
Programming and Data Structure

Sudeshna Sarkar

Dept. of Computer Science & Engineering.

Indian Institute of Technology

Kharagpur

13 Jan 2012

Spring Semester 2012 Programming and Data Structure 1

Assignment Statement
• Used to assign values to variables, using the

assignment operator (=).
• General syntax:

variable_name = expression;
type variable_name = expression;

• Examples:
int velocity = 20;
b = 15; temp = 12.5;
A = A + 10;
v = u + f t;
s = u t + 0.5 f t t;

Spring Semester 2012 Programming and Data Structure 2

lvalue and assignment operator

• Requires an lvalue as its left operand.

• l-value: represents an object stored in memory, which is
neither a constant nor a result of computation.

• So a variable can be an lvalue, but neither any expressions nor
any constant.

12 = i ; // WRONG

i + j = 0 ; // WRONG

i = j ; // WRONG

i++ = j ; // WRONG

X+10 = Y2; // WRONG

Spring Semester 2012 Programming and Data Structure 3

type identifier = expression ;

CS101 2012.1

Assigning values to variables

• Lhs = rhs

• Rhs is an expression compatible with the type of the lhs
centigrade = 5*(fahrenheit – 32)/9;

• Assignment statement has value = rhs

• A value can be assigned to a variable at the time the variable
is declared.

int speed = 30;

char flag = ‘y’;

Contd.

• Several variables can be assigned the same
value using multiple assignment operators.

a = b = c = 5;

flag1 = flag2 = ‘y’;

speed = flow = 0.0;

Spring Semester 2012 Programming and Data Structure 5

CS101 2012.1

Example: swapping two numbers

float x = 5, y = 11;
float temporary ;
temporary = x;
x = y;
y = temporary;

x y temporary

5 11

5 11 5

11 11 5

11 5 5

Can you swap

without using a

temporary

variable?

Operators in Expressions

Spring Semester 2012 Programming and Data Structure 7

Operators

Arithmetic

Operators

Relational

Operators

Logical

Operators

Arithmetic Operators

• Addition :: +

• Subtraction :: –

• Division :: /

• Multiplication :: *

• Modulus :: %

Spring Semester 2012 Programming and Data Structure 8

Examples

Spring Semester 2012 Programming and Data Structure 9

distance = rate time ;

netIncome = income tax ;

speed = distance / time ;

area = PI radius radius;

y = a x x + b x + c;

quotient = dividend / divisor;

remain =dividend % divisor;

Contd.

• Suppose x and y are two integer variables,
whose values are 13 and 5 respectively.

Spring Semester 2012 Programming and Data Structure 10

x + y 18

x – y 8

x y 65

x / y 2

x % y 3

Operator Precedence

• In decreasing order of priority
1. Parentheses :: ()

2. Unary minus :: –5

3. Multiplication, Division, and Modulus

4. Addition and Subtraction

• For operators of the same priority, evaluation
is from left to right as they appear.

• Parenthesis may be used to change the
precedence of operator evaluation.

Spring Semester 2012 Programming and Data Structure 11

Examples: Arithmetic expressions

a + b c – d / e a + (b c) – (d / e)

a – b + d % e – f a (– b) + (d % e) – f

a – b + c + d (((a – b) + c) + d)

x y z ((x y) z)

a + b + c d e (a + b) + ((c d) e)

Spring Semester 2012 Programming and Data Structure 12

Integer Arithmetic

• When the operands in an arithmetic
expression are integers, the expression is
called integer expression, and the operation is
called integer arithmetic.

• Integer arithmetic always yields integer
values.

Spring Semester 2012 Programming and Data Structure 13

Real Arithmetic

• Arithmetic operations involving only real or
floating-point operands.

• Since floating-point values are rounded to the
number of significant digits permissible, the final
value is an approximation of the final result.

1.0 / 3.0 * 3.0 will have the value 0.99999 and not 1.0

• The modulus operator cannot be used with real
operands.

Spring Semester 2012 Programming and Data Structure 14

Mixed-mode Arithmetic

• When one of the operands is integer and the
other is real, the expression is called a mixed-
mode arithmetic expression.

