
INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR
Department of Computer Science & Engineering

Programming and Data Structures (CS11001)
Endsem (Autumn, 1st Year)

Date: Tue, Nov 22, 2011 Time: 09:00-12:00pm
Students: 660 Marks: 80

Answer ALL the questions. Write you name and roll number on ALL sheets.
Do all rough work on separate rough sheets which you should NOT submit.

Answer neatly, without overwriting on the question paper itself in the spaces provided.

Roll no: Section: Name:

1. Complete the following function which takes as input a given positive integer (representing a sum of money)
and prints the number of currency notes of denominations 1, 10 and 50 required to pay that amount, so that
the number of currency notes is minimised. Eg: 320→6×50+2×10; 475→9×50+2×10+5×1

void printPayment (int N) { 1
int n1, n10, n50;

n50 = N/50 ; 1

N = N - 50 * n50 ; 1

n10 = N/10 ; 1

n1 = N - 10 * n10 ; 1
printf("Number of notes of 1, 10 and 50 denominations are: ");

printf("%d, %d and %d\n", n1, n10, n50); 1
}

2. A rabbit has found itself in a maze of tunnels connecting underground pits. Initially, each tunnel has one carrot
in it and each pit has two or four tunnels connecting it to other pits. The rabbit intends to start at a pit, eat
some of the carrots in the tunnels and definitely return to the starting pit. It can do so if: (i) it enters a tunnel
only if there is a carrot there (assume there is some light to see), (ii) eat that carrot and (iii) go to the pit at
the other end of the tunnel. Eventually, it will be at a pit from where there is no tunnel with a carrot in there.
That pit is bound to be the starting pit! Let there be N pits numbered 0..(N − 1)and M tunnels numbered
0..(M − 1). Information on the pits and tunnels are represented as described below; fill in the missing parts.

Information on the M tunnels is stored in an array tunTyp tunnel[M], where tunTyp is defined as:
typedef {
int p1, p2; // index values of pits it connects

int carrotCount; // initialised to 1 (1: carrot present, 0: absent) 1
} tunTyp;

Information on the N pits is stored in an array pitTyp pit[N], where pitTyp is defined as:
typedef {

int tunnelCount; /* set to 2 or 4 , depending on connectivity */ 1

int tunVec[4]; /* vector of index values of 1
maximum number tunnels to which this pit is connected */

} pitTyp;

1 2 3 4 5 6 T

— 1 of 5 pages —

PDS (CS11001) Roll: Sec:

Now, complete the function that prints a possible round tour (returning to the starting point) of some of the
pits and tunnels by the rabbit, starting at the pit with index of 0.

void printPitTunTour (int M, tunTyp tunnel[M], int N, pitTyp pit[N]) {
int nTun_forPit, tunVecIdx, tunIdx, otherPitIdx, carrotsEaten=0, pitIdx=0;
repeat { // keep looping, until the tour ends
// check if there is a tunnel with a carrot...
// first find out how many tunnels are there with this pit

nTun_forPit = pit[pitIdx].tunnelCount ; 1
// next, search for a tunnel with a carrot among tunnels in tunVec

for (tunVecIdx= 0 ; tunVecIdx< nTun_forPit ; tunVecIdx++) { 2
// ...get the index of the tunnel to check for a carrot in tunIdx

tunIdx = pit[pitIdx].tunVec[tunVecIdx] ; 1
// ...check if this tunnel has a carrot

if (tunnel[tunIdx].carrotCount) { // ...carrot present 1

tunnel[tunIdx].carrotCount = 0 ; // eat carrot 1
// identify other end of tunnel in otherPitIdx

otherPitIdx = tunnel[tunIdx].p1 + tunnel[tunIdx].p2 - pitIdx

; 2
// carrot eaten, ...tour must continue from pit with index of otherPitIdx
// first, display the move...
printf("eating carrot and going from pit %d to pit %d\n",

pitIdx, otherPitIdx); 2
// next, prepare to carry on from the new pit...

pitIdx = otherPitIdx ; 1
// don’t forget to keep count of carrots eaten...

carrotsEaten++ ; 1
// finally, ...carry on!

break; ; 1
} // end-if

} // end-for
} // check if the search done above for a tunnel with a carrot did fail...

until (tunVecIdx >= nTun_forPit); // tour over! 1

printf("%d of %d carrots were eaten\n", carrotsEaten , M); 2
} // end-printPitTunTour

The running time of the above function in the big-O notation is: O(M) OR O(N2) 1

CM, PM, PSD Endsem, Autumn, 2011 — 2 of 5 pages —

PDS (CS11001) Roll: Sec:

