General Announcements

CS10001: Programming & Data Structures

Pallab Dasgupta
Professor, Dept. of Computer Sc. & Engg.,
Indian Institute of Technology Kharagpur

ltems

 Load and Credit Distribution

e Availability of Course Material
e Attendance matters

« References

About the Course

e L-T-P rating of 3-1-0.

« There is a separate laboratory of 0-0-3.
— Grading will be separate.

e Tutorial classes (one hour per week) will be
conducted on a “per section” basis.

« Evaluation in the theory course:

— Mid-semester 30%
— End-semester 50%
— Two class tests and attendance 20%

5% of all components for regularity & performance

Dept. of CSE, IIT KGPJ

Course Materials

. The slides for the lectures will be made available on the web
(in PDF form).

http://144.16.192.60/~pds

« All important announcements will be put up on the web page.

« A copy of the slides will be kept at the Ramakrishna Xerox
Centre. You may choose to bring the handouts to the class
and take notes on them.

Attendance REALLY matters

e Students having poor attendance will loose credits

 Any student with less than 75% attendance may be
debarred from appearing in the examinations

« Leave due to medical reasons must be certified by the
B.C. Roy Technology Hospital

Text / Reference Books

Classroom lectures are not substitutes for books. You must
use reference books to clarify your doubts and enhance your
knowledge.

1. Programming with C (Second Edition)

B.S. Gottfried, Schaum’s Outline Series, Tata McGraw-Hill, 2006.
2. Programming in ANSI C (Second Edition)

E. Balagurusamy, Tata McGraw-Hill, New Delhi, 1992.
3. Data structures

S. Lipschutz, Schaum'’s Outline Series, Tata McGraw-Hill, 2006.

4. Data structures using C and C++ (Second Edition)

Y. Langsam, M.J. Augenstein, A.M. Tanenbaum, Prentice-Hall of
India.

Dept. of CSE, IIT KGPJ

Acknowledgements

Several slides used in my presentations are adapted from the
slides used by Prof. Indranil Sengupta when he took this course a
few semesters ago.

Introduction

CS10001: Programming & Data Structures

Pallab Dasgupta
Professor, Dept. of Computer Sc. & Engg.,
Indian Institute of Technology Kharagpur

The Evolution of Electronic Computing

Communication
becoming
Free !l

Storage

became
Free !l

Computation
became

1980 1990 2000 2010

Home Computer @ 2004: Predicted versus Real

A g el SR AR et

= - LB

¥ O%amanm 25 - = Predicted in 1954
e ";_ & "’ R ,.:D ;;a a8 | _
500 a W

i ST
- Ea e e |

Reallty

Scientises from the RAND Corporation bave created this model ro illustrate bow a “bome computer™ could look like in the

year 2004, Howewer the needed technology will not be economically feasible for the average bome. Also the scientists readily

admit that the computer will require not yet invented tec bwdjg; to actually work, but s¢ years from now scicmtific progress is
'

expecied 1o solve these problems. With teletspe interface an

Dept. of CSiES IIT-

be Fortran language, the computer will be easy ro use.

Storage has become free!!

Magnetic Tape Drive

4 GB Pen Drive

5 MB Hard Disk [1956]

Dept. of CSE, IIT KGPJ

Communication??

Total Worldwide Cellular/PCS Subscriber Base*

(1994-2007)
3,200 -
2 400 1
g 1,600 -
= 1.150
945
ﬂ 4

94 95 9% 97 98 993 00 01 02

Source: IC Insights Year

Dept. of CSE, IIT KGPJ

1,390

03

1,720

04

2,640

2,185

3,010

05
*End-of-Year

06F 0O7F

il ATET = 1:25 PM

Interfaces

A Bluetooth Laser
From punch cards Virtual Keyboard
to paper tapes
to keyboards

ST

Dept. of CSE, IIT KGPJ

From Croenguster Desibop Bncwolopedia
@ 3001 The Compuier Languape Co. Ino.

Architecture ous chame

mamaory slots

AGP

[~

266 MB/s

Typical system architecture
for a desktop PC

SR ATA100
e IDE

drives B-channel

audieo (AC 97}

PCl slots

CPU (Central Processing Unit)

All computations take place here in order for the computer to
perform a designated task.