• If either operand is of the real type, then only
real arithmetic is performed, and the result is
a real number.

25 / 10 2

25 / 10.0 2.5

• Some more issues will be considered later.

Spring Semester 2012 Programming and Data Structure 15

• Mixing types may result in precision loss,
overflow, underflow and ability to process full
range.

Spring Semester 2012 Programming and Data Structure 16

Problem of value assignment

• Assignment operation

variable= expression_value;

or

variable1 = variable2;

Data type of the RHS should be compatible

with that of LHS.

If a floating point number is assigned to an integer
variable, there will be truncation, may lead to loss.

Spring Semester 2012 Programming and Data Structure 17

Type Casting

int a=10, b=4, c;

float x, y;

c = a / b;

x = a / b;

y = (float) a / b;

The value of c will be 2

The value of x will be 2.0

The value of y will be 2.5

Type Casting

Spring Semester 2012 Programming and Data Structure 19

int x;
float r=3.0;

x= (int)(2*r);

Type casting of a floating
point expression to an integer
variable.

double perimeter;
float pi=3.14;
int r=3;

perimeter=2.0* (double) pi * (double) r;

Type casting
to double

Relational Operators

• Used to compare two quantities.

Spring Semester 2012 Programming and Data Structure 20

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to

Examples

10 > 20 is false

25 < 35.5 is true

12 > (7 + 5) is false

• When arithmetic expressions are used on either side
of a relational operator, the arithmetic expressions
will be evaluated first and then the results compared.

a + b > c – d is the same as (a+b) > (c+d)

Spring Semester 2012 Programming and Data Structure 21

Examples

• Sample code segment in C

if (x > y)

printf (“%d is larger\n”, x);

else

printf (“%d is larger\n”, y);

Spring Semester 2012 Programming and Data Structure 22

Logical Operators

• There are two logical operators in C (also
called logical connectives).

&& Logical AND

|| Logical OR

– They act upon operands that are themselves
logical expressions.

– The individual logical expressions get combined
into more complex conditions that are true or
false.

Spring Semester 2012 Programming and Data Structure 23

– Logical AND

• Result is true if both the operands are true.

– Logical OR

• Result is true if at least one of the operands are true.

Spring Semester 2012 Programming and Data Structure 24

X Y X && Y X | | Y

FALSE FALSE FALSE FALSE

FALSE TRUE FALSE TRUE

TRUE FALSE FALSE TRUE

TRUE TRUE TRUE TRUE

Input / Output

• printf
– Performs output to the standard output device

(typically defined to be the screen).

– It requires a format string in which we can specify:
• The text to be printed out.
• Specifications on how to print the values.

printf ("The number is %d.\n", num) ;
• The format specification %d causes the value listed after the

format string to be embedded in the output as a decimal
number in place of %d.

• Output will appear as: The number is 125.

Spring Semester 2012 Programming and Data Structure 25

Input

• scanf
– Performs input from the standard input device, which is

the keyboard by default.

– It requires a format string and a list of variables into which
the value received from the input device will be stored.

– It is required to put an ampersand (&) before the names of
the variables.

scanf ("%d", &size) ;

scanf ("%c", &nextchar) ;

scanf ("%f", &length) ;

scanf (“%d %d”, &a, &b);

Spring Semester 2012 Programming and Data Structure 26

Control Statements

Spring Semester 2012 Programming and Data Structure 27

What do they do?

• Allow different sets of instructions to be executed
depending on the outcome of a logical test,

whether TRUE or FALSE.

– This is called branching.

• Some applications may also require that a set of
instructions be executed repeatedly, possibly again
based on some condition.

– This is called looping.

Spring Semester 2012 Programming and Data Structure 28

How do we specify the conditions?

• Using relational operators.

– Four relation operators: <, <=, >, >=

– Two equality operations: ==, !=

• Using logical operators / connectives.

– Two logical connectives: &&, ||

– Unary negation operator: !

