# **Number Representation**

#### **CS10001: Programming & Data Structures**



#### Pallab Dasgupta

Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

## **Topics to be Discussed**

- How are numeric data items actually stored in computer memory?
- How much space (memory locations) is allocated for each type of data?
  - int, float, char, etc.
- How are characters and strings stored in memory?

#### **Number System :: The Basics**

- We are accustomed to using the so-called *decimal number* system.
  - Ten digits :: 0,1,2,3,4,5,6,7,8,9
  - Every digit position has a weight which is a power of 10.
  - Base or radix is 10.

```
Example:

234 = 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0

250.67 = 2 \times 10^2 + 5 \times 10^1 + 0 \times 10^0 + 6 \times 10^{-1}

+ 7 \times 10^{-2}
```



### **Binary Number System**

- Two digits:
  - 0 and 1.
  - Every digit position has a weight which is a power of 2.
  - Base or radix is 2.
- Example:

 $110 = 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$  $101.01 = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$ 

#### **Binary-to-Decimal Conversion**

- Each digit position of a binary number has a weight.
  - Some power of 2.
- A binary number:

 $B = b_{n-1} b_{n-2} \dots b_1 b_0 \dots b_{-1} b_{-2} \dots b_{-m}$ Corresponding value in decimal:

$$D = \sum_{i = -m}^{n-1} b_i 2$$

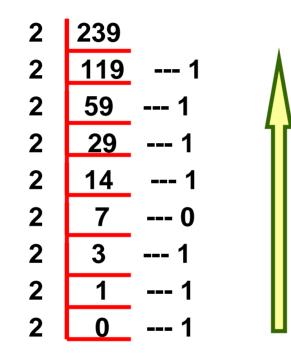
#### **Examples**

```
101011 \rightarrow 1x2^5 + 0x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0
1.
                                       = 43
             (101011)_2 = (43)_{10}
     .0101 \rightarrow 0x2<sup>-1</sup> + 1x2<sup>-2</sup> + 0x2<sup>-3</sup> + 1x2<sup>-4</sup>
2.
                                       = .3125
             (.0101)_2 = (.3125)_{10}
3.
       101.11 \rightarrow 1x2<sup>2</sup> + 0x2<sup>1</sup> + 1x2<sup>0</sup> + 1x2<sup>-1</sup> + 1x2<sup>-2</sup>
                                       5.75
             (101.11)_2 = (5.75)_{10}
```

## **Decimal-to-Binary Conversion**

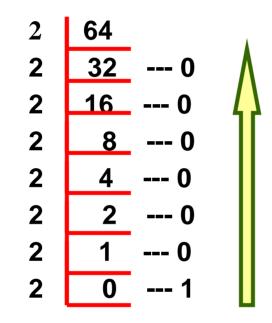
- Consider the integer and fractional parts separately.
- For the integer part,
  - Repeatedly divide the given number by 2, and go on accumulating the remainders, until the number becomes zero.
  - Arrange the remainders in reverse order.
- For the fractional part,
  - Repeatedly multiply the given fraction by 2.
    - Accumulate the integer part (0 or 1).
    - If the integer part is 1, chop it off.
  - Arrange the integer parts in the order they are obtained.

### Example 1 :: 239



#### $(239)_{10} = (11101111)_2$

### Example 2 :: 64



#### $(64)_{10} = (100000)_2$

#### Example 3 :: .634

:

 $.634 \times 2 = 1.268$   $.268 \times 2 = 0.536$   $.536 \times 2 = 1.072$   $.072 \times 2 = 0.144$  $.144 \times 2 = 0.288$ 

 $(.634)_{10} = (.10100....)_2$ 

### Example 4 :: 37.0625

$$(37)_{10} = (100101)_2$$
  
 $(.0625)_{10} = (.0001)_2$ 

 $\therefore$  (37.0625)<sub>10</sub> = (100101.0001)<sub>2</sub>

### **Hexadecimal Number System**

- A compact way of representing binary numbers.
- 16 different symbols (radix = 16).

| 0 → 0000 | 8 → 1000 |
|----------|----------|
| 1 → 0001 | 9 → 1001 |
| 2 → 0010 | A → 1010 |
| 3 → 0011 | B → 1011 |
| 4 → 0100 | C → 1100 |
| 5 → 0101 | D → 1101 |
| 6 → 0110 | E → 1110 |
| 7 → 0111 | F → 1111 |

#### **Binary-to-Hexadecimal Conversion**

- For the integer part,
  - Scan the binary number from right to left.
  - Translate each group of four bits into the corresponding hexadecimal digit.
    - Add *leading* zeros if necessary.
- For the fractional part,
  - Scan the binary number from left to right.
  - Translate each group of four bits into the corresponding hexadecimal digit.
    - Add *trailing* zeros if necessary.

