
11Dept. of CSE, IIT KGP

FunctionsFunctions
CS10001:CS10001: Programming & Data StructuresProgramming & Data Structures

Pallab Pallab DasguptaDasgupta
Professor, Dept. of Computer Sc. & Professor, Dept. of Computer Sc. & EnggEngg.,.,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

22Dept. of CSE, IIT KGP

IntroductionIntroduction

•• FunctionFunction
–– A selfA self--contained program segment that carries out some contained program segment that carries out some

specific, wellspecific, well--defined task.defined task.

•• Some properties:Some properties:
–– Every C program consists of one or more functions.Every C program consists of one or more functions.

•• One of these functions must be called “One of these functions must be called “mainmain”.”.
•• Execution of the program always begins by carrying out the Execution of the program always begins by carrying out the

instructions in “instructions in “mainmain”.”.

–– A function will carry out its intended action whenever it is A function will carry out its intended action whenever it is
calledcalled or or invokedinvoked..

33Dept. of CSE, IIT KGP

–– In general, a function will process information that is passed In general, a function will process information that is passed
to it from the calling portion of the program, and returns a to it from the calling portion of the program, and returns a
single value.single value.

•• Information is passed to the function via special identifiers Information is passed to the function via special identifiers
called called argumentsarguments or or parametersparameters..

•• The value is returned by the “The value is returned by the “returnreturn” statement.” statement.

–– Some functions may not return anything.Some functions may not return anything.
•• Return data type specified as “Return data type specified as “voidvoid”.”.

44Dept. of CSE, IIT KGP

#include <#include <stdio.hstdio.h>>

intint factorial (factorial (intint m)m)
{{

intint i, temp=1;i, temp=1;
for (i=1; i<=m; i++)for (i=1; i<=m; i++)

temp = temp = temptemp * i;* i;
return (temp);return (temp);

}}

main()main()
{{

intint n;n;
for (n=1; n<=10; n++)for (n=1; n<=10; n++)

printfprintf (“%d! = %d (“%d! = %d \\n”,n”,
n, factorial (n));n, factorial (n));

}}

Output:

1! = 1

2! = 2

3! = 6 …….. upto 10!

55Dept. of CSE, IIT KGP

Why Functions?Why Functions?

•• FunctionsFunctions
–– Allows one to develop a program in a modular fashionAllows one to develop a program in a modular fashion..

•• DivideDivide--andand--conquer approach.conquer approach.

–– All variables declared inside functions are local variablesAll variables declared inside functions are local variables..

•• Known only in function defined.Known only in function defined.

•• There are exceptions (to be discussed later).There are exceptions (to be discussed later).

–– ParametersParameters
•• Communicate information between functions.Communicate information between functions.

•• They also become local variables.They also become local variables.

66Dept. of CSE, IIT KGP

•• BenefitsBenefits
–– Divide and conquerDivide and conquer

•• Manageable program development.Manageable program development.
•• Construct a program from small pieces or Construct a program from small pieces or

components.components.

–– Software reusabilitySoftware reusability
•• Use existing functions as building blocks for new Use existing functions as building blocks for new

programs.programs.
•• Abstraction: hide internal details (library functions).Abstraction: hide internal details (library functions).

77Dept. of CSE, IIT KGP

Defining a FunctionDefining a Function

•• A function definition has two parts:A function definition has two parts:

–– The first line.The first line.
–– The body of the function.The body of the function.

returnreturn--valuevalue--type functiontype function--name name ((parameterparameter--listlist))
{{

declarations and statementsdeclarations and statements
}}

88Dept. of CSE, IIT KGP

•• The first line contains the returnThe first line contains the return--valuevalue--type, the function name, type, the function name,
and optionally a set of commaand optionally a set of comma--separated arguments enclosed separated arguments enclosed
in parentheses.in parentheses.
–– Each argument has an associated type declaration.Each argument has an associated type declaration.
–– The arguments are calledThe arguments are called formal argumentsformal arguments oror formal formal

parametersparameters..

•• Example:Example:
intint gcdgcd ((intint A, A, intint B)B)

•• The argument data types can also be declared on the next line:The argument data types can also be declared on the next line:
intint gcdgcd (A, B)(A, B)
{ { intint A, B; A, B; ---------- }}

99Dept. of CSE, IIT KGP

•• The body of the function is actually a compound statement The body of the function is actually a compound statement
that defines the action to be taken by the functionthat defines the action to be taken by the function..

intint gcdgcd ((intint A, A, intint B)B)
{{

intint temp;temp;
while ((B % A) != 0) {while ((B % A) != 0) {

temp = B % A;temp = B % A;
B = A;B = A;
A = temp;A = temp;

}}
return (A);return (A);

}}

BODYBODY

1010
Dept. of CSE, IIT KGP

•• When a function is called from some other function, the When a function is called from some other function, the
corresponding arguments in the function call are called corresponding arguments in the function call are called
actual argumentsactual arguments or or actualactual parametersparameters..
–– The formal and actual arguments must match in their The formal and actual arguments must match in their

data types.data types.
–– The notion of positional parameters is importantThe notion of positional parameters is important

•• Point to note:Point to note:
–– The identifiers used as formal arguments are “local”.The identifiers used as formal arguments are “local”.