It has a large number of registers which temporarily store data
and programs (instructions).

It has functional units (circuitry) to carry out arithmetic and
logic operations

It retrieves instructions from the memory, interprets (decodes)
them, and performs the requested operation

Fetch - Decode - Execute cycle

e CPU is also referred to as the processor
« Computers may have multiple processors

« Modern processors are multi-core (multiple processors in one
chip)

Dept. of CSE, IIT KGPJ

Main Memory

— Uses semiconductor technology
» Allows direct access

— Memory sizes in the range of 256 MegaBytes to 8 GigaBytes are
typical today.

— Some measures to be remembered
e 1K =210(=1024)
e 1 M=22 (=one million approx.)
e« 1 G =23 (=one billion approx.)

I/O and Peripherals

* Input Device
— Keyboard, Mouse, Scanner, Digital Camera

e Qutput Device
— Monitor, Printer

 Storage Peripherals

— Magnetic Disks: hard disk, floppy disk
» Allows direct (semi-random) access

— Optical Disks: CDROM, CD-RW, DVD
» Allows direct (semi-random) access

— Flash Memory: pen drives
» Allows direct access

— Magnetic Tape: DAT
 Only sequential access

Dept. of CSE, IIT KGPJ

Typical Configuration of a PC

« CPU: Pentium 1V, 3 GHz
« Main Memory: 1GB

 Hard Disk: 160 GB

 Floppy Disk: Not present

« CDROM: DVD combo-drive
* Input Device: Keyboard, Mouse
 Qutput Device: 17" color monitor

e Ports: USB, Firewire, Infrared

How does a computer work?

e Stored program concept.
— Main difference from a calculator.

« What is a program?
— Set of instructions for carrying out a specific task.

e Where are programs stored?
— In secondary memory, when first created.
— Brought into main memory, during execution.

Dept. of CSE, IIT KGPJ

Number System — The Basics

e We are accustomed to using the so-called decimal number
system.

— Ten digits:: 0,1,2,3,4,5,6,7,8,9

— Every digit position has a weight which is a power of 10.

e Examples:

234 = 2x 102 + 3x 10 + 4x1Q°
250.67=2x10°2 + 5x 10! + Ox10° + 6x 10t + 7 x 107

A computer works on the binary number system

Binary number system:

— Two digits :: 0,1

Every digit position has a weight which is a power of 2.

« Examples:

101 (Binary) = 1x2%2 + O0x 2! + 1x2°=5 (Decimal)
11001 (Binary)

= 1x2% + 1x22 +0x2%2 +0x21+ 1x2°
25 (Decimal)

Bits and Bytes

e Bit
— A single binary digit (0 or 1).
 Nibble
— A collection of four bits (say, 0110).
« Byte
— A collection of eight bits (say, 01000111).

« Word

— Depends on the computer.
— Typically 4 or 8 bytes (that is, 32 or 64 bits).

Contd.

e An k-bit decimal number

— Can express unsigned integers in the range

0 to 10k-1
e For k=3, from 0 to 999.

e An k-bit binary number

— Can express unsigned integers in the range
0 to 2k-1
 For k=8, from 0 to 255.
e For k=10, from 0 to 1023.

Dept. of CSE, IIT KGPJ

Classification of Software

« Two categories:

1. Application Software
 Used to solve a particular problem.
 Editor, financial accounting, weather forecasting, etc.

2. System Software
 Helps in running other programs.
« Compiler, operating system, etc.

Computer Languages

e Machine Language
— EXpressed in binary.
— Directly understood by the computer.

— Not portable; varies from one machine type to another.

 Program written for one type of machine will not run on another
type of machine.

— Difficult to use in writing programs.

Contd.

« Assembly Language
— Mnemonic form of machine language.

— Easier to use as compared to machine language.
 For example, use “ADD” instead of “10110100".

— Not portable (like machine language).
— Requires a translator program called assembler.

Assembly
language
program

Dept. of CSE, IIT KGPJ

Assembler

Machine

——> language

program

Contd.

Assembly language is also difficult to use in writing programs.
— Requires many instructions to solve a problem.

