *ptr_b;
ptr_a and ptr_b are of type pointer to int.

Contd.

* Once a pointer variable has been declared, it can be
made to point to a variable using an assignment
statement .

int *ip;
float *fp;
int count;

float speed;

ip = &count;
fp = &speed;
— This is called pointer initialization.

Pointer Operations in C

Creation

& variable Returns variable’s memory address
Dereference

* pointer Returns contents stored at address

Indirect assignment
*pointer = val Stores value at address

Assignment
pointer = ptr Stores pointer in another variable

int i1;
int i2;
int *ptrl;
int *ptr2;

il1=1;
i2=2;

ptrl = &il;
ptr2 = ptrl,

*ptrl = 3;
i2 = *ptr2;

Cox

Using Pointers

0x1014
0x1010
0x100C
0x1008
0x1004

0x1000

0x1000 =
ptr2:

0x1000 =
ptrl:
i2: 3
il: 3 ::

Arrays and Pointers

14

Using Pointers (cont.)

int intl =1036; /* some data to pointto */
int int2 =8;

int *int_ptrl = &intl; /* get addresses of data */
int *int_ptr2 = &int2;

*int_ptrl = int_ptr2;

*int_ptrl = fintZ;

\ What happens?

Type check warning: int ptr2 is not an int

intl becomes 8

Cox Arrays and Pointers

15

Using Pointers (cont.)

int intl =1036; /* some data to pointto */
int int2 =8;

int *int_ptrl = &intl; /* get addresses of data */
int *int_ptr2 = &int2;

int_ptrl = *int_ptr2;

int_ptrl = Ent_ptrZ;

\ What happens?

Type check warning: *int ptr2 is not an int *

Changes int ptrl — doesn’t change intl

Cox Arrays and Pointers 16

Example Code

intx=1,y=2,z[10];

int *ip; // ip is a pointer to an int

ip = &X; // ip now points to where x is stored

y = *ip; // sety equal to the value pointed to by
//ip,ory=x

*ip = 0; // change the value that ip points to to

//0, so now x=0, but y is unchanged
ip = &z[0]; // now ip points at the Oth location in array z

*ip = *ip+ 1; // (z[0]) is incremented

Pointer Arithmetic

pointer + number pointer — number
E.g., pointer + 1 adds 1 something to a pointer

char *p; Potter arithmetic int “p;

char a; should be used int a;
cautiously .

char b; int b;

In each, p now pointsto b
p = &a; (Assuming compiler doesn’t p = &a;
p+=1; «— reorder variables in memory) p +=1;

Adds 1*sizeof(char) to Adds 1*sizeof(int) to
the memory address the memory address

Cox Arrays and Pointers

18

Scale Factor

 We have seen that an integer value can be
added to or subtracted from a pointer
variable.
int *pl, *p2;
int i, j;
pl =pl + 1,
P2 = pl + j;
p2++;
P2 = p2 — (i+]));
* Inreality, it is not the integer value which is
added/subtracted, but rather the scale factor
times the value.

Contd.

Data Type Scale Factor = sizeof (data type)

char 1
Int 4
float 4
double 8

— If p1 is an integer pointer, then
pl++
will increment the value of p1 by 4.

Passing Pointers to a Function

* Pointers are often passed to a function as
arguments.

— Allows data items within the calling program to
be accessed by the function, altered, and then
returned to the calling program in altered
form.

Pass-by-Reference

void set_x_and_y(int *x, int *y) {

}

*x =1001;
*y =1002;

void f(void) {

}

inta=1;
intb=2;
set_x_and_y(&a,&b);

Cox

Arrays and Pointers

22

Example: passing arguments by

value

#include <stdio.h>
I3 et a and b do not

int a, b;

a=5; b=20; SWap

swap (a, b) ;

printf (“\na=%d, b=%d”, a, b); Output
}

a=5Db=20

void swap (int x, int y) {

int t;

t=x;

X=Y;

y=t; X and y swap

Spring 2012 Programming and Data Structure

23

Example: passing arguments by
passing the reference

H#include <stdio.h>

int main() {
int a, b;
a=5; b=20;

swap (&a, &b) ;
printf (“\na=%d, b=%d", a, b);
}

void swap (int *x, int *y) {
int t;
t=*x;
X =y

*(&a) and *(&b)
swap
OQutput
a=20,b=5

*Xx and *y swap

scanf Revisited

int X, y;
printf (“%d %d %d”, x, vy, x+y) ;

e What about scanf ?

scanf (“%d %d %d”, x, y, x+y) ; NO

scanf (“%d %d”, &x, &y) ; YES

Example: Sort 3 integers

 Three-step algorithm:
1. Read in three integers x, y and z

2. Put smallest in x
* Swap x, y if necessary; then swap x, z if necessary.

3. Put second smallestiny
 Swapy, z if necessary.

sort3 as a function

int main() {
Int x,vy,z;
scanf (“%d %d %d”, &x, &y, &7) ;
sort3 (&x, &y, &z) ;

void sort3 (int *xp, int *yp, int *zp)
{
if (*xp>*yp) swap (xp, yp);
if (*xp>*zp) swap (Xp, zp);
if (*yp>*zp) swap (yp, zp);
}

Xp/lyp/zp
are
painters

Pointers and Arrays

* When an array is declared,

— The compiler allocates a base address and
sufficient amount of storage to contain all the
elements of the array in contiguous memory
locations.