•• Not recognized outside the function.Not recognized outside the function.
•• Names of formal and actual arguments may differ.Names of formal and actual arguments may differ.

1111
Dept. of CSE, IIT KGP

#include <#include <stdio.hstdio.h>>
/* Compute the GCD of four numbers *//* Compute the GCD of four numbers */

main()main()
{{

intint n1, n2, n3, n4, result;n1, n2, n3, n4, result;
scanfscanf (“%d %d (“%d %d %d%d %d%d”, &n1, &n2, &n3, &n4);”, &n1, &n2, &n3, &n4);
result = result = gcdgcd ((gcdgcd (n1, n2), (n1, n2), gcdgcd (n3, n4));(n3, n4));
printfprintf (“The GCD of %d, %d, %d and %d is %d (“The GCD of %d, %d, %d and %d is %d \\n”,n”,

n1, n2, n3, n4, result);n1, n2, n3, n4, result);
}}

1212
Dept. of CSE, IIT KGP

Function Not Returning Any ValueFunction Not Returning Any Value

•• ExampleExample: A function which prints if a number is divisible by : A function which prints if a number is divisible by
7 or not.7 or not.

void div7 (void div7 (intint n)n)
{{

if ((n % 7) == 0)if ((n % 7) == 0)
printfprintf (“%d is divisible by 7”, n);(“%d is divisible by 7”, n);

elseelse
printfprintf (“%d is not divisible by 7”, n);(“%d is not divisible by 7”, n);

return;return;
}

OPTIONAL
}

1313
Dept. of CSE, IIT KGP

•• Returning controlReturning control

–– If nothing returnedIf nothing returned
•• returnreturn;;

•• or, until reaches right braceor, until reaches right brace

–– If something returnedIf something returned
•• returnreturn expressionexpression;;

1414
Dept. of CSE, IIT KGP

Some PointsSome Points

•• A function cannot be defined within another function.A function cannot be defined within another function.
–– All function definitions must be disjointAll function definitions must be disjoint..

•• Nested function calls are allowed.Nested function calls are allowed.
–– A calls B, B calls C, C calls D, etc.A calls B, B calls C, C calls D, etc.
–– The function called last will be the first to return.The function called last will be the first to return.

•• A function can also call itself, either directly or in a cycle.A function can also call itself, either directly or in a cycle.
–– A calls B, B calls C, C calls back A.A calls B, B calls C, C calls back A.
–– CalledCalled recursive callrecursive call oror recursionrecursion..

1515
Dept. of CSE, IIT KGP

Example:: Example:: mainmain calls calls ncrncr, , ncrncr calls calls factfact

#include <#include <stdio.hstdio.h>>

intint ncrncr ((intint n, n, intint r);r);
intint fact (fact (intint n);n);

main()main()
{{

intint i, m, n, sum=0;i, m, n, sum=0;
scanfscanf (“%d %d”, &m, &n);(“%d %d”, &m, &n);

for (i=1; i<=m; i+=2)for (i=1; i<=m; i+=2)
sum = sum = sumsum + + ncrncr (n, i);(n, i);

printfprintf (“Result: %d (“Result: %d \\n”, sum);n”, sum);
}}

intint ncrncr ((intint n, n, intint r)r)
{{

return (return (fact(nfact(n) /) / fact(rfact(r) /) /
fact(nfact(n--rr));));

}}

intint fact (fact (intint n)n)
{{

intint i, temp=1;i, temp=1;
for (i=1; i<=n; i++)for (i=1; i<=n; i++)

temp *= i;temp *= i;
return (temp);return (temp);

}}

Variable
Scope

Output:

A = 3

A = 2

A = 1

#include <stdio.h>
int A;
void main()
{ A = 1;

myProc();
printf ("A = %d\n", A);

}

void myProc()
{ int A = 2;

while(A==2)
{

int A = 3;
printf ("A = %d\n", A);
break;

}
printf ("A = %d\n", A);

}
16

1717
Dept. of CSE, IIT KGP

Math Library FunctionsMath Library Functions

•• Math library functionsMath library functions
–– perform common mathematical calculationsperform common mathematical calculations

#include <math.h>#include <math.h>

•• Format for calling functionsFormat for calling functions
FunctionName (argument);FunctionName (argument);

•• If multiple arguments, use commaIf multiple arguments, use comma--separated listseparated list
printfprintf ("%f", sqrt(900.0));("%f", sqrt(900.0));

•• Calls function Calls function sqrtsqrt, which returns the square root of its , which returns the square root of its
argument.argument.

