
Pointers
Introduction

Spring 2012 Programming and Data Structure 1

What is a pointer?

• Simple variables: An int / float variable is like a box
which can store a single int value such as 42.

Spring 2012 Programming and Data Structure 2

42num

•A pointer does not store a simple value directly.
Instead, a pointer stores a reference to another value.

42num

numPtr
A pointer variable. The current

value is a reference to the

pointee num above.

Introduction

• A pointer is a variable that represents the
location (rather than the value) of a data item.

• A pointer is just another kind of value

• Pointer type declaration:

Spring 2012 Programming and Data Structure 3

int *numPtr;

float *fp;

Basic Concept

• Every stored data item occupies one or more
contiguous memory cells depending on its type
(char, int, double, etc.).

• Whenever we declare a variable, the system
allocates memory location(s) to hold the value of
the variable.

• This location has a unique address.

Spring 2012 Programming and Data Structure 4

Contd.

• Consider the statement

int xyz = 50;

– The compiler will allocate a location for the integer
variable xyz, and put the value 50 in that location.

– Suppose that the address location chosen is 1380.

Spring 2012 Programming and Data Structure 5

xyz variable

50 value

1380 address

Contd.
• Suppose we assign the address of xyz to a variable p.

p is said to point to the variable xyz.

Spring 2012 Programming and Data Structure 6

Variable Value Address

xyz 50 1380

p 1380 2545

int *p;
p = &xyz;

501380

xyz

13802545

p

Accessing the Address of a Variable

• The address of a variable can be
determined using the ‘&’ operator.

p = &xyz;

• The ‘&’ operator can be used only with a
simple variable or an array element.

&distance

&x[0]

&x[i-2]

Spring 2012 Programming and Data Structure 7

Contd.

• The following usages are illegal:

&235 Pointing at constant.

int arr[20];

:

&arr Pointing at array name.

&(a+b) Pointing at expression.

Spring 2012 Programming and Data Structure 8

Example

Spring 2012 Programming and Data Structure 9

#include <stdio.h>
int main() {

int a;
float b, c;
double d;
char ch;

a = 10; b = 2.5; c = 12.36; d = 12345.66; ch = ‘A’;
printf (“%d is stored in location %u \n”, a, &a) ;
printf (“%f is stored in location %u \n”, b, &b) ;
printf (“%f is stored in location %u \n”, c, &c) ;
printf (“%ld is stored in location %u \n”, d, &d) ;
printf (“%c is stored in location %u \n”, ch, &ch) ;

}

Spring 2012 Programming and Data Structure 10

Output:

10 is stored in location 3221224908

2.500000 is stored in location 3221224904

12.360000 is stored in location 3221224900

12345.660000 is stored in location 3221224892

A is stored in location 3221224891

a

b

c

d

ch

Pointer Declarations

• Pointer variables must be declared before we use
them.

• General form:
data_type *pointer_name;

int* ptr_a, ptr_b;
ptr_a is of type pointer to int, ptr_b is an int!

int* ptr_a, *ptr_b;
ptr_a and ptr_b are of type pointer to int.

Spring 2012 Programming and Data Structure 11

Contd.

• Once a pointer variable has been declared, it can be
made to point to a variable using an assignment
statement .

int *ip;
float *fp;
int count;
float speed;

:
ip = &count;
fp = &speed;

– This is called pointer initialization.

Spring 2012 Programming and Data Structure 12

Cox Arrays and Pointers 13

Pointer Operations in C

• Creation
& variable Returns variable’s memory address

• Dereference
* pointer Returns contents stored at address

• Indirect assignment
*pointer = val Stores value at address

• Assignment
pointer = ptr Stores pointer in another variable

Cox Arrays and Pointers 14

Using Pointers
int i1;

int i2;

int *ptr1;

int *ptr2;

i1 = 1;

i2 = 2;

ptr1 = &i1;

ptr2 = ptr1;

*ptr1 = 3;

i2 = *ptr2;

ptr2:

i1:

i2:

ptr1:

0x1000

0x1004

0x1008

…

…

0x100C

0x1010

0x1014

1

2

0x1000

0x1000

3

3

Cox Arrays and Pointers 15

Using Pointers (cont.)

