
Programming and Data Structure

Sudeshna Sarkar

Dept. of Computer Science & Engineering.

Indian Institute of Technology

Kharagpur

16 Jan 2012

Spring Semester 2012 Programming and Data Structure 1

More about scanf and printf

Entering input data :: scanf function

• General syntax:
scanf (control string, arg1, arg2, …, argn);

– “control string refers to a string typically containing
data types of the arguments to be read in;

– the arguments arg1, arg2, … represent pointers to
data items in memory.

Example:

scanf (%d %f %c”, &a, &average, &type);

• The control string consists of individual groups of characters, with one
character group for each input data item.

– ‘%’ sign, followed by a conversion character.

– Commonly used conversion characters:
c single character

d decimal integer

f floating-point number

s string terminated by null character

X hexadecimal integer

– We can also specify the maximum field-width of a
data item, by specifying a number indicating the
field width before the conversion character.

Example: scanf (“%3d %5d”, &a, &b);

scanf: return value

• On success, the function returns the number of
items successfully read. This count can match the
expected number of readings or fewer, even zero, if a
matching failure happens.
In the case of an input failure before any data could
be successfully read, EOF is returned.

Spring Semester 2012 Programming and Data Structure 5

http://www.cplusplus.com/EOF

Writing output data :: printf function

• General syntax:

printf (control string, arg1, arg2, …, argn);

– “control string refers to a string containing
formatting information and data types of the
arguments to be output;

– the arguments arg1, arg2, … represent the
individual output data items.

• The conversion characters are the same as in
scanf.

• Examples:
printf (“The average of %d and %d is %f”, a, b, avg);
printf (“Hello \nGood \nMorning \n”);
printf (“%3d %3d %5d”, a, b, a*b+2);
printf (“%7.2f %5.1f”, x, y);

• Many more options are available:
– Read from the book.
– Practice them in the lab.

• String I/O:
– Will be covered later in the class.

printf: return value

• On success, the total number of characters
written is returned.
On failure, a negative number is returned.

Spring Semester 2012 Programming and Data Structure 8

Shortcuts in Assignments

• Additional assignment operators:

+=, –=, =, /=, % =

a += b is equivalent to a = a + b

a *= (b+10) is equivalent to a = a (b + 10)

and so on.

Spring Semester 2012 Programming and Data Structure 9

Branching: The if Statement

if (expression)

statement;

if (expression) {

Block of statements;

}

The condition to be tested is

any expression enclosed in

parentheses. The expression

is evaluated, and if its value

is non-zero, the statement is

executed.

Branching: if-else Statement

if (expression) {

Block of statements;

}

else {

Block of statements;

}

Control Flow: Looping

while statement
while (expression)

statement

while (i < n) {
printf (“Line no : %d.\n”,i);
i++;

}

expression

statement

(loop body)

F

T

do-while statement

do statement while (expression)

int digit=0;
do

printf(“%d\n”,digit++);
while (digit <= 9) ;

statement

expression
F

T

for Statement

For (init; test; update) statement

test

update

F

T

init

statement

sum=0 ;

term = 1 ;

for (i=1; i<n; i++) {

term = termi ;

sum = sum + term ;

}

Another 2-D Figure

Print the following pattern:

*
* *
* * *
* * * *
* * * * *

Another 2-D Figure

*

* *

* * *

* * * *

* * * * *

#define ROWS 5
....
int row, col;
for (row=1; row<=ROWS; row++) {

for (col=1; col<=row; col++) {
printf(“* ”);

}
printf(“\n”);

}

For - Examples

• Problem 1: Write a for statement that computes the sum of
all odd numbers between 1000 and 2000.

• Problem 2: Write a for statement that computes the sum of
all numbers between 1000 and 10000 that are divisible by 17.

• Problem 3: Print a hollow square of size n.

