
Pointers
Part 1

Spring 2012 Programming and Data Structure 1

Introduction

• A pointer is a variable that represents the
location (rather than the value) of a data item.

• They have a number of useful applications.
– Enables us to access a variable that is defined outside

the function.

– Can be used to pass information back and forth
between a function and its reference point.

– More efficient in handling data tables.

– Reduces the length and complexity of a program.

– Sometimes also increases the execution speed.

Spring 2012 Programming and Data Structure 2

Basic Concept
• Within the computer memory, every stored

data item occupies one or more contiguous
memory cells.
– The number of memory cells required to store a

data item depends on its type (char, int, double,
etc.).

• Whenever we declare a variable, the system
allocates memory location(s) to hold the value
of the variable.
– Since every byte in memory has a unique address,

this location will also have its own (unique) address.

Spring 2012 Programming and Data Structure 3

Contd.

• Consider the statement

int xyz = 50;

– This statement instructs the compiler to allocate a location
for the integer variable xyz, and put the value 50 in that
location.

– Suppose that the address location chosen is 1380.

Spring 2012 Programming and Data Structure 4

xyz  variable

50  value

1380  address

Contd.

• During execution of the program, the system
always associates the name xyz with the
address 1380.
– The value 50 can be accessed by using either the

name xyz or the address 1380.

• Since memory addresses are simply numbers,
they can be assigned to some variables which
can be stored in memory.
– Such variables that hold memory addresses are

called pointers.

– Since a pointer is a variable, its value is also stored
in some memory location.

Spring 2012 Programming and Data Structure 5

Contd.

• Suppose we assign the address of xyz to a
variable p.

– p is said to point to the variable xyz.

Spring 2012 Programming and Data Structure 6

Variable Value Address

xyz 50 1380

p 1380 2545

p = &xyz;

501380

xyz

13802545

p

Accessing the Address of a Variable

• The address of a variable can be determined
using the ‘&’ operator.
– The operator ‘&’ immediately preceding a variable

returns the address of the variable.

• Example:
p = &xyz;

– The address of xyz (1380) is assigned to p.

• The ‘&’ operator can be used only with a
simple variable or an array element.

&distance
&x[0]
&x[i-2]

Spring 2012 Programming and Data Structure 7

Contd.

• Following usages are illegal:
&235

• Pointing at constant.

int arr[20];
:

&arr;
• Pointing at array name.

&(a+b)
• Pointing at expression.

Spring 2012 Programming and Data Structure 8

Example

Spring 2012 Programming and Data Structure 9

#include <stdio.h>

int main()

{

int a;

float b, c;

double d;

char ch;

a = 10; b = 2.5; c = 12.36; d = 12345.66; ch = „A‟;

printf (“%d is stored in location %u \n”, a, &a) ;

printf (“%f is stored in location %u \n”, b, &b) ;

printf (“%f is stored in location %u \n”, c, &c) ;

printf (“%ld is stored in location %u \n”, d, &d) ;

printf (“%c is stored in location %u \n”, ch, &ch) ;

}

Spring 2012 Programming and Data Structure 10

Output:

10 is stored in location 3221224908

2.500000 is stored in location 3221224904

12.360000 is stored in location 3221224900

12345.660000 is stored in location 3221224892

A is stored in location 3221224891

Incidentally variables a,b,c,d and ch are allocated

to contiguous memory locations.

a
b

c

d

ch

Pointer Declarations

• Pointer variables must be declared before we
use them.

• General form:

data_type *pointer_name;

Three things are specified in the above
declaration:

1. The asterisk (*) tells that the variable pointer_name is
a pointer variable.

2. pointer_name needs a memory location.

3. pointer_name points to a variable of type data_type.

Spring 2012 Programming and Data Structure 11

Contd.

• Example:
int *count;

float *speed;

• Once a pointer variable has been declared, it can
be made to point to a variable using an
assignment statement like:

int *p, xyz;

:

p = &xyz;

– This is called pointer initialization.