3. You are given a linked list of integers which are in ascending order. However, there may be duplicates, which
should be removed. Complete the following piece of ’C’ code fragment that removes the duplicates and returns
the number of distinct elements in the list. Eg:

headP=n1P

11
n2P

1’1’ 22 2’2’ 33 →
headP

11 22
n1P

33 n2P

typedef struct llNodeTag { // ...via struct for linked list of ints
int val; // value stored in node

struct llNodeTag *nextP; // pointer to next node

} llNodeTyp, *llNodePtr ;
// type names for struct and pointer to struct 3

int removeDuplicates (llNodePtr headP) {
int elemCount=0; // needs to be incremented when a new value is seen
llNodePtr n1P, n2P;
n1P = headP;
if (n1P != NULL) { // list is not empty
// n2P is initialised to point to the successor of n1P

n2P = n1P->nextP ; 1

elemCount++ ; 1

} else return 0; 1
// keep looping to find duplicates

while (n2P ! = NULL) { 1
// test for a duplicate

if (n1P->val == n2P->val) { // duplicate found 1
// steps to remove the duplicate at n2P

n1P->nextP = n2P->nextP ; 1

free(n2P) ; 1

n2P = n1P->nextP ; 1
} else { // advance in the list

n1P = n2P ; 1

n2P n1P->nextP ; 1

elemCount++ ; 1
}

}

return elemCount ; // final step 1
}

4. Write a function charCount() to count the characters, corresponding only to the letters of the English
alphabet, occurring in a NUL terminated string char s[] ignoring the case (upper or lower) of the letters. The
count is to be maintained in an array counts[] of 26 integers corresponding to each letter of the alphabet.

CM, PM, PSD Endsem, Autumn, 2011 — 3 of 5 pages —

PDS (CS11001) Roll: Sec:

// the supplied string of characters is s[]
// letter counts are maintained and returned via counts[]
void charCount(char s[], int counts[]) {
int i; // next, initialisations of locations in count[]

for (i=0; i<26; i++) counts[i] = 0; 2

for (i=0;i<n;i++) { 2

if (’a’<=s[i] && s[i]<=’z’) count[s[i]-’a’] += 1; 2

if (’A’<=s[i] && s[i]<=’Z’) count[s[i]-’A’] += 1; 2

if (s[i] == ’\0’) return; 2
}

}

5. A test for divisibility by 7 is stated as follows: Take the two left-most digits, multiply the left digit by 3 and add
it to the second digit. Replace these two digits with the result. Then we can keep repeating, always dealing
with only the two left-most digits, until we end up with a single digit number which is either divisible by 7 (if
digit is 0 or 7) or not.

Eg: 249→ 109→ 39→ 18→ 11→ 4 (not divisible by 7); 49→ 21→ 7 (divisible by 7).

For the above divisibility test by 7, assume that a k digit number N (most significant digit, Nk−1 is non-zero)
is available in the array int N[K]={Nk−1,...,N1, N0}, suitably initialised with the digits of the number.

Consider a function int isDiv7(int k, int N[]) to test divisibility by 7 of the k digit number whose
digits are stored in the array N[k]. Giving single lines of ‘C’ code (comparisons, assignments, etc), describe
each of the following tests and actions for the Base and Inductive/recursive cases, in terms of k and entries in
the array N[],

‘C’ code fragments to support the case analysis of isDiv7(k, N):

Base case N is a single digit number not divisible by 7

Condition code (CB1): k==1 && N[0]!=0 && N[0]!=7 2
Action code (AB1): return 0; // number is not divisible

Base case N is a single digit number divisible by 7

Condition (CB2): k==1 && (N[0]==0 || N[0]==7) 2
Action (AB2): return 1; // number is divisible

Inductive/recursive case N is multi-digit and needs to be reduced (including the action if Nk−1 becomes 0)

Condition code (CI1): k>1 1

Action code (AI1a): t = 3*N[k-1] + N[k-2] 1

Action code (AI1b): N[k-2] = t % 10 1

Action code (AI1c): N[k-1] = (t-N[k-2])/10; 1

Action code (AI1d): if (N[k-1]==0) k=k-1 ; 1

Action code (AI1e): return isDiv7(k, N) 1

CM, PM, PSD Endsem, Autumn, 2011 — 4 of 5 pages —

PDS (CS11001) Roll: Sec:

Based on the above condition tests (CB1, CB2, CI1) and actions (AB1, AB2, AI1a, ... , AI1e) develop
isDiv7(k, N) as a recursive routine. Instead of rewriting code, develop the routine in terms of the code
aliases (short names for the code fragments): CB1, CB2, CI1, AB1, AB2, etc.

isDiv7(int k, int N[]) {
int t; // declarations

if (CB1) AB1; 2

if (CB2) AB2; 2

if (CI1) { AI1a; ... ; AI1e } 2
}

Now develop isDiv7(k, N) as an iterative routine. Instead of rewriting code, develop the routine in terms
of the code aliases (short names for the code fragments): CB1, CB2, CI1, AB1, AB2, etc.

isDiv7(int k, int N[]) {
int t; // declarations

while(1) { // start the loop 1

if (CI1) { AI1a; ... ; AI1d; } 2

else break; 1
} // end of the loop

if (CB1) AB1; 2

if (CB2) AB2; 2

6. (a) The function call to open a text file data.txt for reading is:

fopen(data.txt, "r") 1

(b) The function call to open a text file data.txt for writing is:

fopen(data.txt, "w") 1

(c) The function call to open a text file data.txt in the directory dataDir under the current working
directory, for appending is:

fopen(dataDir/data.txt, "a") 1

(d) When the function call to open a file fails, the return value of the function is: NULL 1

(e) The function call to check whether the end of an open file FILE *fileP has been reached is:

feof(fileP) 1

CM, PM, PSD Endsem, Autumn, 2011 — 5 of 5 pages —