Spring Semester 2012 Programming and Data Structure 29

Examples

count <= 100

(math+phys+chem)/3 >= 60

(sex==‘M’) && (age>=21)

(marks>=80) && (marks<90)

(balance>5000) | | (no_of_trans>25)

! (grade==‘A’)

! ((x>20) && (y<16))

Spring Semester 2012 Programming and Data Structure 30

The conditions evaluate to …

• Zero

– Indicates FALSE.

• Non-zero

– Indicates TRUE.

– Typically the condition TRUE is represented by the
value ‘1’.

Spring Semester 2012 Programming and Data Structure 31

Branching: The if Statement

if (expression)

statement;

if (expression) {

Block of statements;

}

The condition to be tested is

any expression enclosed in

parentheses. The expression

is evaluated, and if its value

is non-zero, the statement is

executed.

Branching: if-else Statement

if (expression) {

Block of statements;

}

else {

Block of statements;

}

Nesting of if-else Structures

• It is possible to nest if-else statements, one
within another.

• All if statements may not be having the “else”
part.

• Rule to be remembered:

– An “else” clause is associated with the closest
preceding unmatched “if”.

Spring Semester 2012 Programming and Data Structure 34

Dangling else problem
if (exp1) if (exp2) stmta else stmtb

if (exp1)

if (exp2)

stmta

else

stmtb

OR

if (exp1)

if (exp2)

stmta

else

stmtb

?

Which one is the correct interpretation?

Dangling else problem
if (exp1) if (exp2) stmta else stmtb

if (exp1)

if (exp2)

stmta

else

stmtb

if (exp1)

if (exp2)

stmta

else

stmtb

Which one is the correct interpretation?

if e1 s1

else if e2 s2

if e1 s1

else if e2 s2

else s3

if e1 if e2 s1

else s2

else s3

if e1 if e2 s1

else s2

Spring Semester 2012 Programming and Data Structure 37

?

if e1 s1 if e1 s1

else if e2 s2 else if e2 s2

if e1 s1 if e1 s1

else if e2 s2 else if e2 s2

else s3 else s3

if e1 if e2 s1 if e1 if e2 s1

else s2 else s2

else s3 else s3

if e1 if e2 s1 if e1 if e2 s1

else s2 else s2

int main() {

int a,b,c;

scanf (“%d %d %d”, &a, &b, &c);

if (a>=b)

if (a>=c)

printf (“\n The largest number is: %d”, a);

else printf (“\n The largest number is: %d”, c);

else

if (b>=c)

printf (“\n The largest number is: %d”, b);

else printf (“\n The largest number is: %d”, c);

return 0;

}

Spring Semester 2012 Programming and Data Structure 40

int main()

{

int a,b,c;

scanf (“%d %d %d”, &a, &b, &c);

if ((a>=b) && (a>=c))

printf (“\n The largest number is: %d”, a);

else

if (b>c)

printf (“\n The largest number is: %d”, b);

else

printf (“\n The largest number is: %d”, c);

}

Spring Semester 2012 Programming and Data Structure 41

int main () {

int marks;

scanf (“%d”, & marks) ;

if (marks>= 80) {

printf (“A”) ;
printf (“Good Job!”) ;

}

else

if (marks >= 60)

printf (“B”) ;

else

if (marks >=60)

printf (“C”) ;

else {

printf (“Failed”) ;

printf (“Study hard for the supplementary”) ;

}

printf (“\nEnd\n”) ;

}

Confusing Equality (==) and Assignment (=) Operators

• Dangerous error
– Does not ordinarily cause syntax errors.

– Any expression that produces a value can be used in
control structures.

– Nonzero values are true, zero values are false.

• Example:
if (marks == 100)

printf ("You have aced!\n");

if (marks = 100)
printf("You have aced!\n"); WRONG

Generalization of expression evaluation in C

• Assignment (=) operation is also a part of

expression.

Spring Semester 2012 Programming and Data Structure 44

i=3;
Returns the value 3

after assigning it to i.

int i=4, j ;

If (i=3)

j=0;

else

j=1;

Generalization of expression evaluation in C

Spring Semester 2012 Programming and Data Structure 45

Returns the value 3
after assigning it to i.

int i=4, j ;

If (i=3)

j = 0;

else

j = 1;

Whatever be the value of i,
j is always 0.

int i=4, j ;

If (i==3)

j = 0;

else

j = 1; j=1

Increment (++) and Decrement (--)

• Both of these are unary operators; they operate on
a single operand.

