CS11001 Programming and Data Structures, Autumn 2010
End-semester Test

Maximum marks: 100 November 2010 Total time: 3 hours

Roll no: Name; Section:

Do your rough work on supplementary sheets. Write your finalswers in the spaces provide

Write your answers in the question paper itself. Be brief apcecise. Answer aljuestions.
Not all blanks carry equal marks. Evaluation will depend ohe overall correctness. 1

(To be filled in by the examiners)

Question No 1 2 3 4 5 6 Total
Marks
1. For each of the following parts, mark the correct answer. Mi&e this: (16)
(@) What is the output of the following program?
mai n()
{

char str[30] = "This is PDS test";
printf("%", fun(str));

}
int fun(char =x)
{
char *ptr = x;
while (*ptr '="\0") ptr++;
return (ptr - Xx);
}
(A) 4 (B) 16 (©) 17 (D) 30

(b) What is the output of the following program?

mai n()
{
int array[10] = { 20, 18, 16, 14, 12, 10, 8, 6, 4, 2 };
int *ptr;
ptr = array;
printf ("%, %", *ptr + 2, *(ptr + 2));
}

(A) 16,16 (B) 20,16 (C) 22,16 (D) 22,22

(c) Consider the following declaration:nt (*A)[20]; If A points to the memory locatiom, which
memory location does+1 point to? Assume thati zeof (i nt) = 4.

(A) x+80 (B) z+20 C) z+4 (D) Does not depend an

— Page10of 9 —

(d) Each of the following choices declares two variabdeandB. Identify the pair in whichA andB do not
have compatible organizations in memory.

(A) int *A B[MAX]; (B) int *A[MAX], **B: (C) int (*A[MAX], *+B;
(D) int (=*A)[MAX], B[MAX][MAX];

() Inamachine witt32-bit integers and2-bit addresses, what s zeof (node) , wherenode is defined
as follows:

typedef struct _tag {
int a[8];
doubl e b[16];
char c[32];
struct _tag *next;
} node;

(A) 384 (B) 196 (C) 132 (D) 60

(f) Consider the following recursive function:

unsigned int f (unsigned int n)
{
if (n<=2) return 1;
return f(n-3) + f(n-1);
}
What is the maximum height to which the recursion stack gnetven the outermost call f5 10) ? Assume
that the stack is empty just before this outermost call.

(A) 5 B) 9 (C) 13 (D) 32

(g) The total number of comparisons needed for bubble sortirgyi@y of sizen is:

(A) O(n?) (B) O(nlogn) (C) O(n) (D) None of the above

(h) What is the output of the following program?

struct node {
int cval;
struct node *next;

}
mai n()
{
struct node N1, N2, N3;
N1.cval = 1; N2.cval = 10; N3.cval = 100;
N1. next = &N\2; N2.next = &N3; N3.next = &Ni;
printf("%l, %", N2.next -> cval, N2.next -> next -> cval);
}
(A) 1,10 (B) 1,100 (C) 10,100 (D) 100,12

— Page 2 of 9 —

2. Consider the following way to compute the maximum in an atdagyf sizen. First, divide the array in two
equal (or almost equal) halves. Then, recursively comphgertaximums in the two halves. Finally, return
the larger of these two recursively computed maximum values

(@) Complete the following function which uses the above idedifaling the maximum in an array. (6)

int mx (int A[], int n)

{
int nl, nR;
if (n==1) return ;
/+* Make two recursive calls. Do not assume that n is even. =/
nml = max(,); /* left half =/
n2 = max(,); /* right half =/
return ;
}
(b) How is the function called from theai n() function on an arrayl of sizen? D

(c) Deduce the running time afax() on an array of sizex. For simplicity, you may assume thatis a
power of2, that is,n = 2! for some integet > 0. Express the running time in the Big-Oh notation. @)

— Page 30f9 —

3. A convex polygon is a simple polygon in which all interior angles are less tt&t’. In this exercise, you
are required to compute the area of a convex polygon.

(a) Define a data typpoi nt consisting of double-precision floating-point fieldgandy. 2

typedef struct { }

Next, define a static array ®fAX structures of typgoi nt as the data typepol ygon. Note that a convex
polygon is to be stored in an array of points as a countergliek sequence of the vertices of the polygof)

#defi ne MAX 1000

t ypedef cpol ygon ;

(b) Complete the following function that accepts a convex potygnd three indices j, k representing
verticesF;, P;, P, of the polygon stored in the input array. The function coneguand returns the area of
the triangleP,; P; P, using the formulay,/s(s — a)(s — b)(s — ¢), wherea, b, ¢ are the lengths of the three
sides of the triangle and= (a + b + ¢)/2 is the semi-perimeter of the triangle. You may use math tibra
functions. (6)

doubl e triangleArea (cpolygon P, int i, int j, int k)
{

double a, b, c, s; /* Do not use any other variable */

/* Conpute the | engths of the sides */

a = ;

b =

c = ;
[+ Conpute the seni-perineter */

S:
/* Return the area =*/

return

() In order to compute the area of a convex polygon, we firqis3 _
triangulate the polygon as demonstrated in the adjacentefigine
area of each triangle is computed by the function of PartThg P,
sum of these areas is returned as the area of the input polygon