Type check warning: int_ptr2 is not an int

int1 becomes 8

int int1 = 1036; /* some data to point to */

int int2 = 8;

int *int_ptr1 = &int1; /* get addresses of data */

int *int_ptr2 = &int2;

*int_ptr1 = int_ptr2;

*int_ptr1 = int2;

What happens?

Cox Arrays and Pointers 16

Using Pointers (cont.)

Type check warning: *int_ptr2 is not an int *

Changes int_ptr1 – doesn’t change int1

int int1 = 1036; /* some data to point to */

int int2 = 8;

int *int_ptr1 = &int1; /* get addresses of data */

int *int_ptr2 = &int2;

int_ptr1 = *int_ptr2;

int_ptr1 = int_ptr2;

What happens?

Example Code
int x = 1, y = 2, z[10];

int *ip; // ip is a pointer to an int

ip = &x; // ip now points to where x is stored

y = *ip; // set y equal to the value pointed to by

// ip, or y = x

*ip = 0; // change the value that ip points to to

//0, so now x=0, but y is unchanged

ip = &z[0]; // now ip points at the 0th location in array z

*ip = *ip + 1; // (z[0]) is incremented

Cox Arrays and Pointers 18

Pointer Arithmetic
pointer + number pointer – number

E.g., pointer + 1 adds 1 something to a pointer

char *p;

char a;

char b;

p = &a;

p += 1;

int *p;

int a;

int b;

p = &a;

p += 1;

In each, p now points to b

(Assuming compiler doesn’t
reorder variables in memory)

Adds 1*sizeof(char) to
the memory address

Adds 1*sizeof(int) to
the memory address

Pointer arithmetic
should be used

cautiously

Scale Factor
• We have seen that an integer value can be

added to or subtracted from a pointer
variable.

int *p1, *p2 ;
int i, j;
:
p1 = p1 + 1 ;
p2 = p1 + j ;
p2++ ;
p2 = p2 – (i + j) ;

• In reality, it is not the integer value which is
added/subtracted, but rather the scale factor
times the value.

Spring 2012 Programming and Data Structure 19

Contd.

Data Type Scale Factor = sizeof (data type)

char 1

int 4

float 4

double 8

– If p1 is an integer pointer, then

p1++

will increment the value of p1 by 4.

Spring 2012 Programming and Data Structure 20

Passing Pointers to a Function
• Pointers are often passed to a function as

arguments.

– Allows data items within the calling program to
be accessed by the function, altered, and then
returned to the calling program in altered
form.

Spring 2012 Programming and Data Structure 21

Cox Arrays and Pointers 22

Pass-by-Reference

void set_x_and_y(int *x, int *y) {

*x = 1001;

*y = 1002;

}

void f(void) {

int a = 1;

int b = 2;

set_x_and_y(&a,&b);

}

1

2

a

b

x

y

1001

1002

Example: passing arguments by
value

Spring 2012 Programming and Data Structure 23

#include <stdio.h>
int main() {

int a, b;
a = 5 ; b = 20 ;
swap (a, b) ;
printf (“\n a = %d, b = %d”, a, b);

}

void swap (int x, int y) {
int t ;
t = x ;
x = y ;
y = t ;

}

Output

a = 5, b = 20

x and y swap

a and b do not

swap

Example: passing arguments by
passing the reference

Spring 2012 Programming and Data Structure 24

#include <stdio.h>
int main() {

int a, b;
a = 5 ; b = 20 ;
swap (&a, &b) ;
printf (“\n a = %d, b = %d”, a, b);

}

void swap (int *x, int *y) {
int t ;
t = *x ;
*x = *y ;
*y = t ;

}

Output

a = 20, b = 5

*x and *y swap

*(&a) and *(&b)

swap

scanf Revisited

int x, y ;

printf (“%d %d %d”, x, y, x+y) ;

• What about scanf ?

scanf (“%d %d %d”, x, y, x+y) ;

scanf (“%d %d”, &x, &y) ;

Spring 2012 Programming and Data Structure 25

NO

YES

Example: Sort 3 integers

• Three-step algorithm:

1. Read in three integers x, y and z

2. Put smallest in x

• Swap x, y if necessary; then swap x, z if necessary.

3. Put second smallest in y

• Swap y, z if necessary.