• The increment operator causes its operand to be
increased by 1.

– Example: a++, ++count

• The decrement operator causes its operand to be
decreased by 1.

– Example: i--, --distance

Prefix and postfix operator

• Operator written before the operand (++i, --i))

– Called pre-increment operator.

– Operator will be altered in value before it is
utilized for its intended purpose in the program.

• Operator written after the operand (i++, i--)

– Called post-increment operator.

– Operator will be altered in value after it is utilized
for its intended purpose in the program.

Examples

Initial values :: a = 10; b = 20;

x = 50 + ++a; a = 11, x = 61

x = 50 + a++; x = 60, a = 11

x = a++ + --b; b = 19, x = 29, a = 11

x = a++ – ++a; Undefined value (implementation

dependent)

Ternary conditional operator (?:)

– Takes three arguments (condition, value if true,
value if false)

– Returns the evaluated value accordingly.

Spring Semester 2012 Programming and Data Structure 49

grade >= 60 ? printf(“Passed\n”) : printf(“Failed\n”);

interest = (balance>5000) ? balance*0.2 : balance*0.1;

x = ((a>10) && (b<5)) ? a+b : 0;

(expr1)? (expr2) : (expr3);

The switch Statement
• This causes a particular group of statements to be

chosen from several available groups.
– Uses “switch” statement and “case” labels.
– Syntax of the “switch” statement:

switch (expression) {
case expression-1: { …….. }
case expression-2: { …….. }

case expression-m: { …….. }
default: { ……… }

}
where “expression” evaluates to int or char

Spring Semester 2012 Programming and Data Structure 50

The switch Multiple-Selection Structure

Spring Semester 2012 Programming and Data Structure 51

true

false

.

.

.

case a case a action(s) break

case b case b action(s) break

false

false

case z case z action(s) break

true

true

default action(s)

Examples

switch (letter) {

case 'A':

printf ("First letter \n");

break;

case 'Z':

printf ("Last letter \n");

break;

default :

printf ("Middle letter \n");

break;

}

Examples

switch (choice = getchar()) {

case „r‟ :

case „R‟: printf(“Red”);

break;

case „b‟ :

case „B‟ : printf(“Blue”);

break;

case „g‟ :

case „G‟: printf(“Green”);

break;

default: printf(“Black”);

}

switch (digit) {

case 0:

case 1:

case 2:

case 3:

case 4: printf (“Round down\n”);

break;

case 5:

case 6:

case 7:

case 8:

case 9:printf(“Round up\n”);

}

int main () {

int operand1, operand2;

int result = 0;

char operation ;

/* Get the input values */

printf (“Enter operand1 :”);

scanf(“%d”,&operand1) ;

printf (“Enter operation :”);

scanf (“\n%c”,&operation);

printf (“Enter operand 2 :”);

scanf (“%d”, &operand2);

switch (operation) {

case „+‟ :

result = operand1+operand2;

break;

case „-‟ :

result = operand1-operand2;

break;

case „*‟ :

result = operand1*operand2;

break;

case „/‟ :

if (operand2 !=0)

result=operand1/operand2;

else printf(“Divide by 0 error”);

break;

default:

printf (“Invalid operation\n”);

}

printf (“The answer is %d\n”,result);

}

The break Statement

• Used to exit from a switch or terminate from a
loop.

– Already illustrated in the switch examples.

• With respect to “switch”, the “break”
statement causes a transfer of control out of
the entire “switch” statement, to the first
statement following the “switch” statement.

Spring Semester 2012 Programming and Data Structure 57

Control Flow: Looping

Types of Repeated Execution
• Loop: Group of instructions that are executed

repeatedly while some condition remains true.

• How loops are controlled?