Example: Find the average of three numbers.
A, X
AY
AZ
A3
RES,A

MOV
ADD
ADD
DIV

MOV

 A=X

y A=A +Y
A=A +Z
 A=A/3
; RES=A

In C,
RES=(X+Y+2)/3

High-Level Language

« Machine language and assembly language are called low-level
languages.

— They are closer to the machine.
— Difficult to use.

 High-level languages are easier to use.
— They are closer to the programmer.
— Examples:
e Fortran, Cobol, C, C++, Java.

— Requires an elaborate process of translation.
e Using a software called compiler.

— They are portable across platforms.

Dept. of CSE, IIT KGPJ

From HLL to executable

M HLL
Program
Compiler ‘M Object ‘ Linker ‘MExecutable

Code Code

M Libraries

Operating Systems

« Makes the computer easy to use.
— Basically the computer is very difficult to use.
— Understands only machine language.

« Operating systems make computers easy to use.

 Categories of operating systems:
— Single user

— Multi user
 Time sharing
e Multitasking
 Real time

Dept. of CSE, IIT KGPJ

Contd.

 Popular operating systems:

— Windows 2000/XP: single-user multitasking
— Unix: multi-user
— Linux;: a free version of Unix

« The laboratory class will be based on Linux.

e Question:
— How multiple users can work on the same computer?

Contd.

« Computers connected in a network.

« Many users may work on a computer.
— Over the network.
— At the same time.

— CPU and other resources are shared among the different
programs.
e Called time sharing.
 One program executes at a time.

Basic Programming Concepts

CS10001: Programming & Data Structures

Pallab Dasgupta
Professor, Dept. of Computer Sc. & Engg.,
Indian Institute of Technology Kharagpur

Some Terminologies

e Algorithm / Flowchart
— A step-by-step procedure for solving a particular problem.
— Independent of the programming language.

 Program

— A translation of the algorithm/flowchart into a form that can be
processed by a computer.

— Typically written in a high-level language like C, C++, Java, etc.

Variables and Constants

« Most important concept for problem solving using computers

e All temporary results are stored in terms of variables
— The value of a variable can be changed.
— The value of a constant do not change.

« Where are they stored?
— In main memory.

Contd.

e How does memory look like (logically)?
— As alist of storage locations, each having a unique address.

— Variables and constants are stored in these storage locations.

— A variable is like a bin
e The contents of the bin is the value of the variable
e The variable name is used to refer to the value of the variable

A variable is mapped to a location of the memory, called its
address

Memory map

Address O
Address 1
Address 2
Address 3
Address 4
Address 5
Address 6

Every variable is
mapped to a particular
memory address

Address N-1

Variables in Memory

Instruction executed

Variable X

X=10

T
i
m
e

vV VY

10

20

21

105

Variables in Memory (contd.)

Variable
Instruction executed X v
X =20 > 20 ?
T
i Y =15 > 20 15
m
© X=Y+3 > 18 15
Y=X/6 | > 18 3

Data Types

e Three common data types used:

— Integer :: can store only whole numbers
« Examples: 25, -56, 1, O

— Floating-point :: can store numbers with fractional values.
 Examples: 3.14159, 5.0, -12345.345

— Character :: can store a character
 Examples: ‘A", ‘@', ', ‘3, ‘7, ¥

Dept. of CSE, IIT KGPJ

Data Types (contd.)

e How are they stored in memory?
— Integer ::
* 16 bits
» 32 bits
— Float ::
e 32 bits
* 64 bits
— Char ::
* 8 bits (ASCII code)

Actual number of bits vary from
one computer to another

* 16 bits (UNICODE, used in Java)

Problem solving

e Step 1.
— Clearly specify the problem to be solved.
e Step 2:
— Draw flowchart or write algorithm.
e Step 3.
— Convert flowchart (algorithm) into program code.
e Step 4:
— Compile the program into object code.
e Step S:

— Execute the program.