Spring 2012 Programming and Data Structure 26

sort3 as a function

Spring 2012 Programming and Data Structure 27

int main() {

int x, y, z ;

………..

scanf (“%d %d %d”, &x, &y, &z) ;

sort3 (&x, &y, &z) ;

………..

}

void sort3 (int *xp, int *yp, int *zp)

{

if (*xp > *yp) swap (xp, yp);

if (*xp > *zp) swap (xp, zp);

if (*yp > *zp) swap (yp, zp);

}

xp/yp/zp

are

pointers

Pointers and Arrays

• When an array is declared,

– The compiler allocates a base address and
sufficient amount of storage to contain all the
elements of the array in contiguous memory
locations.

– The base address is the location of the first
element (index 0) of the array.

– The compiler also defines the array name as a
constant pointer to the first element (element 0).

Spring 2012 Programming and Data Structure 28

29

30

Note

same

a &a[0]
a is a pointer only to the first element—not the whole array.

The name of an array is a pointer constant;
it cannot be used as an lvalue.

Example

• Consider the declaration:

int a[5] = {1, 2, 3, 4, 5} ;

Type of a is int *

– Suppose that the base address of a is 2500,
and each integer requires 4 bytes.

Element Value Address

a[0] 1 2500

a[1] 2 2504

a[2] 3 2508

a[3] 4 2512

a[4] 5 2516

Spring 2012 Programming and Data Structure 31

Contd.

x  &a[0]  2500 ;

– p = a; and p = &a[0]; are equivalent.

– We can access successive values of x by using p++
or p-- to move from one element to another.

• Relationship between p and x:
p = &a[0] = 2500

p+1 = &a[1] = 2504

p+2 = &a[2] = 2508

. . .

Spring 2012 Programming and Data Structure 32

*(p+i) gives the

value of x[i]

Lect 15 P. 33 Winter Quarter

Arrays and Pointers

int a[5] = { 1, 2, 3, 4, 5 } ;

int *p; int i, j;

• Let p = A;

• Then p points to A[0]
p + i points to A[i]
&A[j] == p+j

*(p+j) is the same as A[j]

34

35

Computer Science: A

Structured Programming

Approach Using C

36

Given pointer, p, p ± n is a pointer to the

value n elements away.

Note

Computer Science: A

Structured Programming

Approach Using C

37

FIGURE 10-5 Pointer Arithmetic

Computer Science: A

Structured Programming

Approach Using C

38

Note

a + n * (sizeof (one element))

a + n



Computer Science: A

Structured Programming

Approach Using C

39

FIGURE 10-6 Pointer Arithmetic and Different Types

Computer Science: A

Structured Programming

Approach Using C

40

FIGURE 10-7 Dereferencing Array Pointers

Computer Science: A

Structured Programming

Approach Using C

41

The following expressions are identical.

*(a + n) and a[n]

Note

Cox Arrays and Pointers 42

Arrays and Pointers
Array  pointer to the initial
(0th) array element

a[i]  *(a+i)

An array is passed to a function
as a pointer

int foo(int array[], int size) and

int foo(int *array, int size) are
identical.

Really int *array

int foo(int array[], int size) {

… array*size - 1+ …

}

int main() {

int a[10], b[5];

…

foo(a, 10)
…

foo(b, 5) …

}

Must explicitly

pass the size

Passing arrays:

Cox Arrays and Pointers 43

Arrays and Pointers
int foo(int array[], int size) {

…

printf(“%d\n”, sizeof(array));

}

int main(void) {

int a[10], b[5];

…
foo(a, 10)
…
foo(b, 5) …

printf(“%d\n”, sizeof(a));

}

What does this print?

What does this print?

8

40

... because array is really

a pointer

Example: function to find average

Spring 2012 Programming and Data Structure 45

int main()

{

int x[100], k, n ;

scanf (“%d”, &n) ;

for (k=0; k<n; k++)

scanf (“%d”, &x[k]) ;

printf (“\nAverage is %f”,

avg (x, n));

}

float avg (int array[], int size)

{

int *p, i , sum = 0;

p = array ;

for (i=0; i<size; i++)

sum = sum + *(p+i);

return ((float) sum / size);

}

int *array

p[i]