•• All math functions return data type All math functions return data type doubledouble..

–– Arguments may be constants, variables, or expressionsArguments may be constants, variables, or expressions..

1818
Dept. of CSE, IIT KGP

Math Library FunctionsMath Library Functions

double double acos(doubleacos(double x) x) –– Compute arc cosine of x. Compute arc cosine of x.
double double asin(doubleasin(double x) x) –– Compute arc sine of x. Compute arc sine of x.
double double atan(doubleatan(double x) x) –– Compute arc tangent of x.Compute arc tangent of x.
double atan2(double y, double x)double atan2(double y, double x) –– Compute arc tangent of Compute arc tangent of y/xy/x. .
double double cos(doublecos(double x) x) –– Compute cosine of angle in radians.Compute cosine of angle in radians.
double double cosh(doublecosh(double x) x) –– Compute the hyperbolic cosine of x.Compute the hyperbolic cosine of x.
double double sin(doublesin(double x) x) –– Compute sine of angle in radians. Compute sine of angle in radians.
double double sinh(doublesinh(double x)x) –– Compute the hyperbolic sine of x. Compute the hyperbolic sine of x.
double double tan(doubletan(double x) x) –– Compute tangent of angle in radians. Compute tangent of angle in radians.
double double tanh(doubletanh(double x) x) –– Compute the hyperbolic tangent of x. Compute the hyperbolic tangent of x.

1919
Dept. of CSE, IIT KGP

Math Library FunctionsMath Library Functions

double double ceil(doubleceil(double x) x) –– Get smallest integral value that exceeds x.Get smallest integral value that exceeds x.
double double floor(doublefloor(double x) x) –– Get largest integral value less than x. Get largest integral value less than x.
double double exp(doubleexp(double x) x) –– Compute exponential of x.Compute exponential of x.
double double fabsfabs (double x) (double x) –– Compute absolute value of x.Compute absolute value of x.
double double log(doublelog(double x)x) –– Compute log to the base e of x. Compute log to the base e of x.
double log10 (double x) double log10 (double x) –– Compute log to the base 10 of x. Compute log to the base 10 of x.
double double powpow (double x, double y) (double x, double y) –– Compute x raised to the power y. Compute x raised to the power y.
double double sqrt(doublesqrt(double x) x) –– Compute the square root of x.Compute the square root of x.

2020
Dept. of CSE, IIT KGP

Function PrototypesFunction Prototypes

•• Usually, a function is defined before it is called.Usually, a function is defined before it is called.
–– main()main() is the last function in the program.is the last function in the program.
–– Easy for the compiler to identify function definitions in a Easy for the compiler to identify function definitions in a

single scan through the file.single scan through the file.

•• However, many programmers prefer a topHowever, many programmers prefer a top--down approach, down approach,
where the functions follow where the functions follow main().main().

–– Must be some way to tell the compiler.Must be some way to tell the compiler.
–– Function prototypes are used for this purpose.Function prototypes are used for this purpose.

•• Only needed if function definition comes after use.Only needed if function definition comes after use.

2121
Dept. of CSE, IIT KGP

–– Function prototypes are usually written at the beginning of Function prototypes are usually written at the beginning of
a program, ahead of any functions (including a program, ahead of any functions (including main()main()))..

–– Examples:Examples:
intint gcdgcd ((intint A, A, intint B);B);
void div7 (void div7 (intint number);number);

•• Note the semicolon at the end of the line.Note the semicolon at the end of the line.
•• The argument names can be different; but it is a good The argument names can be different; but it is a good

practice to use the same names as in the function definition.practice to use the same names as in the function definition.

2222
Dept. of CSE, IIT KGP

Header FilesHeader Files

•• Header filesHeader files
–– Contain function prototypes for library functions.Contain function prototypes for library functions.
–– <stdlib.h><stdlib.h> , , <math.h><math.h> , etc, etc
–– Load with:Load with: #include <filename>#include <filename>
–– ExampleExample::

#include <math.h>#include <math.h>

•• Custom header filesCustom header files
–– Create Create file(sfile(s) with function definitions.) with function definitions.
–– Save as Save as filename.hfilename.h (say).(say).
–– Load in other files with Load in other files with #include "filename.h"#include "filename.h"

–– Reuse functions.Reuse functions.

2323
Dept. of CSE, IIT KGP

Parameter passing: by Value and by ReferenceParameter passing: by Value and by Reference

•• Used when invoking functions.Used when invoking functions.

•• Call by valueCall by value
–– Passes the Passes the valuevalue of the argument to the function.of the argument to the function.
–– Execution of the function does not affect the original.Execution of the function does not affect the original.
–– Used when function does not need to modify argument.Used when function does not need to modify argument.

