
21 July 2009 Programming and Data Structure 1

Structures

21 July 2009 Programming and Data Structure 2

What is a Structure?

• It is a convenient tool for handling a group of
logically related data items.
– Student name, roll number, and marks
– Real part and complex part of a complex number

• This is our first look at a non-trivial data
structure.
– Helps in organizing complex data in a more

meaningful way.

• The individual structure elements are called
members.

21 July 2009 Programming and Data Structure 3

Defining a Structure

• The composition of a structure may be defined
as:

struct tag {
member 1;
member 2;
:
member m;

};
– struct is the required keyword.
– tag is the name of the structure.
– member 1, member 2, … are individual member

declarations.

21 July 2009 Programming and Data Structure 4

Contd.

• The individual members can be ordinary
variables, pointers, arrays, or other structures.
– The member names within a particular structure

must be distinct from one another.
– A member name can be the same as the name of a

variable defined outside of the structure.

• Once a structure has been defined, individual
structure-type variables can be declared as:

struct tag variable_1, variable_2, …, variable_n;

21 July 2009 Programming and Data Structure 5

Example

• A structure definition:
struct student {

char name[30];
int roll_number;
int total_marks;
char dob[10];

};
• Defining structure variables:

struct student a1, a2, a3;

A new data-type

21 July 2009 Programming and Data Structure 6

A Compact Form

• It is possible to combine the declaration of the
structure with that of the structure variables:

struct tag {
member 1;
member 2;
:
member m;

} variable_1, variable_2,…, variable_n;

• In this form, “tag” is optional.

21 July 2009 Programming and Data Structure 7

Example

struct student {
char name[30];
int roll_number;
int total_marks;
char dob[10];

} a1, a2, a3;

struct {
char name[30];
int roll_number;
int total_marks;
char dob[10];

} a1, a2, a3;

Equivalent
declarations

21 July 2009 Programming and Data Structure 8

Processing a Structure

• The members of a structure are processed
individually, as separate entities.

• A structure member can be accessed by writing
variable.member

where variable refers to the name of a
structure-type variable, and member refers to
the name of a member within the structure.

• Examples:
– a1.name, a2.name, a1.roll_number, a3.dob;

21 July 2009 Programming and Data Structure 9

Example: Complex number addition

#include <stdio.h>
main()
{

struct complex
{

float real;
float complex;

} a, b, c;

scanf (“%f %f”, &a.real, &a.complex);
scanf (“%f %f”, &b.real, &b.complex);

c.real = a.real + b.real;
c.complex = a.complex + b.complex;

printf (“\n %f + %f j”, c.real,
c.complex);

}

Structure definition
And

Variable Declaration

Accessing members

Reading a member
variable

Scope
restricted

within
main()

21 July 2009 Programming and Data Structure 10

Comparison of Structure Variables

• Unlike arrays, group operations can be
performed with structure variables.
– A structure variable can be directly assigned to

another structure variable of the same type.
a1 = a2;

• All the individual members get assigned.

– Two structure variables can be compared for
equality or inequality.

if (a1 = = a2) …….
• Compare all members and return 1 if they are equal; 0

otherwise.

21 July 2009 Programming and Data Structure 11

Arrays of Structures

• Once a structure has been defined, we can
declare an array of structures.

struct student class[50];

– The individual members can be accessed as:
• class[i].name
• class[5].roll_number

21 July 2009 Programming and Data Structure 12

Arrays within Structures

• A structure member can be an array:

• The array element within the structure can be
accessed as:

a1.marks[2]

struct student {
char name[30];
int roll_number;
int marks[5];
char dob[10];

} a1, a2, a3;

21 July 2009 Programming and Data Structure 13

Defining data type: using typedef

• One may define a structure data-type with a
single name.

• General syntax:
typedef struct {

member-variable1;
member-variable2;

.
member-variableN;

} tag;
• tag is the name of the new data-type.

21 July 2009 Programming and Data Structure 14

typedef : An example

typedef struct{
float real;
float imag;
} _COMPLEX;

_COMPLEX a,b,c;

21 July 2009 Programming and Data Structure 15

Structure Initialization

• Structure variables may be initialized following
similar rules of an array. The values are
provided within the second braces separated by
commas.

• An example:
_COMPLEX a={1.0,2.0}, b={-3.0,4.0};

a.real=1.0; a.imag=2.0;
b.real=-3.0; b.imag=4.0;

21 July 2009 Programming and Data Structure 16

Parameter Passing in a Function

• Structure variables could be passed as
parameters like any other variable. Only the
values will be copied during function
invokation.

void swap(_COMPLEX a, _COMPLEX b)
{

_COMPLEX tmp;

tmp=a;
a=b;
b=tmp;

}

21 July 2009 Programming and Data Structure 17

An example program
#include <stdio.h>

typedef struct{
float real;
float imag;
} _COMPLEX;

void swap(_COMPLEX a, _COMPLEX b)
{

_COMPLEX tmp;

tmp=a;
a=b;
b=tmp;

}

21 July 2009 Programming and Data Structure 18

Example program: contd.

void print(_COMPLEX a)
{
printf("(%f , %f) \n",a.real,a.imag);
}

main()
{
_COMPLEX x={4.0,5.0},y={10.0,15.0};

print(x); print(y);
swap(x,y);
print(x); print(y);

}

21 July 2009 Programming and Data Structure 19

Returning structures

• It is also possible to return structure values
from a function. The return data type of the
function should be as same as the data type of
the structure itself.

_COMPLEX add(_COMPLEX a, _COMPLEX b)
{

_COMPLEX tmp;

tmp.real=a.real+b.real;
tmp.imag=a.imag+b.imag;

return(tmp);
}

Direct arithmetic
operations are not

possible with
Structure variables.

	Structures
	What is a Structure?
	Defining a Structure
	Contd.
	Example
	A Compact Form
	Example
	Processing a Structure
	Example: Complex number addition
	Comparison of Structure Variables
	Arrays of Structures
	Arrays within Structures
	Defining data type: using typedef
	typedef : An example
	Structure Initialization
	Parameter Passing in a Function
	An example program
	Example program: contd.
	Returning structures