Dept. of CSE, IIT KGPJ

Flowchart: basic symbols

Computation

Input / Output

Decision Box

N A

vy
<@
T

Dept. of CSES I-

Start / Stop

Contd.

l ST Flow of

control

O) 2 Connector

Example 1: Adding three numbers

START
/READ A, B, C/

S=A+B+C

/OUTPUT s/
STOP

Example 2: Larger of two numbers

START
/READ X,Y/

YES 0 NO

/ OUTPUT X / / OIEAT A /
STOP STOP

Example 3: Largest of three numbers

START
/READ X, Y, z/

Max = X Max =Y

YES @ NO

Example 4: Sum of first N natural numbers

START

yd READ N P

SUM=0
COUNT =1

o
>

\ 4

SUM = SUM + COUNT

\ 4

COUNT = COUNT +1

NO YES
_ﬁ/OUTPUT suvy/”

Dept. of CSE, IIT KGPJ

Example 5: SUM =12 + 22 + 32 + N2

SUM=0
COUNT =1

o
>

\ 4

SUM = SUM + COUNT * COUNT

\ 4

COUNT = COUNT +1

NO YES
_ﬁ/OUTPUT suvy/”

Dept. of CSE, IIT KGPJ

Example 6: SUM=1.2+ 2.3+ 3.4 +to Nterms

COUNT =1

o
>

\ 4

SUM = SUM + COUNT #* (COUNT + 1)

\ 4

COUNT = COUNT +1

NO YES
_ﬁ/OUTPUT suvy/”

Dept. of CSE, IIT KGPJ

Example 7: Computing Factorial

\ 4

PROD =1
COUNT =1

o
>

PROD = PROD * COUNT

\ 4

COUNT = COUNT +1

Example 8: Computing ex series up to N terms

\ 4

TERM =1
SUM =0
COUNT =1

o
>

\ 4

SUM = SUM + TERM
TERM = TERM * X/ COUNT

\ 4

COUNT = COUNT +1

NO YES
_ﬁ/OUTPUT sum,”

Dept. of CSE, IIT KGPJ

Example 8: Computing ex series up to 4 decimal places

\ 4

TERM =1
SUM =0
COUNT =1

o
>

\ 4

SUM = SUM + TERM
TERM = TERM * X/ COUNT

\ 4

COUNT = COUNT +1

Example 10: Roots of a quadratic equation

ax?+bx+c=0

TRY YOURSELF

Example 11: Grade computation

MARKS = 90

89 > MARKS = 80
79 2 MARKS 2 70
69 > MARKS > 60
59 > MARKS = 50
49 > MARKS 2> 35
34 > MARKS

L 2
T T OO T >

Grade Computation (contd.)

START
/READ MARKS/

NO
MARKS > 90? MARKS > 807 _’@
%UTPUT E)/ /)UTPUT A/ OUTPUT B
STOP STOP STOP

Dept. of CSE, IIT KGPJ

MARKS > 60?

g

/>UTPUT C/ OUTPUT - D /)UTPUT ‘P / /)UTPUT ‘F /
STOP STOP STOP STOP

Programming in C: Basics

CS10001: Programming & Data Structures

Pallab Dasgupta
Professor, Dept. of Computer Sc. & Engg.,
Indian Institute of Technology Kharagpur

History of C

e Originally developed in the 1970's by Dennis Ritchie at AT&T Bell
Laboratories.

— Outgrowth of two earlier languages BCPL and B.

 Popularity became widespread by the mid 1980’s, with the
availability of compilers for various platforms.

« Standardization has been carried out to make the various C
iImplementations compatible.

— American National Standards Institute (ANSI)
— GNU

Why teach C?

« Cis small (only 32 keywords).

e Cis common (lots of C code about).

« Cis stable (the language doesn’t change much).

e« Cis quick running.

« Cisthe basis for many other languages (Java, C++, awk, Perl).

|t may not feel like it but C is one of the easiest languages to learn.

Dept. of CSE, IIT KGPJ

Some programmer jargon

« Some words that will be used a lot:

— Source code: The stuff you type into the computer. The program you
are writing.

— Compile (build): Taking source code and making a program that the
computer can understand.

— Executable: The compiled program that the computer can run.

— Language: The core part of C central to writing C code.

— Library: Added functions for C programming which are bolted on to
do certain tasks.

— Header file: Files ending in .h which are included at the start of
source code.