Spring 2012 Programming and Data Structure 12

Things to Remember

• Pointer variables must always point to a data
item of the same type.

float x;
int *p;
:  will result in erroneous output
p = &x;

• Assigning an absolute address to a pointer
variable is prohibited.

int *count;
:
count = 1268;

Spring 2012 Programming and Data Structure 13

Accessing a Variable Through its
Pointer

• Once a pointer has been assigned the address
of a variable, the value of the variable can be
accessed using the indirection operator (*).

int a, b;

int *p;

:

p = &a;

b = *p;

Spring 2012 Programming and Data Structure 14

Equivalent to b = a

Example 1

Spring 2012 Programming and Data Structure 15

#include <stdio.h>

main()

{

int a, b;

int c = 5;

int *p;

a = 4 * (c + 5) ;

p = &c;

b = 4 * (*p + 5) ;

printf (“a=%d b=%d \n”, a, b) ;

}

Equivalent

Example 2

Spring 2012 Programming and Data Structure 16

#include <stdio.h>

main()

{

int x, y;

int *ptr;

x = 10 ;

ptr = &x ;

y = *ptr ;

printf (“%d is stored in location %u \n”, x, &x) ;

printf (“%d is stored in location %u \n”, *&x, &x) ;

printf (“%d is stored in location %u \n”, *ptr, ptr) ;

printf (“%d is stored in location %u \n”, y, &*ptr) ;

printf (“%u is stored in location %u \n”, ptr, &ptr) ;

printf (“%d is stored in location %u \n”, y, &y) ;

*ptr = 25;

printf (“\nNow x = %d \n”, x);

}

*&xx

ptr=&x;

&x&*ptr

Spring 2012 Programming and Data Structure 17

Output:

10 is stored in location 3221224908

10 is stored in location 3221224908

10 is stored in location 3221224908

10 is stored in location 3221224908

3221224908 is stored in location 3221224900

10 is stored in location 3221224904

Now x = 25

Address of x: 3221224908

Address of y: 3221224904

Address of ptr: 3221224900

Pointer Expressions

• Like other variables, pointer variables can be
used in expressions.

• If p1 and p2 are two pointers, the following
statements are valid:

sum = *p1 + *p2 ;

prod = *p1 * *p2 ;

prod = (*p1) * (*p2) ;

*p1 = *p1 + 2;

x = *p1 / *p2 + 5 ;

Spring 2012 Programming and Data Structure 18

Contd.
• What are allowed in C?

– Add an integer to a pointer.
– Subtract an integer from a pointer.
– Subtract one pointer from another (related).

• If p1 and p2 are both pointers to the same array, them
p2–p1 gives the number of elements between p1 and
p2.

• What are not allowed?
– Add two pointers.

p1 = p1 + p2 ;

– Multiply / divide a pointer in an expression.
p1 = p2 / 5 ;
p1 = p1 – p2 * 10 ;

Spring 2012 Programming and Data Structure 19

Scale Factor
• We have seen that an integer value can be

added to or subtracted from a pointer
variable.

int *p1, *p2 ;
int i, j;
:
p1 = p1 + 1 ;
p2 = p1 + j ;
p2++ ;
p2 = p2 – (i + j) ;

• In reality, it is not the integer value which is
added/subtracted, but rather the scale factor
times the value.

Spring 2012 Programming and Data Structure 20

Contd.

Data Type Scale Factor

char 1

int 4

float 4

double 8

– If p1 is an integer pointer, then

p1++

will increment the value of p1 by 4.

Spring 2012 Programming and Data Structure 21

Example: to find the scale factors

Spring 2012 Programming and Data Structure 22

#include <stdio.h>

main()

{

printf (“Number of bytes occupied by int is %d \n”, sizeof(int));

printf (“Number of bytes occupied by float is %d \n”, sizeof(float));

printf (“Number of bytes occupied by double is %d \n”, sizeof(double));

printf (“Number of bytes occupied by char is %d \n”, sizeof(char));

}

Output:

Number of bytes occupied by int is 4

Number of bytes occupied by float is 4

Number of bytes occupied by double is 8

Number of bytes occupied by char is 1

Returns no. of bytes required for data type representation

Passing Pointers to a Function
• Pointers are often passed to a function as

arguments.
– Allows data items within the calling program to be

accessed by the function, altered, and then
returned to the calling program in altered form.

– Called call-by-reference (or by address or by
location).

• Normally, arguments are passed to a function
by value.
– The data items are copied to the function.

– Changes are not reflected in the calling program.