•• Avoids accidental changes.Avoids accidental changes.

•• Call by referenceCall by reference
–– Passes the Passes the reference reference to the original argument.to the original argument.
–– Execution of the function may affect the original.Execution of the function may affect the original.
–– Not directly supported in C Not directly supported in C –– can be effected by using pointerscan be effected by using pointers

“C supports only call by value”“C supports only call by value”

2424
Dept. of CSE, IIT KGP

Example:Random Number GenerationExample:Example:Random Number GenerationRandom Number Generation

•• randrand functionfunction
–– Prototype defined in Prototype defined in <stdlib.h><stdlib.h>
–– Returns "random" number between Returns "random" number between 00 and and RAND_MAXRAND_MAX

i = rand();i = rand();

–– PseudorandomPseudorandom
–– Preset sequence of "random" numbersPreset sequence of "random" numbers

•• Same sequence for every function callSame sequence for every function call

•• ScalingScaling
–– To get a random number between To get a random number between 11 and and nn

1 + (rand() % n)1 + (rand() % n)

–– To simulate the roll of a dice:To simulate the roll of a dice:
1 + (rand() % 6)1 + (rand() % 6)

2525
Dept. of CSE, IIT KGP

Random Number Generation: Contd.Random Number Generation: Contd.

•• srandsrand functionfunction
–– Prototype defined inPrototype defined in <<stdlib.hstdlib.h>>..

–– Takes an integer seed, and randomizes the random Takes an integer seed, and randomizes the random
number generator.number generator.

srandsrand (seed);(seed);

2626
Dept. of CSE, IIT KGP

1 /* A programming example
2 Randomizing die-rolling program */
3 #include <stdlib.h>
4 #include <stdio.h>
5

6 int main()
7 {

8 int i;
9 unsigned seed;
10

11 printf("Enter seed: ");
12 scanf("%u", &seed);
13 srand(seed);
14

15 for (i = 1; i <= 10; i++) {
16 printf("%10d ", 1 + (rand() % 6));
17

18 if (i % 5 == 0)
19 printf("\n");
20 }
21

22 return 0;
23 }

2727
Dept. of CSE, IIT KGP

Program OutputProgram Output

Enter seed: 867
2 4 6 1 6
1 1 3 6 2

Enter seed: 67
6 1 4 6 2
1 6 1 6 4

Enter seed: 67
6 1 4 6 2
1 6 1 6 4

2828
Dept. of CSE, IIT KGP

#define: Macro definition#define: Macro definition

•• Preprocessor directive in the following formPreprocessor directive in the following form::
#define string1 string2#define string1 string2

–– Replaces string1 by string2 wherever it occurs before Replaces string1 by string2 wherever it occurs before
compilation. For example,compilation. For example,

#define PI 3.1415926#define PI 3.1415926

2929
Dept. of CSE, IIT KGP

#define: Macro definition#define: Macro definition

#include <#include <stdio.hstdio.h>>

#define PI 3.1415926#define PI 3.1415926

main()main()

{{

float r=4.0,area;float r=4.0,area;

area=PI*r*r;area=PI*r*r;

}}

#include <#include <stdio.hstdio.h>>

main()main()

{{

float r=4.0,area;float r=4.0,area;

area=area=3.14159263.1415926*r*r;*r*r;

}}

3030
Dept. of CSE, IIT KGP

#define with arguments#define with arguments

•• #define#define statement may be used with arguments.statement may be used with arguments.

–– Example: Example: #define #define sqr(xsqr(x) x*x) x*x

–– How will macro substitution be carried out?How will macro substitution be carried out?
r = r = sqr(asqr(a) + sqr(30);) + sqr(30); r = a*a + 30*r = a*a + 30*3030;;

r = r = sqr(a+bsqr(a+b);); r = r = a+ba+b**a+ba+b;;

–– The macro definition should have been written as:The macro definition should have been written as:
#define #define sqr(xsqr(x) (x)*(x)) (x)*(x)

r = (r = (a+ba+b)*()*(a+ba+b););

WRONG?WRONG?

3131
Dept. of CSE, IIT KGP

RecursionRecursion

•• A process by which a function calls itself repeatedly.A process by which a function calls itself repeatedly.
–– Either directly.Either directly.

•• X calls X.X calls X.

–– Or cyclically in a chain.Or cyclically in a chain.
•• X calls Y, and Y calls X.X calls Y, and Y calls X.

•• Used for repetitive computations in which each action is stated Used for repetitive computations in which each action is stated
in terms of a previous result.in terms of a previous result.

fact(nfact(n) = n * fact (n) = n * fact (n--1)1)

3232
Dept. of CSE, IIT KGP

Contd.Contd.