Dept. of CSE, IIT KGPJ

Qur First C Program: Hello World

Preprocessor

#i1nclude <stdio.h>

/ Comments are good

/* This program prints “Hello World” */

main() means “start here”

printf(*“Hello World!I\n);

Library command

Brackets define code blocks

Dept. of CSE, IIT KGPJ

C doesn’t care much about spaces

#include <stdio.h> /* This program prints “Hello World” */
int main() {printf(““Hello World!\n™);}

#include <stdio.h>

/* This program

prints “Hello

World™ Both of these programs are exactly
*/ the same as the original as far as
int your compiler is concerned.
main()

{

printf(“Hello

World!

\n11)

Keywords of C

Dept. of CSE, IIT KGPJ

Flow control (6) — 1f, else, return, switch, case, default
Loops (5) — for, do, while, break, continue
Common types (5) — int, float, double, char, void

structures (3) — struct, typedef, union

Counting and sizing things (2) — enum, sizeof

Rare but still useful types (7) — extern, signed, unsigned,
long, short, static, const

Evil keywords which we avoid (1) — goto

Wierdies (3) —auto, register, volatile

The C Character Set

e The Clanguage alphabet:
— Uppercase letters ‘A’ to ‘'Z’
— Lowercase letters ‘a’ to ‘7’
— Digits ‘0’ to ‘9’
— Certain special characters:

S S T

Some simple operations for variables

 |n addition to +, -, * and /Z we can also use

+=, -=, *=, /=, -—and % (modulo)
n++ iIncrement n
n-- decrement n
a+=5 IS equivalent to a = ath;
a-=5 IS equivalent to a = a-5;
a*=5 IS equivalent to a = a*bh;
a/=5 IS equivalent to a = a/5;

(X % y) gives the remainder when X is divided by y

Dept. of CSE, IIT KGPJ

Types of variable

« We must declare the type of every variable we use in C.

« Every variable has a type (e.g. int) and a name.

 This prevents some bugs caused by spelling errors (misspelling
variable names).

 Declarations of types should always be together at the top of main
or a function (see later).

 Other types are char, signed, unsigned, long, short and
const.

Identifiers and Keywords

e |dentifiers

Dept. of CSE, IIT KGPJ

Names given to various program elements (variables,
constants, functions, etc.)

May consist of letters, digits and the underscore (* ') character,
with no space between.

First character must be a letter or underscore.

An identifier can be arbitrary long.

« Some C compilers recognize only the first few characters of the
name (16 or 31).

Case sensitive
e ‘area’, ‘AREA’' and ‘Area’ are all different.

Valid and Invalid ldentifiers

« Valid identifiers * Invalid identifiers
X 10abc
abc my-name
simple_interest “hello”
al23 simple interest
LIST (area)
stud _name %rate
Empl 1
Empl 2

avg_empl_salary

Another Example: Adding two numbers

AZRYAY
C:;\+B \
/// PRm#'C /// ‘\\\\\\

#i1include <stdio.h>

main()

Variable Declaration

{ /

int a, b, c;

S
scant(“%d%d”’, &a,

NN
C = a + b;

~ printf(“%d”,c);
}

&b);

STOP

Dept. of CSE, IIT KGPJ

Example: Largest of three numbers

feeno xv.2/
YES /s\ \

Dept. of CSE, IIT KGPJ

#include <stdio.h>
[* FIND THE LARGEST OF THREE NUMBERS */

main()

{

int a, b, ¢, max;

> scanf (“%d %d %d”, &x, &y, &2);

if (x>y)
max = X;
else max =y;

if (max > 2)
printf(“Largest is %d”, max);
else printf(“Largest is %d”, z);

Largest of three numbers: Another way

#include <stdio.h>

[* FIND THE LARGEST OF THREE NUMBERS */

main()
{
int a, b, c;
scanf (*%d %d %d”, &a, &b, &c);
if ((a>b) && (a>c)) /[* Composite condition check */
printf (“\n Largest is %d”, a);

else
if (b>c) [* Simple condition check */
printf (“\n Largest is %d”, b);
else

printf (“\n Largest is %d”, c);

}

Dept. of CSE, IIT KGPJ

Use of functions: Area of a circle

#include <stdio.h> / Macro definition
#define Pl 3.1415926 Function definition
/

[* Function to compute the area of a circle */
float myfunc (float r)

a=Pl*r*r,

Function argument
return (a); /* return result */

}
main() | .
{ float radius, area; Function declaratl_on
float myfunc (float radius); — (return value defines the type)
scanf (“%f”, &radius); Function call
area = myfunc (radius); —
printf (“\n Area is %f \n”, area);
}

Dept. of CSE, IIT KGPJ

Structure of a C program

 Every C program consists of one or more functions.
— One of the functions must be called main.
— The program will always begin by executing the main function.

e Each function must contain:

— A function heading, which consists of the function name,
followed by an optional list of arguments enclosed in
parentheses.