Spring 2012 Programming and Data Structure 23

Example: passing arguments by
value

Spring 2012 Programming and Data Structure 24

#include <stdio.h>

main()

{

int a, b;

a = 5 ; b = 20 ;

swap (a, b) ;

printf (“\n a = %d, b = %d”, a, b);

}

void swap (int x, int y)

{

int t ;

t = x ;

x = y ;

y = t ;

}

Output

a = 5, b = 20

x and y swap

a and b

do not

swap

Example: passing arguments by
reference

Spring 2012 Programming and Data Structure 25

#include <stdio.h>

main()

{

int a, b;

a = 5 ; b = 20 ;

swap (&a, &b) ;

printf (“\n a = %d, b = %d”, a, b);

}

void swap (int *x, int *y)

{

int t ;

t = *x ;

*x = *y ;

*y = t ;

}

Output

a = 20, b = 5

*x and *y

swap

*(&a) and *(&b)

swap

scanf Revisited

int x, y ;

printf (“%d %d %d”, x, y, x+y) ;

• What about scanf ?

scanf (“%d %d %d”, x, y, x+y) ;

scanf (“%d %d”, &x, &y) ;

Spring 2012 Programming and Data Structure 26

NO

YES

Example: Sort 3 integers

• Three-step algorithm:

1. Read in three integers x, y and z

2. Put smallest in x

• Swap x, y if necessary; then swap x, z if necessary.

3. Put second smallest in y

• Swap y, z if necessary.

Spring 2012 Programming and Data Structure 27

Contd.

Spring 2012 Programming and Data Structure 28

#include <stdio.h>

main()

{

int x, y, z ;

………..

scanf (“%d %d %d”, &x, &y, &z) ;

if (x > y) swap (&x, &y);

if (x > z) swap (&x, &z);

if (y > z) swap (&y, &z) ;

………..

}

sort3 as a function

Spring 2012 Programming and Data Structure 29

#include <stdio.h>

main()

{

int x, y, z ;

………..

scanf (“%d %d %d”, &x, &y, &z) ;

sort3 (&x, &y, &z) ;

………..

}

void sort3 (int *xp, int *yp, int *zp)

{

if (*xp > *yp) swap (xp, yp);

if (*xp > *zp) swap (xp, zp);

if (*yp > *zp) swap (yp, zp);

}

xp/yp/zp

are

pointers

Contd.

• Why no ‘&’ in swap call?

– Because xp, yp and zp are already pointers that
point to the variables that we want to swap.

Spring 2012 Programming and Data Structure 30

Pointers and Arrays

• When an array is declared,

– The compiler allocates a base address and
sufficient amount of storage to contain all the
elements of the array in contiguous memory
locations.

– The base address is the location of the first
element (index 0) of the array.

– The compiler also defines the array name as a
constant pointer to the first element.

Spring 2012 Programming and Data Structure 31

Example

• Consider the declaration:

int x[5] = {1, 2, 3, 4, 5} ;

– Suppose that the base address of x is 2500,
and each integer requires 4 bytes.

Element Value Address

x[0] 1 2500

x[1] 2 2504

x[2] 3 2508

x[3] 4 2512

x[4] 5 2516

Spring 2012 Programming and Data Structure 32

Contd.

x  &x[0]  2500 ;

– p = x; and p = &x[0]; are equivalent.

– We can access successive values of x by using p++ or
p- - to move from one element to another.

• Relationship between p and x:
p = &x[0] = 2500

p+1 = &x[1] = 2504

p+2 = &x[2] = 2508

p+3 = &x[3] = 2512

p+4 = &x[4] = 2516

Spring 2012 Programming and Data Structure 33

*(p+i) gives the

value of x[i]

Example: function to find average

Spring 2012 Programming and Data Structure 34

#include <stdio.h>

main()

{

int x[100], k, n ;

scanf (“%d”, &n) ;

for (k=0; k<n; k++)

scanf (“%d”, &x[k]) ;

printf (“\nAverage is %f”,

avg (x, n));

}

float avg (int array[],int size)

{

int *p, i , sum = 0;

p = array ;

for (i=0; i<size; i++)

sum = sum + *(p+i);

return ((float) sum / size);

}

int *array

p[i]