By testing a condition

– The condition may correspond to setting up a counter
and checking its value

– The condition may involve testing for a sentinel value

– Or any general expression to be tested

Counter Controlled Loop

Read 5 integers

and display the

value of their

summation.

counter ← 1, sum ← 0

counter < 6

sum ← sum + n

false

true

counter++

output sum

input n

Given an exam marks as input, display the
appropriate message based on the rules below:

 If marks is greater than 49, display “PASS”, otherwise
display “FAIL”

 However, for input outside the 0-100 range, display
“WRONG INPUT” and prompt the user to input again
until a valid input is entered

Condition-controlled Loop

Condition-Controlled Loop

false

true

input m

m<0 || m>100

m>49 “PASS”

“FAIL”

true

false

“WRONG INPUT”

Condition-controlled

loop with its condition

being tested at the end

false

true

input m

m<0 || m>100

m>49 “PASS”

“FAIL”

true

false

“WRONG INPUT”

input m

Condition-controlled

loop with its

condition being

tested first

Sentinel-Controlled Loop

• Receive a number of positive
integers and display the
summation and average of
these integers.

• A negative or zero input
indicates the end of input
process

Input: A set of integers

ending with a

negative integer or a zero

Output: Summation and

Average of these integers

• Input Example:

30 16 42 -9

• Output Example:

Sum = 88

Average = 29.33

Sentinel

Value

while loop
while (expression)

statement

while (i < n) {

printf (“Line no : %d.\n”,i);

i++;

}

expression

statement

(loop body)

F

T

while Statement

• The “while” statement is used to carry out looping operations,
in which a group of statements is executed repeatedly, as long
as some condition remains satisfied.

while (condition)

statement_to_repeat;

while (condition) {

statement_1;

...

statement_N;

}Note:

The while-loop will not be entered if the loop-

control expression evaluates to false (zero) even

before the first iteration.

break can be used to come out of the while loop.

while :: Examples

int weight;

while (weight > 65) {

printf ("Go, exercise, ");

printf ("then come back. \n");

printf ("Enter your weight: ");

scanf ("%d", &weight);

}

Sum of first N natural numbers

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

while (count <= N) {

sum = sum + count;

count = count + 1;

}

printf (“Sum = %d\n”,

sum) ;

return 0;

}

Double your money
• Suppose your Rs 10000 is earning interest at 1% per

month. How many months until you double your money ?

my_money=10000.0;

n=0;

while (my_money < 20000.0) {

my_money = my_money*1.01;

n++;

}

printf (“My money will double in %d months.\n”,n);

Maximum of inputs

printf (“Enter positive numbers to max, end with a negative number\n”);

max = 0.0;

count = 0;

scanf(“%f”, &next);

while (next >= 0) {

if (next > max)

max = next;

count++;

scanf(“%f”, &next);

}

printf (“The maximum number is %f\n”, max) ;

Printing a 2-D Figure
• How would you print the following diagram?

* * * * *

* * * * *

* * * * *repeat 3 times

print a row of 5 stars
repeat 5 times

print

Nested Loops

#define ROWS 3

#define COLS 5

...

row=1;

while (row <= ROWS) {

/* print a row of 5 *’s */

...

row++;

}

row=1;

while (row <= ROWS) {

/* print a row of 5 *’s */

col=1;

while (col <= COLS) {

printf (“* “);

col++;

}

printf(“\n”);

row++;

}

outer

loop

inner

loop

while Loop Pitfall - 1

Infinite Loops
Both loops will not

terminate because the

boolean expressions

will never become

false.

int count = 1;

while (count != 10) {

count = count + 2;

}

2

int product = 0;

while (product < 500000) {

product = product * 5;

}

1

while Loop Pitfall - 2

Goal: Execute the loop body 10 times.

count = 1;

while (count < 10) {

. . .

count++;

}

1

count = 0;

while (count < 10) {

. . .

count++;

}

3

count = 1;

while (count <= 10) {

. . .

count++;

}

2

count = 0;

while (count < 10) {

. . .

count++;

}

4

1 3and exhibit off-by-one error.

do-while statement

do statement while (expression)

main () {

int digit=0;

do

printf(“%d\n”,digit++);

while (digit <= 9) ;

}

statement

expression
F

T

Example for do-while

Usage: Prompt user to input “month” value, keep prompting until a correct
value of moth is input.

do {

printf (“Please input month {1-12}”);

scanf (“%d”, &month);

} while ((month < 1) || (month > 12));

int main () {

char echo ;

do {

scanf (“%c”, &echo);

printf (“%c”,echo);

} while (echo != ‘\n’) ;

}

• The “for” statement is the most commonly used
looping structure in C.