## **Example**

- 1.  $(\underline{1011} \ \underline{0100} \ \underline{0011})_2 = (B43)_{16}$
- 2.  $(\underline{10} \ \underline{1010} \ \underline{0001})_2 = (2A1)_{16}$
- 3.  $(.1000 \ 010)_2 = (.84)_{16}$
- 4.  $(\underline{101} \cdot \underline{0101} \, \underline{111})_2 = (5.5E)_{16}$



## **Hexadecimal-to-Binary Conversion**

• Translate every hexadecimal digit into its 4-bit binary equivalent.

#### • Examples:

- $(3A5)_{16} = (0011 \ 1010 \ 0101)_2$
- $(12.3D)_{16} = (0001\ 0010\ .\ 0011\ 1101)_2$
- $(1.8)_{16} = (0001.1000)_2$

#### **Unsigned Binary Numbers**

- An n-bit binary number
  - $\mathbf{B} = \mathbf{b}_{n-1}\mathbf{b}_{n-2} \dots \mathbf{b}_2\mathbf{b}_1\mathbf{b}_0$ 
    - 2<sup>n</sup> distinct combinations are possible, 0 to 2<sup>n</sup>-1.
- For example, for n = 3, there are 8 distinct combinations.
   000, 001, 010, 011, 100, 101, 110, 111
- Range of numbers that can be represented

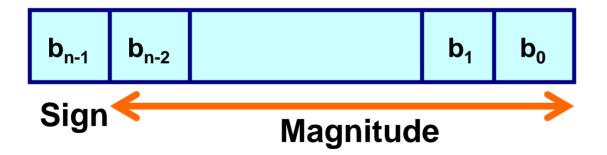
| n=8  | → | 0 to 2 <sup>8</sup> -1 (255)         |
|------|---|--------------------------------------|
| n=16 |   | 0 to 2 <sup>16</sup> -1 (65535)      |
| n=32 | → | 0 to 2 <sup>32</sup> -1 (4294967295) |

### **Signed Integer Representation**

- Many of the numerical data items that are used in a program are signed (positive or negative).
  - Question:: How to represent sign?
- Three possible approaches:
  - Sign-magnitude representation
  - One's complement representation
  - Two's complement representation

## **Sign-magnitude Representation**

- For an n-bit number representation
  - The most significant bit (MSB) indicates sign
    - $0 \rightarrow \text{positive}$
    - $1 \rightarrow negative$
  - The remaining n-1 bits represent magnitude.



#### Contd.

 Range of numbers that can be represented: Maximum :: + (2<sup>n-1</sup> – 1) Minimum :: - (2<sup>n-1</sup> – 1)

#### • A problem:

#### Two different representations of zero.

- +0 → 0 000....0
- **-0** → 1 000....0

## **One's Complement Representation**

- Basic idea:
  - Positive numbers are represented exactly as in signmagnitude form.
  - Negative numbers are represented in 1's complement form.
- How to compute the 1's complement of a number?
  - Complement every bit of the number  $(1 \rightarrow 0 \text{ and } 0 \rightarrow 1)$ .
  - MSB will indicate the sign of the number.
    - $0 \rightarrow \text{positive}$
    - $1 \rightarrow negative$

## Example :: n=4

| 0000 → +0 | <b>1000</b> → -7 |
|-----------|------------------|
| 0001 → +1 | <b>1001 → -6</b> |
| 0010 → +2 | <b>1010 → -5</b> |
| 0011 → +3 | <b>1011 → -4</b> |
| 0100 → +4 | 1100 → -3        |
| 0101 → +5 | 1101 → -2        |
| 0110 → +6 | 1110 → -1        |
| 0111 → +7 | 1111 → -0        |

To find the representation of, say, -4, first note that +4 = 0100 -4 = 1's complement of 0100 = 1011

#### Contd.

• Range of numbers that can be represented:

Maximum ::  $+(2^{n-1}-1)$ Minimum ::  $-(2^{n-1}-1)$ 

• A problem:

Two different representations of zero.