®)

doubl e pol ygonArea (cpolygon P, int n)

int i;

doubl e area =

for (i= ;<= ; ++i) area += ;
return area;

— Page 4 0of 9 —

4. You are given ann x n array A of integers, each row of which is a sorted list of size Your task is to
merge them sorted lists and store the merged list in a one-dimensiomay &. It is given that each row
does not contain repetition(s) of integers, that is, thimtegers in each sorted list are distinct from one
another. However, integers may be repeated in differensrduring the merging step, you must remove
all these repetitions.

Complete the following function to achieve this task. Thadiion uses an array ofi indices, where the
i-th index is used for reading from thieth row (0 < 7 < m — 1). The function starts by initializing each
of these read indices to point to the beginning of the cooedjmg row. Subsequently, inside a loop, it
computes the minimum of the elements pointed to by these indices. The minimum is thettemrto the
output array. Note, however, that during the computatiothisf minimum, we do not need to consider those
rows all of whose elements have already been written to thgubarrayB. Finally, for all rows containing
this minimum element at the current read index positionsjildex values are incremented. The function is
supposed to return the total number of elements writtendmtliput array3. An example is given below. (15)

Al0] [1]3]4] 7] 9]

v v
A1l [4]8]ol1516 Bf1[3[4]5] | [[[[[[][]]
Al2] [3]5]7]1d13

#define INFIN TY 123456789

int merge (int B[], int AI][MAX], int m int n)
/* Ais the input two-dinmensional array of size m xn.
B is the output array whose size is to be returned. =*/

{
int index] MAX], i, k, min; /= Do not use other variables */
for (i=0; i< ; ++i) index[i] = ;
k = ; [+ kis for witing to B[] =*/
while (1) { /* Let us decide to return inside this |oop */
mn=INFINITY;, /* Initialize min to a suitably large value */
/* Wite a |oop for conputing the m ni mum */
for () {
i f
mn = ;
}
/= 1f all input arrays are fully processed, return the size of B */
/* Qtherwise, wite the conputed mininumto B */
/* Advance all relevant indices */
for () {
i f
}
}
}

— Page50f9 —

5. In this exercise, we deal with linked lists. First, consitlee list headed by the pointdr; (see the figure
below). There is no dummy node at the beginning. The first eférm the list is22. Subsequently, if a
node stores the integer, the next node stores the integer |\/n]. This means that we have a list of
monotonically decreasing integers. The list terminatésr dfie node containing the valoe

FLs{22 18 1dlet>{LUe > 8 oo ol 4 o] 2[et>{ 1o Ofy]
L2 —>|20/e7>{16je7—>{12]e;> 9 |

Define a node in the list in the usual way:

typedef struct _node {
int data;
struct _node *next;
} node;

(@) Write a function to create a single list like, as explained above. The list starts with a supplied integer

valuen, and subsequently uses the above formula for the subseqoées. (6)
node *genSeql (int n)
{
node *L, =*p;
/+ Create the fist node to store n */
L = ;
/* Initialize the running pointer p for subsequent insertions */
p = ;
while () { /* As long as n is not reduced to zero */
/* Conpute the next value of n */
n -= ,
/= Allocate nmenory =/
[+ Store n in the new node, and advance =/
}
[+ Terminate the list */
return L; /* Return the header =/
}

(b) Now, we create another list to be headed/by(see the above figure). This second list starts with
another value (like0), and contains nodes storing integer values satisfyingséime formula used in the
first list. After some iterations, two lists must encounteccemmon value in the example of the above
figure). From this node onwards, the second list follows e nodes and links as the first list. Complete
the following C function to create the second list. The heddeto the first list is passed to this function.
Also, the starting value for the second list is passed. (8

— Page 6 0of 9 —

node *genSeq2 (node *L1, int n)
{
node *L2, *pl, *p2
/* Skip values in the first list larger than n */
pl = L1; while () pl = pl -> next;
/= If nis already present in the first list =/
if () return ;
/+* Create the fist node in the second list to store n =/
L2 = ;
/* Initialize the running pointer p for subsequent insertions */
p2 = ;
while (1) { /* Let us decide to return inside the |oop */
n -= ; [+ Next value of n */
/* pl skips all values in the first list, larger than the current n =/
whi | e pl = pl -> next;
if () { /* nfound in first list =*/
; /* Adjust the second list x/
return ; /* Return header to second list */
/* n not found in first list, so create a new node in second list */
}
}

(c) Complete the following function that, given the headéisand L, as input, returns a pointer to the

first common node in these two lists.