• General syntax:

for (expr1; expr2; expr3) statement

expr1 (init) : initialize parameters

expr2 (test): test condition, loop continues if satisfied

expr3 (update): used to alter the value of the parameters after
each iteration

statement (body): body of the loop

for Statement

for (expression1; expression2; expression3)
statement

expr1;

while (expr2) {

statement

expr3;

}

expr1

(init)

expr2

(test)

statement

(body)

expr3

(update)

F

T

Sum of first N natural numbers

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

while (count <= N) {

sum = sum + count;

count = count + 1;

}

printf (“Sum = %d\n”, sum) ;

return 0;

}

Sum of first N natural numbers

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

while (count <= N) {

sum = sum + count;

count = count + 1;

}

printf (“Sum = %d\n”, sum) ;

return 0;

}

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

for (count=1; count <= N; count++)

sum = sum + count;

printf (“Sum = %d\n”, sum) ;

return 0;

}

2-D Figure
Print

* * * * *

* * * * *

* * * * *

#define ROWS 3

#define COLS 5

....

for (row=1; row<=ROWS; row++) {

for (col=1; col<=COLS; col++) {

printf(“*”);

}

printf(“\n”);

}

Another 2-D Figure
Print

*

* *

* * *

* * * *

* * * * *

#define ROWS 5

....

int row, col;

for (row=1; row<=ROWS; row++) {

for (col=1; col<=row; col++) {

printf(“* ”);

}

printf(“\n”);

}

For - Examples

• Problem 1: Write a For statement that computes the sum of
all odd numbers between 1000 and 2000.

• Problem 2: Write a For statement that computes the sum of
all numbers between 1000 and 10000 that are divisible by 17.

• Problem 3: Printing square problem but this time make the
square hollow.

• Problem 4: Print
* * * * *

* * * *

* * *

* *

*

Problem 4 : solution
Print

* * * * *

* * * *

* * *

* *

*

#define ROWS 5

....

int row, col;

for (row=0; row<ROWS; row++) {

for (col=1; col<=row; col++)

printf(" ");

for (col=1; col<=ROWS-row; col++)

printf("* ");

printf ("\n");

}

The comma operator
• We can give several statements separated by commas in

place of “expression1”, “expression2”, and “expression3”.

for (fact=1, i=1; i<=10; i++)

fact = fact * i;

for (sum=0, i=1; i<=N, i++)

sum = sum + i * i;

for :: Some Observations

• Arithmetic expressions
– Initialization, loop-continuation, and increment can

contain arithmetic expressions.

for (k = x; k <= 4 * x * y; k += y / x)

• "Increment" may be negative (decrement)
for (digit=9; digit>=0; digit--)

• If loop continuation condition initially false:

– Body of for structure not performed.

– Control proceeds with statement after for
structure.

Specifying “Infinite Loop”
while (1) {

statements

}

for (; ;)

{

statements

}

do {

statements

} while (1);

The break Statement
• Break out of the loop { }

– can use with

• while

• do while

• for

• switch
– does not work with

• if

• else

• Causes immediate exit from a while, do/while, for or switch structure.

• Program execution continues with the first statement after the structure.

An Example
#include <stdio.h>
int main() {

int fact, i;

fact = 1; i = 1;

while (i<10) { /* run loop –break when fact >100*/
fact = fact * i;
if (fact > 100) {

printf ("Factorial of %d above 100", i);
break; /* break out of the while loop */

}
i ++ ;

}
}

The continue Statement

• Skips the remaining statements in the body of
a while, for or do/while structure.

– Proceeds with the next iteration of the loop.

• while and do/while

– Loop-continuation test is evaluated immediately
after the continue statement is executed.

• for structure

– expression3 is evaluated, then expression2 is
evaluated.