— A list of argument declarations.

— A compound statement, which comprises the remainder of the
function.

Desirable Programming Style

e Clarity
— The program should be clearly written.
— It should be easy to follow the program logic.

 Meaningful variable names

— Make variable/constant names meaningful to enhance program clarity.
e ‘area’ instead of ‘&’
e ‘radius’ instead of ‘r’

 Program documentation
— Insert comments in the program to make it easy to understand.
— Never use too many comments.

 Program indentation
— Use proper indentation.
— Structure of the program should be immediately visible.

Dept. of CSE, IIT KGPJ

Indentation Example: Good Style

#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()

{

int a, b, c;
scanf(*%d%d%d”, &a, &b, &c);

if ((a>b) && (a>c))
printf(“\n Largest is %d”, a);
else
if (b>c)
printf(“\n Largest is %d”, b);
else

printf(“\n Largest is %d”, c);

Indentation Example: Bad Style

#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */
main()

{

int a, b, c;

scanf(“%d%d%d”, &a, &b, &c);

if ((a>b) && (a>c))

printf(“\n Largest is %d”, a);

else
if (b>c)
printf(“\n Largest is %d”, b);
else
printf(“\n Largest is %d”, c);

}

Dept. of CSE, IIT KGPJ

Data Types in C

Int :: integer quantity
Typically occupies 4 bytes (32 bits) in memory.

char :: single character
Typically occupies 1 bye (8 bits) in memory.

float :: floating-point number (a number with a decimal point)
Typically occupies 4 bytes (32 bits) in memory.

double :: double-precision floating-point number

Contd.

« Some of the basic data types can be augmented by using certain
data type qualifiers:

— short

— long

— signed
— unsigned

 Typical examples:
— short int
— long int
— unsigned int

Some Examples of Data Types

INt

0, 25, -156, 12345, -99820
char

‘al, A, e
float

23.54, -0.00345, 25.0
2.5E12, 1.234e-5

E or e means “10to the
power of”

Constants

Constants

_

Constants

/

Integer

Numeric

floating-point

AN

Character
Constants

/

single
character

\

string

Integer Constants

 Consists of a sequence of digits, with possibly a plus or a minus
sign before it.

— Embedded spaces, commas and non-digit characters are not
permitted between digits.

« Maximum and minimum values (for 32-bit representations)
Maximum :: 2147483647
Minimum :: —2147483648

Floating-point Constants

« Can contain fractional parts.

23000000 can be represented as 2.3e7

e Two different notations:
1. Decimal notation
25.0, 0.0034, .84, -2.234
2. Exponential (scientific) notation
3.45e23, 0.123e-12, 123E2

Very large or very small numbers can be represented.

e means “10to the
power of”

Single Character Constants

 Contains a single character enclosed within a pair of single quote
marks.

« Some special backslash characters

‘\n’ new line

‘\t’ horizontal tab
\" single quote
\" double quote
A\} backslash

“\O’ null

Dept. of CSE, IIT KGPJ

String Constants

« Sequence of characters enclosed in double quotes.

— The characters may be letters, numbers, special characters and
blank spaces.

« Examples:
“nice”’ HGOOd Morning", H3+6”’ “3”’ HC”

« Differences from character constants:
— ‘C’and “C” are not equivalent.
— ‘C’ has an equivalent integer value while “C” does not.

Declaration of Variables

e There are two purposes.:
1. It tells the compiler what the variable name is.
2. It specifies what type of data the variable will hold.

« (General syntax:
data-type variable-list;

« Examples:
Int velocity, distance;
int a, b, c,d;
float temp;
char flag, option;

Dept. of CSE, IIT KGPJ

A First Look at Pointers

« A variable is assigned a specific memory location.
— For example, a variable speed is assigned memory location
1350.
— Also assume that the memory location contains the data
value 100.

