CS11002 Programming and Data Structures, Spring 2007–08 Class test 2

	Maximum marks: 20		March 02, 2008		Total time: 1 hour	
	Roll no:	Name:			Section:	
	[Write your answers in the question paper itself. Submit the supplementary sheet(s) only if used for your final answer. Be brief and precise. Answer <u>all</u> questions.]					
1.	Write a function that accepts as argument an array A of integers together with its size n and a non-negative integer k . The function should return another array, allocated dynamically within the function, which is obtained by cyclically shifting the input array A by k positions to the right. For example, upon the input of $A = \{2, 4, 6, 1, 3, 9, 5\}$ of size $n = 7$ and $k = 3$, your function should return $\{3, 9, 5, 2, 4, 6, 1\}$.					(6)
	<pre>int *rotateArray ({</pre>	int A[], unsi	gned int n, unsigned	d int k)		
	}					
2.	(a) Define a data type v vector and an integer to defloating-point numbers.		sists of a dynamically alloc dimension) of the vector.	· ·	eal with vectors of	(2)

```
(b) Write a function that, for two input vectors \mathbf{v} = (v_0, v_1, \dots, v_{n-1}) and \mathbf{w} = (w_0, w_1, \dots, w_{n-1}),
   returns the dot product \mathbf{v} \cdot \mathbf{w} = v_0 w_0 + v_1 w_1 + \cdots + v_{n-1} w_{n-1}. If the input vectors are not of the same
   dimension, your function should return some appropriate error value. (For example, the macro HUGE_VAL
   defined in math.h translates to Inf in a machine supporting IEEE-754 arithmetic.)
                                                                                                             (6)
   double dotProduct ( vector v, vector w )
   }
3. A two-dimensional character array is used to store a list of names. Each name is stored in a row. An empty
   string indicates the end of the list. Complete the <u>recursive</u> function printNames() to print the names
   stored in the two-dimensional array supplied as p.
                                                                                                             (6)
   void printNames ( char (*p)[100] )
   {
   }
   int main()
   {
       char names[20][100] = { "Bombay", "Delhi", "Guwahati", "Kanpur",
                                       "Kharagpur", "Madras", "Roorkee", "" };
      printNames(names);
      return 0;
```

}