An Example with “break” & “continue”
fact = 1; i = 1; /* a program segment to calculate 10 !

while (1) {

fact = fact * i;

i ++ ;

if (i<10)

continue; /* not done yet ! Go to loop and
perform next iteration*/

break;

}

Some Examples

Sum of first N natural numbers

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

do {

sum = sum + count;

count = count + 1;

} while (count<=N) ;

printf (“Sum = %d\n”, sum) ;

return 0;

}

Sum of first N natural numbers

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

for (count=1;count <= N;count++) {

sum = sum + count;

printf (“Sum = %d\n”, sum) ;

return 0;

}

Example 5: SUM = 12 + 22 + 32 + N2

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {

int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

while (count <= N) {

sum = sum + countcount;

count = count + 1;

}

printf (“Sum = %d\n”, sum) ;

return 0;

}

Example: Computing Factorial

START

READ N

PROD = 1

COUNT = 1

PROD = PROD * COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT PROD

STOP

YESNO

int main () {

int N, count, prod;

scanf (“%d”, &N) ;

prod = 1;

for (count=0;count < N; count++) {

prod =prod*count;

printf (“Factorial = %d\n”, prod) ;

return 0;

}

Example: Computing ex series up to N terms

START

READ X, N

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {
float x, term, sum;
int n, count;
scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0;
for (count = 0; count < n; count++) {

sum += term;
term = x/count;

}
printf (“%f\n”, sum) ;

}

Example 8: Computing ex series up to 4 decimal places

START

READ X, N

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
TERM < 0.0001? OUTPUT SUM

STOP

YESNO

int main () {
float x, term, sum;
int n, count;
scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0;
for (count = 0; term<0.0001; count++) {

sum += term;
term = x/count;

}
printf (“%f\n”, sum) ;

}

Example 1: Test if a number is prime or not

#include <stdio.h>
int main() {

int n;
scanf (“%d”, &n);
i = 2;
while (i < n) {

if (n % i == 0) {
printf (“%d is not a prime \n”, n);
exit;

}
i++;

}
printf (“%d is a prime \n”, n);

}

More efficient??
#include <stdio.h>
int main()
{

int n, i=3;
scanf (“%d”, &n);
if (n%2 == 0) {

printf (“%d is not a prime \n”, n);
exit;

}
while (i < sqrt(n)) {

if (n % i == 0) {
printf (“%d is not a prime \n”, n);
exit;

}
i = i + 1;

}
printf (“%d is a prime \n”, n);

}

Example 2: Find the sum of digits of a number

#include <stdio.h>

int main() {

int n, sum=0;

scanf (“%d”, &n);

while (n != 0) {

sum = sum + (n % 10);

n = n / 10;

}

printf (“The sum of digits of the number is %d \n”, sum);

}

Example 3: Decimal to binary conversion

#include <stdio.h>

int main()

{

int dec;

scanf (“%d”, &dec);

do

{

printf (“%2d”, (dec % 2));

dec = dec / 2;

} while (dec != 0);

printf (“\n”);

}

Example 4:
Compute greatest common divisor (GCD) of two numbers

12) 45 (3

36

9) 12 (1

9

3) 9 (3

9

0

The standard gcd algorithm is based on
successive Euclidean division.

Let us try to render it as a sequence of
repetitive computations.

For the sake of simplicity, we assume that
whenever we write gcd(a,b) we mean
a>=b.

[Euclidean gcd theorem]
• Let a, b be positive integers and

r = a % b. Then gcd(a,b) = gcd(b,r).

• If a is an integral multiple of b, we have
r=0, and so by the theorem
gcd(a,b)=gcd(b,0)=b.

GCD algorithm

As long as b is not equal to 0 do the following:
Compute the remainder r = a rem b.
Replace a by b and b by r.