— When we use the name speed in an expression, it refers to
the value 100 stored in the memory location.

distance = speed * time;

« Thus every variable has an address (in memory), and its
contents.

Contd.

 |In Cterminology, in an expression
speed refers to the contents of the memory location.
&speed refers to the address of the memory location.

« Examples:
printf (“%f %f %f", speed, time, distance);
scanf (“ %f %f”, &speed, &time);

An Example

#include <stdio.h>
main()

{

float speed, time, distance;

scanf (“ %f %f”, &speed, &time);
distance = speed * time;
printf (“\n The distance traversed is: \n”, distance);

}

Assignment Statement

 Used to assign values to variables, using the assignment
operator (=).

 General syntax:
variable_name = expression;

 Examples:
velocity = 20;
b =15; temp =12.5;
A=A +10;
v=u-+f*t;
S=u*t+05*f*t*t;

Dept. of CSE, IIT KGPJ

Contd.

« A value can be assigned to a variable at the time the variable is

declared.
int speed = 30;
char flag ='y’;

 Several variables can be assigned the same value using
multiple assignment operators.

a=b=c=5;
flagl = flag2 = 'y’;
speed = flow = 0.0;

Operators in Expressions

Operators
Arithmetic Relational Logical
Operators Operators Operators

Arithmetic Operators

e Addition :: +
e Subtraction :: —
e Division ::

e Multiplication :: *
« Modulus :: %
Examples:

distance =rate * time ;
netlncome = income - tax ;
speed = distance / time ;
area = Pl * radius * radius;
y=a*Xx*x +b* +c;
guotient = dividend / divisor;
remain =dividend % divisor;

Dept. of CSE, IIT KGPJ

Contd.

Suppose x and y are two integer variables, whose values
are 13 and 5 respectively.

X+Yy 18
X—-Y 8
X*y 65
X1y 2
X%y 3

Operator Precedence

. In decreasing order of priority

Parentheses :: ()

Unary minus :: -5

Multiplication, Division, and Modulus
Addition and Subtraction

> wnh PP

« For operators of the same priority, evaluation is from left to right
as they appear.

« Parenthesis may be used to change the precedence of operator
evaluation.

Examples: Arithmetic expressions

a+tb*c-dl/e
a*—-b+d%e-f
a—-b+c+d
X*y*z

a+b+c*d*e

=2 at(b*c)-(d/e)
=2 a*(-b)+(d%e)-f
2 (((@-Db)+c)+d)

2 (x*y)*2)

= (a+b)+((c*d)*e)

Integer Arithmetic

« When the operands in an arithmetic expression are integers, the

expression is called integer expression, and the operation is
called integer arithmetic.

* Integer arithmetic always yields integer values.

Real Arithmetic

 Arithmetic operations involving only real or floating-point
operands.

* Since floating-point values are rounded to the number of
significant digits permissible, the final value is an approximation
of the final result.

1.0/ 3.0 * 3.0 will have the value 0.99999 and not 1.0

e The modulus operator cannot be used with real operands.

Mixed-mode Arithmetic

« When one of the operands is integer and the other is real, the
expression is called a mixed-mode arithmetic expression.

« |f either operand is of the real type, then only real arithmetic is
performed, and the result is a real number.

25/10 = 2
25/10.0 = 25

e« Some moreissues will be considered later.

Type Casting

Int a=10, b=4, c;
float x, v;

c=alb:
Xx=alb;
y = (float) a/ b;

The value of ¢ will be 2
The value of x will be 2.0
The value of y will be 2.5

Relational Operators

« Used to compare two quantities.

<

>

IS less than

IS greater than

IS less than or equal to

IS greater than or equal to

IS equal to

IS not equal to

Examples

10 > 20 IS false
25< 355 IS true
12 > (7 + 5) is false

« When arithmetic expressions are used on either side of a relational
operator, the arithmetic expressions will be evaluated first and
then the results compared.

a+tb>c—-d Isthesameas (at+b)>(c+d)

Examples

« Sample code segmentin C

if (x>vy)

printf (“%d is larger\n”, x);
else

printf (“%d is larger\n”, y);

Logical Operators

« There are two logical operators in C (also called logical
connectives).