•• For a problem to be written in recursive form, two conditions For a problem to be written in recursive form, two conditions
are to be satisfied:are to be satisfied:

–– It should be possible to express the problem in recursive It should be possible to express the problem in recursive
form.form.

–– The problem statement must include a stopping conditionThe problem statement must include a stopping condition

fact(nfact(n) = 1, if n = 0) = 1, if n = 0
= n * fact(n= n * fact(n--1), if n > 01), if n > 0

3333
Dept. of CSE, IIT KGP

•• Examples:Examples:

–– Factorial:Factorial:
fact(0) = 1fact(0) = 1
fact(nfact(n) = n * fact(n) = n * fact(n--1), if n > 01), if n > 0

–– GCD:GCD:
gcdgcd (m, m) = m(m, m) = m
gcdgcd (m, n) = (m, n) = gcdgcd ((m%nm%n, n), if m > n, n), if m > n
gcdgcd (m, n) = (m, n) = gcdgcd (n, (n, n%mn%m), if m < n), if m < n

–– Fibonacci series (1,1,2,3,5,8,13,21,….)Fibonacci series (1,1,2,3,5,8,13,21,….)
fib (0) = 1fib (0) = 1
fib (1) = 1fib (1) = 1
fib (n) = fib (nfib (n) = fib (n--1) + fib (n1) + fib (n--2), if n > 12), if n > 1

3434
Dept. of CSE, IIT KGP

Example 1 :: FactorialExample 1 :: Factorial

long long intint fact (n)fact (n)
intint n;n;
{{

if (n = = 1)if (n = = 1)
return (1);return (1);

elseelse
return (n * fact(nreturn (n * fact(n--1));1));

} }

3535
Dept. of CSE, IIT KGP

Example 1 :: Factorial ExecutionExample 1 :: Factorial Execution

if (if (11 = = 1) = = 1) return (1);return (1);
else return (1 * fact(0)); else return (1 * fact(0));

fact(4)fact(4)

if (if (44 = = 1) return (1);= = 1) return (1);
else return (else return (4 * fact(3)4 * fact(3)););

if (if (33 = = 1) return (1);= = 1) return (1);
else return (else return (3 * fact(2)3 * fact(2)););

if (if (22 = = 1) return (1);= = 1) return (1);
else return (else return (2 * fact(1)2 * fact(1));); 11

22

66

2424

long long intint fact (n)fact (n)
intint n;n;
{{

if (n = = 1) return (1);if (n = = 1) return (1);
else return (n * fact(nelse return (n * fact(n--1));1));

} }

3636
Dept. of CSE, IIT KGP

Example 2 :: Fibonacci numberExample 2 :: Fibonacci number

•• Fibonacci number f(n) can be defined as:Fibonacci number f(n) can be defined as:
f(0) = 0f(0) = 0
f(1) = 1f(1) = 1
f(n) = f(nf(n) = f(n--1) + f(n1) + f(n--2), if n > 12), if n > 1

–– The successive Fibonacci numbers are:The successive Fibonacci numbers are:
0, 1, 1, 2, 3, 5, 8, 13, 21, …..0, 1, 1, 2, 3, 5, 8, 13, 21, …..

•• Function definition:Function definition:

intint f (f (intint n)n)
{{

if (n < 2) return (n);if (n < 2) return (n);
else return (f(nelse return (f(n--1) + f(n1) + f(n--2));2));

}}

3737
Dept. of CSE, IIT KGP

Tracing ExecutionTracing Execution
•• How many times is the How many times is the

function called when function called when
evaluating f(4) ?evaluating f(4) ?

•• Inefficiency:Inefficiency:
–– Same thing is computed Same thing is computed

several times.

f(4)

f(3) f(2)

f(1)f(2) f(0)f(1)

f(1) f(0)several times.

called 9 times

3838
Dept. of CSE, IIT KGP

Notable Point Notable Point

•• Every recursive program can also be written without recursionEvery recursive program can also be written without recursion
•• Recursion is used for programming convenience, not for Recursion is used for programming convenience, not for

performance enhancementperformance enhancement
•• Sometimes, if the function being computed has a nice Sometimes, if the function being computed has a nice

recurrence form, then a recursive code may be more readablerecurrence form, then a recursive code may be more readable

3939
Dept. of CSE, IIT KGP

Example 3 :: Towers of Hanoi ProblemExample 3 :: Towers of Hanoi Problem

5
4
3
2
1

LEFT CENTER RIGHT

4040
Dept. of CSE, IIT KGP

•• The problem statement:The problem statement:

–– Initially all the disks are stacked on the LEFT pole.Initially all the disks are stacked on the LEFT pole.