Report a as the desired gcd.

if (a > b) {

temp = a; a = b; b = temp;

}

while (b != 0) {

rem = a % b;

a = b;

b = rem;

}

Example 4: Compute GCD of two numbers

#include <stdio.h>

int main() {

int a, b, rem, temp;

scanf (%d %d”, &a, &b);

if (a > b) {

temp = a; a = b; b = temp;

}

while (b != 0) {

rem = a % b;

a = b;

b = rem;

}

printf (“The GCD is %d”, a);

}

12) 45 (3

36

9) 12 (1

9

3) 9 (3

9

0
Initial: A=12, B=45

Iteration 1: temp=9, B=12,A=9

Iteration 2: temp=3, B=9, A=3

B % A = 0 GCD is 3

More about scanf and printf

Entering input data :: scanf function

• General syntax:
scanf (control string, arg1, arg2, …, argn);

– “control string refers to a string typically containing
data types of the arguments to be read in;

– the arguments arg1, arg2, … represent pointers to
data items in memory.

Example:
scanf (%d %f %c”, &a, &average, &type);

• The control string consists of individual groups of characters, with one
character group for each input data item.

– ‘%’ sign, followed by a conversion character.

– Commonly used conversion characters:

c single character

d decimal integer

f floating-point number

s string terminated by null character

X hexadecimal integer

– We can also specify the maximum field-width of a
data item, by specifying a number indicating the
field width before the conversion character.

Example: scanf (“%3d %5d”, &a, &b);

Writing output data :: printf function

• General syntax:
printf (control string, arg1, arg2, …, argn);

– “control string refers to a string containing
formatting information and data types of the
arguments to be output;

– the arguments arg1, arg2, … represent the
individual output data items.

• The conversion characters are the same as in
scanf.

• Examples:
printf (“The average of %d and %d is %f”, a, b, avg);
printf (“Hello \nGood \nMorning \n”);
printf (“%3d %3d %5d”, a, b, a*b+2);
printf (“%7.2f %5.1f”, x, y);

• Many more options are available:
– Read from the book.
– Practice them in the lab.

• String I/O:
– Will be covered later in the class.

Exercise 1

sin() takes a value in radians and returns the sin of it. Use the sin function to
plot a sin wave vertically using stars (it should look something like this):
*

*
*
*

*
*

*
*

*
*
*

*
*

Hint: Obviously, sin returns a number between -1 and 1. Convert this to a
number between 0 and 60 and print that many spaces before printing the
* - then print a '\n'

int main () {

int j;

float x, v;

for (x=0; x<6.3; x=x+0.2) {

v = sin (x) ;

for (j=0; j<=30*v+30; j++)

printf (" ") ;

printf ("*\n") ;

}

}

[sudeshna@facweb temp]$./a.out
*

*
*

*
*

*
*

*
*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*
*
*

*
*

*
*

*
*

[sudeshna@facweb temp]$

Exercise 2

Write a C program to compute the following
series:

x - x^2/(2*1) + 2*x^3/(3*2*1) -
3*x^4/(4*3*2*1) +

The value of x will be read from the user. The
sum is to be computed over 10 terms. Print
the partial sums as well as the final sum.

Exercise 3

It is known that the harmonic number Hn

converges to k + ln n as n tends to infinity.

Here ln is the natural logarithm and k is a
constant known as Euler's constant. In this
exercise you are asked to compute an
approximate value for Euler's constant.

Generate the values of Hn and ln n successively
for n=1,2,3,..., and compute the difference
k = H - ln n. Stop when k -k is less than a

Exercise 4

Write a C program that takes as input a number
and computes and prints the following:

1. the sum of the digits of the number

2. the number reversed

3. the sum of the original number and the
reversed number

Exercise 5

Write a program that find can find the roots of a mathematical function using
the bisection method. Assume that the function has exactly one root in
that interval.

The bisection method works as follows:

Check the value of the function at the middle of the interval: if it is positive,
replace the left endpoint with the middle point; if it is negative, replace
the right endpoint with the middle point. This halves the size of the
interval. Stay in a loop doing this until the interval size is less than epsilon.
The interval end points (xleft and xright) and the tolerance for the
approximation (epsilon) are entered by the user.

For this lab, consider finding the root of the function
p(x) = 5 x3 - 2 x - 2
over the interval [0,2] using epsilon = 0.0001.
Also print the number of iterations required for this value of epsilon. Print
out all function evaluations to trace the execution of your program.