node *getlntersection (node *L1

{

node *pl, *p2;

pl = ;o p2 =

node *L2)

; [+ Initialize pointers =/

while (1) { /* Return inside the |oop */

/+= 1f the common node is |located, return an appropriate pointer =/

if () return

/+ else if pl points to a |larger integer than p2 */

else if () :
el se ;

Page 7 of 9 —

(6)

6. You have ann x n maze of rooms. Each adjacent pair of rooms has a door thatsaffassage between
the rooms. At some point of time some of the doors are locKeslrést are open. A mouse sits at room
number(s, t), and there is fabulous food for the mouse at room nuntber). Your task is to determine
whether there exists a route for the mouse from rgem) to room(u, v) through the open doors. The idea
is to start a search at room (e, ¢), then investigate adjacent rooms, ¢1), . . ., (s, tx) that can be reached
from (s, t), and then those adjacent rooms that can be reached fron{€ath, and so on.

041424344454
031,32,33,34,35,3 Hijot
0319243942579 Vi, [1d] Vi,
041,12,134,1 51 Hi
0,01,02,03,04,05,0

In order to set up the notations about indices, look at theafigure. The rooms are numbergd;), where

1 grows horizontally (along the direction), and; grows in the vertical direction (along theaxis). The
four walls of the(i, j)-th room are numbered as shown to the right of the maze. If edwtal or vertical
wall has an open door, we indicate this by the valuetherwise, we use the valwe That is,H; ; = 1 if
the horizontal door connecting the roorfisj — 1) and (i, j) is open;H; ; = 0 otherwise. SimilarlyV; ;

is 1 or 0 depending upon whether the vertical door between the rdemsl, j) and (i, j) is open or not.
This numbering scheme also applies to the walls of the boynofethe maze. However, we assume that
the mouse cannot go out of the house, that is, all the wallb®hdundary are closed is available as an
m X (n+1) array, wherea¥ is available as atmn +1) x n array. In the example shown above, Ro@nl)

is reachable from Roort2, 4), but Room(1, 2) is not reachable from Rool(2, 4).

We use a stack to implement the search (frent) to (u, v) given the arrayd? andV’). Since there is no
need to revisit a room during the search, we maintaimar n array of flags in order to keep track of the
rooms that are visited—the valuemeans “visited”, and means “not visited so far”. The stack contains a
list of rooms, that is, it is capable of storing pairs of irei¢:, j). The stack ADT is supplied as follows.

S=init(); /= Create an enpty stack */
S = push(S,i,j); /* Push the pair (i,j) to the top of the stack S */
S = pop(S); /+* Pop an element (a pair) fromthe top of the stack =/
(i,j) =top(S); /* Return the top (i,j) of the stack S =*/
i SEmpty(S); /+ Returns true if and only if the stack Sis enpty */
(@) Fill out the followingmai n() function that pushes the source rogm¢) to an initially empty stack,
and subsequently calls the search function with apprapdasjuments. 5
main ()
{

stack S;

int m n, s, t, u, v, HMX[MX], V[MAX [MX, visited] MAX][MAX], status;

/* Assune that m n, s, t, u, v, HII[], M1[] and visited[][] are
appropriately initialized here. You do not have to wite these. */

S = ; I+ Initialize the stack S */

S = push(S, ,); /* Push source roomto stack =/

vi sited| 11] =1; /'~ Mark source roomas visited */

status = search(mn,s,t,u,v,H V,visited,S); /+ Call the search function */
printf("Search %\n", (status == 1) ? "successful" : "unsuccessful");

— Page 80of 9 —

(b) Complete the search function whose skeleton is providedwbel The function returnsl if the

destination node is ever reached. Otherwise, it retdrns

int search (int m int n, int s, int t, int u, int v,
int H]J[MAX], int V[][MAX], int visited[][MAX], stack S)
/* mxn is the size of the nmze, (s,t) is the source node,
(u,v) is the destination node, H][] and V[][] are door arrays,
visited[][] is the array to store which nodes are visited so far,
and Sis the stack to be used in the search. */

{
pair roonm /* pair is a structure of two integer values x and y */
int i, j;
/* So long as the stack is not enpty =/
whil e () {
room = ; /* Read the top elenment fromthe stack */
i =roomx; j =roomy ; /* Retrieve x and y coordinates of room =/
/* Delete the top fromthe stack */
[+ 1f (i,7) is the destination node, return success */
if () return ;
[+ OQtherw se, |ook at the four adjacent roonms one by one =/
/* Left room If left door is open and left roomis not yet visited */
it () |
[+ Push left roomto the stack and mark left roomas visited */
S = push(sS, ,)
vi sited| 11] = ;
/= Anal ogously process the adjacent roomto the right =*/
/* Process the adjacent roomat the bottom */
/* Process the adjacent roomat the top =*/
}
return ;
}

— Page 90of 9 —

(15)