–– Required to transfer all the disks to the RIGHT pole.Required to transfer all the disks to the RIGHT pole.
•• Only one disk can be moved at a time.Only one disk can be moved at a time.
•• A larger disk cannot be placed on a smaller diskA larger disk cannot be placed on a smaller disk..

–– CENTER pole is used for temporary storage of disks.CENTER pole is used for temporary storage of disks.

4141
Dept. of CSE, IIT KGP

•• Recursive statement of the general problem of n disks.Recursive statement of the general problem of n disks.
–– Step 1: Step 1:

•• Move the top (nMove the top (n--1) disks from LEFT to CENTER.1) disks from LEFT to CENTER.
–– Step 2:Step 2:

•• Move the largest disk from LEFT to RIGHT.Move the largest disk from LEFT to RIGHT.
–– Step 3:Step 3:

•• Move the (nMove the (n--1) disks from CENTER to RIGHT.1) disks from CENTER to RIGHT.

4242
Dept. of CSE, IIT KGP

#include <#include <stdio.hstdio.h>>

void transfer (void transfer (intint n, char from, char to, char temp);n, char from, char to, char temp);

main()main()
{{

intint n; /* Number of disks */n; /* Number of disks */
scanfscanf (“%d”, &n);(“%d”, &n);
transfer (n, ‘L’, ‘R’, ‘C’);transfer (n, ‘L’, ‘R’, ‘C’);

}}

void transfer (void transfer (intint n, char from, char to, char temp)n, char from, char to, char temp)
{{

if (n > 0) {if (n > 0) {
transfer (ntransfer (n--1, from, temp, to);1, from, temp, to);
printfprintf (“Move disk %d from %c to %c (“Move disk %d from %c to %c \\n”, n, from, to);n”, n, from, to);
transfer (ntransfer (n--1, temp, to, from);1, temp, to, from);

}}
return;return;

}}

4343
Dept. of CSE, IIT KGP

4444
Dept. of CSE, IIT KGP

4545
Dept. of CSE, IIT KGP

Recursion vs. IterationRecursion vs. Iteration

•• RepetitionRepetition
–– Iteration: explicit loopIteration: explicit loop
–– Recursion: repeated function callsRecursion: repeated function calls

•• TerminationTermination
–– Iteration: loop condition failsIteration: loop condition fails
–– Recursion: base case recognizedRecursion: base case recognized

•• Both can have infinite loopsBoth can have infinite loops
•• Balance Balance

–– Choice between performance (iteration) and good Choice between performance (iteration) and good
software engineering (recursion).software engineering (recursion).

4646
Dept. of CSE, IIT KGP

How are function calls implemented?How are function calls implemented?

•• The following applies in general, with minor variations that areThe following applies in general, with minor variations that are
implementation dependent.implementation dependent.

–– The system maintains a stack in memory.The system maintains a stack in memory.
•• Stack is a lastStack is a last--in firstin first--out structure.out structure.
•• Two operations on stack, push and pop.Two operations on stack, push and pop.

–– Whenever there is a function call, the activation record gets Whenever there is a function call, the activation record gets
pushed into the stack.pushed into the stack.

•• Activation record consists of the return address in the calling Activation record consists of the return address in the calling
program, the return value from the function, and the local program, the return value from the function, and the local
variables inside the function.variables inside the function.

4747
Dept. of CSE, IIT KGP

main()
{

……..
x = gcd (a, b);
……..

}

int gcd (int x, int y)
{

……..
……..
return (result);

}

S
TA

C
K

Return Addr
Return Value

Local
VariablesActivation

record

After returnBefore call After call

4848
Dept. of CSE, IIT KGP

main()
{

……..
x = ncr (a, b);
……..

}

int ncr (int n, int r)
{

return (fact(n)/
fact(r)/fact(n-r));

}

LV1, RV1, RA1

int fact (int n)
{

………
return (result);

}

3 times

LV1, RV1, RA1

LV2, RV2, RA2

3 times

LV1, RV1, RA1

Before call Call ncr Call fact fact returns ncr returns

4949
Dept. of CSE, IIT KGP

What happens for recursive calls?What happens for recursive calls?

•• What we have seen ….What we have seen ….
–– Activation record gets pushed into the stack when a function Activation record gets pushed into the stack when a function

call is made.call is made.
–– Activation record is popped off the stack when the function Activation record is popped off the stack when the function

returns.returns.

•• In recursion, a function calls itself.In recursion, a function calls itself.
–– Several function calls going on, with none of the function Several function calls going on, with none of the function

calls returning back.calls returning back.
•• Activation records are pushed onto the stack continuously.Activation records are pushed onto the stack continuously.
•• Large stack space required.Large stack space required.

5050
Dept. of CSE, IIT KGP

–– Activation records keep popping off, when the termination Activation records keep popping off, when the termination
condition of recursion is reached.condition of recursion is reached.