• Problem 4: Print

* * * * *

* * * *

* * *

* *

*

* * * * *

* *

* *

* *

* * * * *

The comma operator

• We can give several statements separated by commas in
place of “expression1”, “expression2”, and “expression3”.

for (fact=1, i=1; i<=10; i++)

fact = fact i;

for (sum=0, i=1; i<=N, i++)

sum = sum + i i;

for :: Some Observations

• Arithmetic expressions
– Initialization, loop-continuation, and increment can

contain arithmetic expressions.

for (k = x; k <= 4 x y; k += y / x)

• "Increment" may be negative (decrement)
for (digit=9; digit>=0; digit--)

• If loop continuation condition is initially false:

– Body of for structure not performed.

– Control proceeds with statement after for
structure.

Specifying “Infinite Loop”

while (1) {

statements

}

for (; ;)

{

statements

}

do {

statements

} while (1);

The break Statement
• Break out of the loop { }

– can use with

• while

• do while

• for

• switch
– does not work with

• if if else

• Causes immediate exit from a while, do/while, for or switch
structure.

• Program execution continues with the first statement after
the structure.

Common uses of the break statement
Escape early from a loop
Skip the remainder of a switch
structure

An Example
#include <stdio.h>
int main() {

int fact, i;
fact = 1; i = 1;
while (i<10) { /* run loop –break when fact >100*/

fact = fact * i;
if (fact > 100) {

printf ("Factorial of %d above 100", i);
break; /* break out of the while loop */

}
i ++ ;

}
return 0;

}

The continue Statement

• Skips the remaining statements in the body of
a while, for or do/while structure.

– Proceeds with the next iteration of the loop.

• while and do/while

– Loop-continuation test is evaluated immediately
after the continue statement is executed.

• for structure

– update is evaluated, then expression2(condition)
is evaluated.

An Example with “break” & “continue”
fact = 1; i = 1; /* a program segment to calculate 10 !

while (1) {

fact = fact * i;

i ++ ;

if (i<10)

continue; /* not done yet ! Go to loop and
perform next iteration*/

break;

}

Avoid using break or continue

• Use of break or continue is poor program
design

• Try to avoid using them.

Spring Semester 2012 Programming and Data Structure 26

Avoid ‘break’ in loops

Spring Semester 2012 Programming and Data Structure 27

Avoid ‘continue’ in loops

Programming Examples

1. Sum of first N
natural numbers

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

do {

sum = sum + count;

count = count + 1;

} while (count<=N) ;

printf (“Sum = %d\n”, sum) ;

return 0;

}

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

for (count=1;count <= N;count++)

sum = sum + count;

printf (“Sum = %d\n”, sum) ;

return 0;

}

Sum of first N
natural numbers

Example 2:
SUM = 12 + 22 + 32 + N2

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

while (count <= N) {

sum = sum + countcount;

count = count + 1;

}

printf (“Sum = %d\n”, sum) ;

return 0;

}

Example 3:
Computing Factorial

START

READ N

PROD = 1

COUNT = 1

PROD = PROD * COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT PROD

STOP

YESNO

int main () {

int N, count, prod;

scanf (“%d”, &N) ;

prod = 1;

for (count=0;count < N; count++) {

prod =prod*count;

printf (“Factorial = %d\n”, prod) ;

return 0;

}

Example 4: Computing ex series up to N terms

START

READ X, N

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {
float x, term, sum;
int n, count;

scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0;
for (count = 0; count < n; count++) {

sum += term;
term = term * x/count;

}
printf (“%f\n”, sum) ;
return 0;

}

Example 5: Computing ex series up to 4 decimal

places

START

READ X, N

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
TERM < 0.0001? OUTPUT SUM

STOP

YESNO

int main () {
float x, term, sum;
int n, count;

scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0;
for (count = 0; term<0.0001; count++) {

sum += term;
term = x/count;

}
printf (“%f\n”, sum) ;
return 0;

}

Example 6: Test if a number is prime or not

#include <stdio.h>

int main() {

int n;

scanf (“%d”, &n);