- +0 → 0 000....0
- **-0** → 1 111....1
- Advantage of 1's complement representation
  - Subtraction can be done using addition.
  - Leads to substantial saving in circuitry.

## **Two's Complement Representation**

- Basic idea:
  - Positive numbers are represented exactly as in signmagnitude form.
  - Negative numbers are represented in 2's complement form.
- How to compute the 2's complement of a number?
  - Complement every bit of the number  $(1 \rightarrow 0 \text{ and } 0 \rightarrow 1)$ , and then *add one* to the resulting number.
  - MSB will indicate the sign of the number.
    - $0 \rightarrow \text{positive}$
    - $1 \rightarrow negative$

## Example :: n=4

| 0000 → +0        | <b>1000 → -8</b> |
|------------------|------------------|
| 0001 → +1        | <b>1001 → -7</b> |
| <b>0010</b> → +2 | <b>1010 → -6</b> |
| <b>0011</b> → +3 | <b>1011 → -5</b> |
| 0100 → +4        | 1100 → -4        |
| 0101 → +5        | 1101 → -3        |
| 0110 → +6        | 1110 → -2        |
| 0111 → +7        | 1111 → -1        |

To find the representation of, say, -4, first note that +4 = 0100 -4 = 2's complement of 0100 = 1011+1 = 1100

## Contd.

• Range of numbers that can be represented:

```
Maximum :: + (2^{n-1} - 1)
Minimum :: -2^{n-1}
```

- Advantage:
  - Unique representation of zero.
  - Subtraction can be done using addition.
  - Leads to substantial saving in circuitry.
- Almost all computers today use the 2's complement representation for storing negative numbers.

## Contd.

- In C
  - short int
    - 16 bits  $\rightarrow$  + (2<sup>15</sup>-1) to -2<sup>15</sup>
  - int
    - 32 bits → + (2<sup>31</sup>-1) to -2<sup>31</sup>
  - long int
    - 64 bits  $\rightarrow$  + (2<sup>63</sup>-1) to -2<sup>63</sup>

### **Subtraction Using Addition :: 1's Complement**

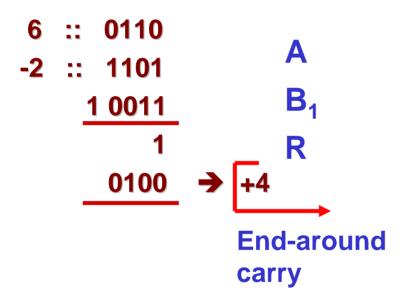
- How to compute A B ?
  - Compute the 1's complement of B (say, B<sub>1</sub>).
  - Compute  $R = A + B_1$
  - If the carry obtained after addition is '1'
    - Add the carry back to R (called end-around carry).
    - That is, R = R + 1.
    - The result is a positive number.

Else

• The result is negative, and is in 1's complement form.

## Example 1 :: 6 – 2

1's complement of 2 = 1101



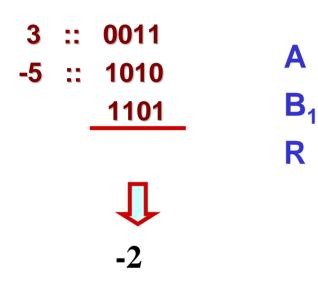
Assume 4-bit representations.

Since there is a carry, it is added back to the result.

The result is positive.

## Example 2 :: 3 – 5

1's complement of 5 = 1010



Assume 4-bit representations.

Since there is no carry, the result is negative.

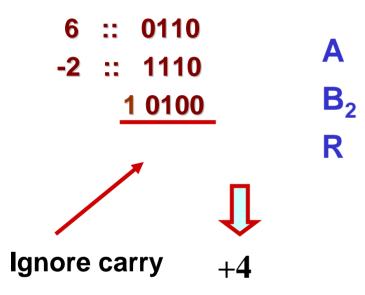
1101 is the 1's complement of 0010, that is, it represents -2.

## **Subtraction Using Addition :: 2's Complement**

- How to compute A B ?
  - Compute the 2's complement of B (say,  $B_2$ ).
  - Compute  $R = A + B_2$
  - If the carry obtained after addition is '1'
    - Ignore the carry.
    - The result is a positive number.
    - Else
      - The result is negative, and is in 2's complement form.