•• We shall illustrate the process by an example of computing We shall illustrate the process by an example of computing
factorial.factorial.
–– Activation record looks like:Activation record looks like:

Return Addr
Return Value

Local
Variables

5151
Dept. of CSE, IIT KGP

Example:: main() calls fact(3)Example:: main() calls fact(3)

main()
{

int n;
n = 3;
printf (“%d \n”, fact(n));

}
int fact (n)
int n;
{

if (n = = 0)
return (1);

else
return (n * fact(n-1));

}

5252
Dept. of CSE, IIT KGP

TRACE OF THE STACK DURING EXECUTION

RA .. main
-

n = 3

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1
RA .. fact

1
n = 0

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
1*1 = 1
n = 1

RA .. main
-

n = 3
RA .. fact
2*1 = 2
n = 2

RA .. main
3*2 = 6
n = 3

main
calls
fact

fact
returns
to main

5353
Dept. of CSE, IIT KGP

Do YourselfDo Yourself
•• Trace the activation records for the following version of FibonaTrace the activation records for the following version of Fibonacci cci

sequence.sequence.

#include <#include <stdio.hstdio.h>>
intint f (f (intint n)n)
{{

intint a, b;a, b;
if (n < 2) return (n);if (n < 2) return (n);
else {else {

a = f(na = f(n--1);1);
b = f(nb = f(n--2);2);
return (return (a+ba+b); }); }

}}

main() {main() {
printf(“Fib(4) is: %d printf(“Fib(4) is: %d \\n”, f(4));n”, f(4));

}}

Return Addr
(either main,

or X, or Y)

Return Value

Local
Variables
(n, a, b)

X

Y

main

5454
Dept. of CSE, IIT KGP

Storage Class of VariablesStorage Class of Variables

5555
Dept. of CSE, IIT KGP

What is Storage Class?What is Storage Class?

•• It refers to the permanence of a variable, and its It refers to the permanence of a variable, and its scopescope within a within a
program.program.

•• Four storage class specifications in C:Four storage class specifications in C:
–– AutomaticAutomatic:: autoauto

–– External External : : externextern

–– Static Static : : staticstatic

–– Register Register : : registerregister

5656
Dept. of CSE, IIT KGP

Automatic VariablesAutomatic Variables

•• These are always declared within a function and are local to theThese are always declared within a function and are local to the
function in which they are declared.function in which they are declared.
–– Scope is confined to that function.Scope is confined to that function.

•• This is the default storage class specification.This is the default storage class specification.
–– All variables are considered as All variables are considered as autoauto unless explicitly unless explicitly

specified otherwise.specified otherwise.
–– The keyword The keyword autoauto is optional.is optional.
–– An automatic variable does not retain its value once control is An automatic variable does not retain its value once control is

transferred out of its defining function.transferred out of its defining function.

5757
Dept. of CSE, IIT KGP

#include <#include <stdio.hstdio.h>>

intint factorial(intfactorial(int m)m)
{{

auto auto intint i;i;
auto auto intint temp=1;temp=1;
for (i=1; i<=m; i++)for (i=1; i<=m; i++)

temp = temp = temptemp * i;* i;
return (temp);return (temp);

}}

main()main()
{{

auto auto intint n;n;
for (n=1; n<=10; n++)for (n=1; n<=10; n++)
printfprintf (“%d! = %d (“%d! = %d

\\n”, n”,
n, factorial n, factorial

(n));(n));
}}

5858
Dept. of CSE, IIT KGP

Static VariablesStatic Variables

•• Static variables are defined within individual functions and havStatic variables are defined within individual functions and have e
the same scope as automatic variables.the same scope as automatic variables.

•• Unlike automatic variables, static variables retain their valuesUnlike automatic variables, static variables retain their values
throughout the life of the program.throughout the life of the program.
–– If a function is exited and reIf a function is exited and re--entered at a later time, the static entered at a later time, the static

variables defined within that function will retain their previouvariables defined within that function will retain their previous s
values.values.

–– Initial values can be included in the static variable declaratioInitial values can be included in the static variable declaration.n.
•• Will be initialized only once.Will be initialized only once.

•• An example of using static variable:An example of using static variable:
–– Count number of times a function is called.Count number of times a function is called.