}

Example 6: Test if a number is prime or not
int main() {

int n;

scanf (“%d”, &n);

i = 2;

while (i < n) {

if (n % i == 0) {

printf (“%d is not a prime \n”, n);

}

i++;

}

printf (“%d is a prime \n”, n);

return 1;

}

Example 6: Test if a number is prime or not
int main() {

int n, prime = 1;

scanf (“%d”, &n);

i = 2;

while (i < n) {

if (n % i == 0) {

printf (“%d is not a prime \n”, n);

prime = 0;

}

i++;

}

if (prime == 1)

printf (“%d is a prime \n”, n);

return 0;

}

int main() {

int n, prime = 1;

scanf (“%d”, &n);

i = 2;

while (i < n) {

if (n % i == 0) {

prime = 0;

break;

}

i++;

}

if (prime == 1)

printf (“%d is a prime \n”, n);

else printf (“%d is not a prime \n”, n);

return 0;

}

int main() {

int n, prime = 1;

scanf (“%d”, &n);

i = 2;

while (i < n) {

if (n % i == 0) {

printf (“%d is not a prime \n”, n);

return 0;

}

i++;

}

if (prime == 1)

printf (“%d is a prime \n”, n);

return 1;

}

int main() {

int n, prime = 1;

scanf (“%d”, &n);

i = 2;

while ((i < n) && (prime ==1)) {

if (n % i == 0) {

prime = 0;

}

i++;

}

if (prime == 1)

printf (“%d is a prime \n”, n);

else printf (“%d is not a prime \n”, n);

return 0;

}

More efficient – less number of iterations

int main() {
int n, i=2;
scanf (“%d”, &n);
while (i < sqrt(n)) {

if (n % i == 0) {
printf (“%d is not a prime \n”, n);
exit;

}
i = i + 1;

}
printf (“%d is a prime \n”, n);
return 0;

}

Example 7: Find the sum of digits of a number

Example 7: Find the sum of digits of a number

#include <stdio.h>

int main() {

int n, sum=0;

scanf (“%d”, &n);

while (n != 0) {

sum = sum + (n % 10);

n = n / 10;

}

printf (“The sum of digits of the number is %d \n”, sum);

}

CS101 2012.1

float x;
scanf (“%f”, &x);
int numDivs = 0;
while (x > 1) {

x = x / 10;
numDivs = numDivs + 1;

}
printf(“%d\n”,numDivs);

Example 8: Approximating the logarithm

• How many times must we divide a number x by 10 until
the result goes below 1?

Example 9: Computing ln x

• Must use arithmetic operations.

• Estimate the area under f(x) = 1/x from 1 to
x.

• Area approximated by small rectangles.

Riemann Integral

1 x

How many rectangles?

• More the better! Say 1000.

• Total width of rectangles = x - 1.

• Width w of each = (x - 1)/1000

• x coordinate of left side of ith rectangle

1 + (i-1)w.

• Height of ith rectangle = 1/(1+(i-1)w)

Program to compute ln

#define INTERVALS 1000
int main(){

float x, area=0, w;
int i;
scanf (“%f”, &x) ;
w = (x-1)/INTERVAL;
for(i=1 ; i <= INTERVAL ; i=i+1){

area = area + w*(1/(1+(i-1)*w);
}
printf (“ln %f = %f\n”, x, area) ;
return 0;

}

Program to compute ln

#define INTERVALS 1000
int main(){

float x, area=0, w;
int i;
scanf (“%f”, &x) ;
w = (x-1)/INTERVAL;
for(i=1 ; i <= INTERVAL ; i=i++){

area = w/(1 + iw) ;
}
printf (“ln %f = %f\n”, x, area) ;
return 0;

}

Example 10: Decimal to binary conversion

int dec;

scanf (“%d”, &dec);

do

{

printf (“%2d”, (dec % 2));

dec = dec / 2;

} while (dec != 0);

printf (“\n”);

Example 11:
Compute greatest common divisor (GCD) of two numbers

12) 45 (3

36

9) 12 (1

9

3) 9 (3

9

0

The standard gcd algorithm is based on
successive Euclidean division.