&& =9 Logical AND
|| =2 Logical OR

« What they do?

— They act upon operands that are themselves logical
expressions.

— The individual logical expressions get combined into more
complex conditions that are true or false.

Logical Operators

— Logical AND
 Resultis true if both the operands are true.

— Logical OR

 Resultis true if at least one of the operands are true.

X Y X && Y X ||Y
FALSE FALSE FALSE FALSE
FALSE TRUE FALSE TRUE
TRUE FALSE FALSE TRUE
TRUE TRUE TRUE TRUE

Input / Output

e printf

— Performs output to the standard output device (typically
defined to be the screen).

— It requires a format string in which we can specify:
 The text to be printed out.
» Specifications on how to print the values.
printf ("The number is %d.\n", num) ;

 The format specification %d causes the value listed after the
format string to be embedded in the output as a decimal number in
place of %d.

e Qutput will appear as: The number is 125.

Dept. of CSE, IIT KGPJ

Input / Output

e scanf
— Performs input from the standard input device, which is the
keyboard by default.
— It requires a format string and a list of variables into which
the value received from the input device will be stored.
— It is required to put an ampersand (&) before the names of
the variables.

scanf ("%d", &size) ;
scanf ("%c", &nextchar) ;
scanf ("%f", &length) ;
scanf (“%d %d", &a, &b);

	General Announcements��CS10001: Programming & Data Structures
	Items
	About the Course
	Course Materials
	Attendance REALLY matters
	Text / Reference Books
	Acknowledgements
	Introduction��CS10001: Programming & Data Structures
	The Evolution of Electronic Computing
	Home Computer @ 2004: Predicted versus Real
	Storage has become free!!
	Communication??
	Interfaces
	Architecture
	CPU (Central Processing Unit)
	Main Memory
	I/O and Peripherals
	Typical Configuration of a PC
	How does a computer work?
	Number System – The Basics
	A computer works on the binary number system
	Bits and Bytes
	Contd.
	Classification of Software
	Computer Languages
	Contd.
	Contd.
	High-Level Language
	From HLL to executable
	Operating Systems
	Contd.
	Contd.
	Basic Programming Concepts��CS10001: Programming & Data Structures
	Some Terminologies
	Variables and Constants
	Contd.
	Memory map
	Variables in Memory
	Variables in Memory (contd.)
	Data Types
	Data Types (contd.)
	Problem solving
	Flowchart: basic symbols
	Contd.
	Example 1: Adding three numbers
	Example 2: Larger of two numbers
	Example 3: Largest of three numbers
	Example 4: Sum of first N natural numbers
	Example 5: SUM = 12 + 22 + 32 + N2
	Example 6: SUM = 1.2 + 2.3 + 3.4 + to N terms
	Example 7: Computing Factorial
	Example 8: Computing ex series up to N terms
	Example 8: Computing ex series up to 4 decimal places
	Example 10: Roots of a quadratic equation
	Example 11: Grade computation
	Grade Computation (contd.)
	Programming in C: Basics��CS10001: Programming & Data Structures
	History of C
	Why teach C?
	Some programmer jargon
	Our First C Program: Hello World
	C doesn’t care much about spaces
	Keywords of C
	The C Character Set
	Some simple operations for variables
	Types of variable
	Identifiers and Keywords
	Valid and Invalid Identifiers
	Another Example: Adding two numbers
	Example: Largest of three numbers
	Largest of three numbers: Another way
	Use of functions: Area of a circle
	Structure of a C program
	Desirable Programming Style
	Indentation Example: Good Style
	Indentation Example: Bad Style
	Data Types in C
	Contd.
	Some Examples of Data Types
	Constants
	Integer Constants
	Floating-point Constants
	Single Character Constants
	String Constants
	Declaration of Variables
	A First Look at Pointers
	Contd.
	An Example
	Assignment Statement
	Contd.
	Operators in Expressions
	Arithmetic Operators
	Contd.
	Operator Precedence
	Examples: Arithmetic expressions
	Integer Arithmetic
	Real Arithmetic
	Mixed-mode Arithmetic
	Type Casting
	Relational Operators
	Examples
	Examples
	Logical Operators
	Logical Operators
	Input / Output
	Input / Output