5959
Dept. of CSE, IIT KGP

EXAMPLE 1

#include <#include <stdio.hstdio.h>>

intint factorial (factorial (intint n)n)

{{

static static intint count=0;count=0;

count++;count++;

printfprintf (“n=%d, count=%d (“n=%d, count=%d \\n”, n, count);n”, n, count);

if (n == 0) return 1;if (n == 0) return 1;

else return (n * factorial(nelse return (n * factorial(n--1));1));

}}

main()main()

{{

intint i=6;i=6;

printfprintf (“Value is: %d (“Value is: %d \\n”, n”, factorial(ifactorial(i));));

}}

6060
Dept. of CSE, IIT KGP

•• Program output:Program output:
n=6, count=1n=6, count=1
n=5, count=2n=5, count=2
n=4, count=3n=4, count=3
n=3, count=4n=3, count=4
n=2, count=5n=2, count=5
n=1, count=6n=1, count=6
n=0, count=7n=0, count=7
Value is: 720Value is: 720

6161
Dept. of CSE, IIT KGP

EXAMPLE 2

#include <#include <stdio.hstdio.h>>

intint fib (fib (intint n)n)

{{

static static intint count=0;count=0;

count++;count++;

printfprintf (“n=%d, count=%d (“n=%d, count=%d \\n”, n, count);n”, n, count);

if (n < 2) return n;if (n < 2) return n;

else return (fib(nelse return (fib(n--1) + fib(n1) + fib(n--2));2));

}}

main()main()

{{

intint i=4;i=4;

printfprintf (“Value is: %d (“Value is: %d \\n”, n”, fib(ifib(i));));

}}

6262
Dept. of CSE, IIT KGP

•• Program output:Program output:
n=4, count=1n=4, count=1
n=3, count=2n=3, count=2
n=2, count=3n=2, count=3
n=1, count=4n=1, count=4
n=0, count=5n=0, count=5
n=1, count=6n=1, count=6
n=2, count=7n=2, count=7
n=1, count=8n=1, count=8
n=0, count=9n=0, count=9
Value is: 3 [0,1,1,2,3,5,8,….]Value is: 3 [0,1,1,2,3,5,8,….]

f(4)

f(3) f(2)

f(1)f(2) f(0)f(1)

f(1) f(0)

6363
Dept. of CSE, IIT KGP

Register VariablesRegister Variables

•• These variables are stored in highThese variables are stored in high--speed registers within the CPU.speed registers within the CPU.

–– Commonly used variables may be declared as register Commonly used variables may be declared as register
variables.variables.

–– Results in increase in execution speed.Results in increase in execution speed.

–– The allocation is done by the compiler.The allocation is done by the compiler.

6464
Dept. of CSE, IIT KGP

External VariablesExternal Variables

•• They are not confined to single functions.They are not confined to single functions.
•• Their scope extends from the point of definition through the Their scope extends from the point of definition through the

remainder of the program.remainder of the program.
–– They may span more than one functions.They may span more than one functions.
–– Also called global variablesAlso called global variables..

•• Alternate way of declaring global variables.Alternate way of declaring global variables.
–– Declare them outside the function, at the beginningDeclare them outside the function, at the beginning..

6565
Dept. of CSE, IIT KGP

#include <#include <stdio.hstdio.h>>

intint count=0; /** GLOBAL VARIABLE **/count=0; /** GLOBAL VARIABLE **/

intint factorial (factorial (intint n)n)

{{

count++;count++;

printfprintf (“n=%d, count=%d (“n=%d, count=%d \\n”, n, count);n”, n, count);

if (n == 0) return 1;if (n == 0) return 1;

else return (n * factorial(nelse return (n * factorial(n--1));1));

}}

main() {main() {

intint i=6;i=6;

printfprintf (“Value is: %d (“Value is: %d \\n”, n”, factorial(ifactorial(i));));

printfprintf (“Count is: %d (“Count is: %d \\n”, count);n”, count);

}}

6666
Dept. of CSE, IIT KGP

•• Program output:Program output:
n=6, count=1n=6, count=1
n=5, count=2n=5, count=2
n=4, count=3n=4, count=3
n=3, count=4n=3, count=4
n=2, count=5n=2, count=5
n=1, count=6n=1, count=6
n=0, count=7n=0, count=7
Value is: 720Value is: 720
Count is: 7Count is: 7

	FunctionsCS10001: Programming & Data Structures
	Introduction
	Why Functions?
	
	Defining a Function
	Function Not Returning Any Value
	Some Points
	Example:: main calls ncr, ncr calls fact
	Variable Scope
	Math Library Functions
	Math Library Functions
	Math Library Functions
	Function Prototypes
	Header Files
	Parameter passing: by Value and by Reference
	Example:Random Number Generation
	Random Number Generation: Contd.
	#define: Macro definition
	#define: Macro definition
	#define with arguments
	Recursion
	Contd.
	Example 1 :: Factorial
	Example 1 :: Factorial Execution
	Example 2 :: Fibonacci number
	Tracing Execution
	Notable Point
	Example 3 :: Towers of Hanoi Problem
	Recursion vs. Iteration
	How are function calls implemented?
	What happens for recursive calls?
	Example:: main() calls fact(3)
	Do Yourself
	Storage Class of Variables
	What is Storage Class?
	Automatic Variables
	Static Variables
	Register Variables
	External Variables