Let us try to render it as a sequence of
repetitive computations.

For the sake of simplicity, we assume that
whenever we write gcd(a,b) we mean
a>=b.

[Euclidean gcd theorem]
• Let a, b be positive integers and

r = a % b. Then gcd(a,b) = gcd(b,r).

• If a is an integral multiple of b, we have
r=0, and so by the theorem
gcd(a,b)=gcd(b,0)=b.

GCD algorithm

As long as b is not equal to 0 do the following:
Compute the remainder r = a rem b.
Replace a by b and b by r.

Report a as the desired gcd.

if (a > b) {

temp = a; a = b; b = temp;

}

while (b != 0) {

rem = a % b;

a = b;

b = rem;

}

Example 11: Compute GCD of two numbers

#include <stdio.h>

int main() {

int a, b, rem, temp;

scanf (%d %d”, &a, &b);

if (a > b) {

temp = a; a = b; b = temp;

}

while (b != 0) {

rem = a % b;

a = b;

b = rem;

}

printf (“The GCD is %d”, a);

}

12) 45 (3

36

9) 12 (1

9

3) 9 (3

9

0
Initial: A=12, B=45

Iteration 1: temp=9, B=12,A=9

Iteration 2: temp=3, B=9, A=3

B % A = 0 GCD is 3

Exercise 1

sin() takes a value in radians and returns the sin of it. Use the sin
function to plot a sin wave vertically using stars (it should look
something like this):

*
*

*
*

*
*

*
*

*
*
*

*
*

Hint: Obviously, sin returns a number between -1 and 1. Convert this to a
number between 0 and 60 and print that many spaces before printing the
* then print a '\n'

[sudeshna@facweb temp]$./a.out
*

*
*

*
*

*
*

*
*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*
*
*

*
*

*
*

*
*

[sudeshna@facweb temp]$

Exercise 2

Write a C program to compute the following
series:

x - x^2/(2*1) + 2*x^3/(3*2*1) -
3*x^4/(4*3*2*1) +

The value of x will be read from the user. The
sum is to be computed over 10 terms. Print
the partial sums as well as the final sum.

Exercise 3

It is known that the harmonic number Hn converges
to k + ln n as n tends to infinity.

Here ln is the natural logarithm and k is a constant
known as Euler's constant. In this exercise you are
asked to compute an approximate value for
Euler's constant.

Generate the values of Hn and ln n successively for
n=1,2,3,..., and compute the difference kn = Hn -
ln n. Stop when kn-kn-1 is less than a specific error
bound (say 10-8).

Exercise 4

Write a C program that takes as input a number
and computes and prints the following:

1. the sum of the digits of the number

2. the number reversed

3. the sum of the original number and the
reversed number

Exercise 5

Write a program that find can find the roots of a mathematical
function using the bisection method. Assume that the
function has exactly one root in that interval.

The bisection method works as follows:

Check the value of the function at the middle of the interval: if it
is positive, replace the left endpoint with the middle point; if
it is negative, replace the right endpoint with the middle
point. This halves the size of the interval. Stay in a loop doing
this until the interval size is less than epsilon. The interval end
points (xleft and xright) and the tolerance for the
approximation (epsilon) are entered by the user.

For this lab, consider finding the root of the function
p(x) = 5 x3 - 2 x - 2
over the interval [0,2] using epsilon = 0.0001.
Also print the number of iterations required for this value of
epsilon. Print out all function evaluations to trace the

Bisection Method

Check the value of the function at the middle of the interval.

if it is positive,

replace the left endpoint with the middle point;

if it is negative, replace the right endpoint with the middle point.

Stay in a loop doing this until the interval size is less than
epsilon. The interval end points (xleft and xright) and the
tolerance for the approximation (epsilon) are entered by the
user.