## Example 1 :: 6 – 2

2's complement of 2 = 1101 + 1 = 1110



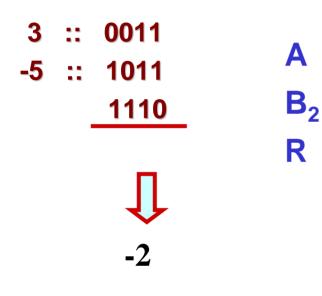
Assume 4-bit representations.

Presence of carry indicates that the result is positive.

No need to add the endaround carry like in 1's complement.

## Example 2 :: 3 – 5

2's complement of 5 = 1010 + 1 = 1011



Assume 4-bit representations.

Since there is no carry, the result is negative.

1110 is the 2's complement of 0010, that is, it represents -2.

## **Floating-point Numbers**

- The representations discussed so far applies only to integers.
  - Cannot represent numbers with fractional parts.
- We can assume a decimal point before a 2's complement number.
  - In that case, pure fractions (without integer parts) can be represented.
- We can also assume the decimal point somewhere in between.
  - This lacks flexibility.
  - Very large and very small numbers cannot be represented.

## **Representation of Floating-Point Numbers**

- A floating-point number F is represented by a doublet <M,E> :
  - $\mathbf{F} = \mathbf{M} \mathbf{X} \mathbf{B}^{\mathsf{E}}$ 
    - $B \rightarrow$  exponent base (usually 2)
    - M → mantissa
    - $E \rightarrow$  exponent
  - M is usually represented in 2's complement form, with an implied decimal point before it.
- For example,
  - In decimal,
    - **0.235 x 10**<sup>6</sup>
  - In binary,
    - 0.101011 x 2<sup>0110</sup>

## **Example :: 32-bit representation**



M represents a 2's complement fraction

1 > M > -1

- E represents the exponent (in 2's complement form)
   127 > E > -128
- Points to note:
  - The number of significant digits depends on the number of bits in M.
    - 6 significant digits for 24-bit mantissa.
  - The *range* of the number depends on the number of bits in E.
    - 10<sup>38</sup> to 10<sup>-38</sup> for 8-bit exponent.

## **A Warning**

- The representation for floating-point numbers as shown is just for illustration.
- The actual representation is a little more complex.
- In C:
  - float :: 32-bit representation
  - double :: 64-bit representation

## **Representation of Characters**

- Many applications have to deal with non-numerical data.
  - Characters and strings.
  - There must be a standard mechanism to represent alphanumeric and other characters in memory.
- Three standards in use:
  - Extended Binary Coded Decimal Interchange Code (EBCDIC)
    - Used in older IBM machines.
  - American Standard Code for Information Interchange (ASCII)
    - Most widely used today.
  - UNICODE
    - Used to represent all international characters.
    - Used by Java.

## **ASCII Code**

- Each individual character is numerically encoded into a unique 7bit binary code.
  - A total of 2<sup>7</sup> or 128 different characters.
  - A character is normally encoded in a byte (8 bits), with the MSB not been used.
- The binary encoding of the characters follow a regular ordering.
  - Digits are ordered consecutively in their proper numerical sequence (0 to 9).
  - Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic order.

| <br>۲'       |       | 5A (H) | 90 (D)  |  |
|--------------|-------|--------|---------|--|
| 'a'          | ::    | 61 (H) | 97 (D)  |  |
|              |       | 62 (H) |         |  |
| ۰۰۰۰<br>۲'Z' | ····· | 7A (H) | 122 (D) |  |
|              |       |        |         |  |
|              |       |        |         |  |

**'A' :: 41 (H) 65 (D)** 

**'B' :: 42 (H)** 66 (D)

'(' :: 28 (H) 40 (D)
'+' :: 2B (H) 43 (D)
'?' :: 3F (H) 63 (D)
'\n' :: 0A (H) 10 (D)
'\0' :: 00 (H) 00 (D)

**'9' :: 39 (H)** 57 (D)

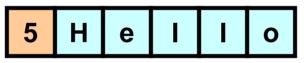
'0' :: 30 (H) 48 (D)
'1' :: 31 (H) 49 (D)

## **Some Common ASCII Codes**

## **Character Strings**

• Two ways of representing a sequence of characters in memory.

 The first location contains the number of characters in the string, followed by the actual characters.



The characters follow one another, and is terminated by a special delimiter.

## **String Representation in C**

- In C, the second approach is used.
  - The '\0' character is used as the string delimiter.
- Example: "Hello" → H e I I o '\0'
- A null string "" occupies one byte in memory.
   Only the '\0' character.