—T
e
—T

ne base address is the location of the first
ement (index 0) of the array.

ne compiler also defines the array name as a

constant pointer to the first element (element 0).

a[0] +——3Q

a[1]

a[2] The name of an array is a

al 3] pointer constant to its first
element

al 4]

29

Note

same
d C—) &a[O]
a is a pointer only to the first element—not the whole array.

|
I
The name of an array is a pointer constant;
it cannot be used as an lvalue.

30

Example

e Consider the declaration:
int a[5] = {1, 2, 3, 4, 5};
Typeofaisint *

— Suppose that the base address of a is 2500,
and each integer requires 4 bytes.

Element Value Address

a[0] 1 2500
a[1] 2 2504
a[2] 3 2508
a[3] 4 2512
a[4] 5 2516

Contd.

X < &a[0] < 2500;
—pP=a
— We can access successive values of x by using p++

or p-- to move from one element to another.

* Relationship

P
p+1
p+2

and p = &a[0]; are equivalent.

&a[0]
&all

&al2

oetween p and x:

2500
2504
2508

*(p+i) gives the

value of x[i]

Arrays and Pointers

inta[5]={1,2,3,4,5};
int *p; int i, J;
* Let p = A;
* Then ppointstoA[O0]
p + ipointstoA[i]

&A[J] == p+J
* (p+j) isthesameasA[j]

a[0]
a[1]
a[2]
a[3]
a[4]

(|~

22

#include <stdio.h>
int main (void)

{
int al[b] =
int* p =

printf ("%

return 0;
} // main

{2, 4,
a;
zd\n",

6, 8, 22},

al0], *p);

34

a0]
a[1]
al 2]
a[3]
al 4]

::Elp

2
4
|
This é@
a

#include <stdio.h>
int main (void)
{
int al[b] = {2,
int* p;

=

O\O ~ o [I—1

p = &al
printf (
(
("

~

(oN
o — o°

Q_l\

printf
printf

QB

} // maln

4, 6, 8, 22}:
al0], pl-11)
alll, pl0]);

NN

N

35

Note

Given pointer, p, p £ n is a pointer to the
value n elements away.

Computer Science: A
Structured Programming 36
Approach Using C

Q —
a+1——»
a+ 2 —»
a+ 3 —»

a+ 4 —»

Q| || || I

22

<+—p
—p
~+—p
~+—p

<—p

FIGURE 10-5 Pointer Arithmetic

Computer Science: A
Structured Programming
Approach Using C

37

Note

a + n * (sizeof (one element))

Computer Science: A
Structured Programming 38
Approach Using C

a —p 100 o 100 C ——p
a+1—» 101
a+2 —» 102
b+1 —» 104
memory C+1 —>
addresses
b+ 2 =—p 108
C+2 —»
char al3];
int b[3]1;
float c[3];

100

106

112

FIGURE 10-6 Pointer Arithmetic and Different Types

Computer Science: A
Structured Programming 39
Approach Using C

QOIS AV R AV I AV I OV
A~ W =0

or
or
or
or
or

(@a+0
(a+1
(@ + 2
(a+3
(a+4

e T S

2 +— 3
4 —— 3
6 — 3
8 +—— 3
22 —— Q
a

+ + + +

S~ W NN =

FIGURE 10-7 Dereferencing Array Pointers

Computer Science: A
Structured Programming
Approach Using C

40

Note

Computer Science: A
Structured Programming 41
Approach Using C

Arrays and Pointers passing arrays:

Must explicitly
Array = pointer to the initial Really int *array pass the size

(Oth) array element \ /

] int foo(int array1], int size) {
al[i] = *(a+i)

... array|[size - 1] ...
}
An array is passed to a function
as a pointer int main() {
int a[10], b[5];
int foo(int array|[], int size) and

int foo(int *array, int size) are foo(a, 10)
identical.

foo(b, 5) ...

}

Cox Arrays and Pointers 42

Arrays and

Pointers

int foo(int array[], int size) {

printf(“%d\n”, sizeof(array)); «——
}

int main(void) {
int a[10], b[5];

foo(a, 10)

foo(b, 5) ... /
printf(“%d\n”, sizeof(a));

}

What does this print?

| _— 8
... because array is really

a pointer

What does this print?

7w

Cox Arrays and Pointers

43

Example: function to find avergge

Int *array

Int main()

{

int x[100], k, n;
scanf (“%d”, &n) ;

for (k=0; k<n; k++)
scanf (“%d”, &x[K]) ;

printf (“\nAverage is %f”,

avg (x, n));

float avg (intarray[], int size)

{

Int *p,1,sum=0;

p =array , p[|]

for (i=0; i<size; i++) ,;

sum = sum + *(p+i);

return ((float) sum / size);

}

