
April 2, 2007 Programming and Data Structure 1

Linked List

April 2, 2007 Programming and Data Structure 2

Introduction

• A linked list is a data structure which can
change during execution.
– Successive elements are connected by pointers.
– Last element points to NULL.
– It can grow or shrink in size during execution of

a program.
– It can be made just as long as required.
– It does not waste memory space.

A B C

head

April 2, 2007 Programming and Data Structure 3

• Keeping track of a linked list:
– Must know the pointer to the first element of

the list (called start, head, etc.).

• Linked lists provide flexibility in allowing
the items to be rearranged efficiently.
– Insert an element.
– Delete an element.

April 2, 2007 Programming and Data Structure 4

Illustration: Insertion

Item to be
inserted

X

A B

A B C

C

X

April 2, 2007 Programming and Data Structure 5

Illustration: Deletion

CA B

A B C
Item to be deleted

April 2, 2007 Programming and Data Structure 6

In essence ...

• For insertion:
– A record is created holding the new item.
– The next pointer of the new record is set to link

it to the item which is to follow it in the list.
– The next pointer of the item which is to precede

it must be modified to point to the new item.
• For deletion:

– The next pointer of the item immediately
preceding the one to be deleted is altered, and
made to point to the item following the deleted
item.

April 2, 2007 Programming and Data Structure 7

Array versus Linked Lists

• Arrays are suitable for:
– Inserting/deleting an element at the end.
– Randomly accessing any element.
– Searching the list for a particular value.

• Linked lists are suitable for:
– Inserting an element.
– Deleting an element.
– Applications where sequential access is required.
– In situations where the number of elements

cannot be predicted beforehand.

April 2, 2007 Programming and Data Structure 8

Types of Lists

• Depending on the way in which the links
are used to maintain adjacency, several
different types of linked lists are possible.

– Linear singly-linked list (or simply linear list)
• One we have discussed so far.

A B C

head

April 2, 2007 Programming and Data Structure 9

– Circular linked list
• The pointer from the last element in the list points

back to the first element.

A B C

head

April 2, 2007 Programming and Data Structure 10

– Doubly linked list
• Pointers exist between adjacent nodes in both

directions.
• The list can be traversed either forward or backward.
• Usually two pointers are maintained to keep track of

the list, head and tail.

A B C

head tail

April 2, 2007 Programming and Data Structure 11

Basic Operations on a List

• Creating a list
• Traversing the list
• Inserting an item in the list
• Deleting an item from the list
• Concatenating two lists into one

April 2, 2007 Programming and Data Structure 12

List is an Abstract Data Type

• What is an abstract data type?
– It is a data type defined by the user.
– Typically more complex than simple data types

like int, float, etc.
• Why abstract?

– Because details of the implementation are
hidden.

– When you do some operation on the list, say
insert an element, you just call a function.

– Details of how the list is implemented or how the
insert function is written is no longer required.

April 2, 2007 Programming and Data Structure 13

Conceptual Idea

List
implementation

and the
related functions

Insert

Delete

Traverse

April 2, 2007 Programming and Data Structure 14

Example: Working with linked list

• Consider the structure of a node as
follows:

struct stud {
int roll;
char name[25];
int age;
struct stud *next;

};

/* A user-defined data type called “node” */

typedef struct stud node;
node *head;

April 2, 2007 Programming and Data Structure 15

Creating a List

April 2, 2007 Programming and Data Structure 16

How to begin?

• To start with, we have to create a node (the
first node), and make head point to it.

head = (node *) malloc(sizeof(node));

head

next

age

name

roll

April 2, 2007 Programming and Data Structure 17

Contd.

• If there are n number of nodes in the initial
linked list:
– Allocate n records, one by one.
– Read in the fields of the records.
– Modify the links of the records so that the

chain is formed.

A B C

head

April 2, 2007 Programming and Data Structure 18

node *create_list()
{

int k, n;
node *p, *head;

printf ("\n How many elements to enter?");
scanf ("%d", &n);

for (k=0; k<n; k++)
{

if (k == 0) {
head = (node *) malloc(sizeof(node));
p = head;

}
else {

p->next = (node *) malloc(sizeof(node));
p = p->next;

}

scanf ("%d %s %d", &p->roll, p->name, &p->age);
}

p->next = NULL;
return (head);

}

April 2, 2007 Programming and Data Structure 19

• To be called from main() function as:

node *head;
………
head = create_list();

April 2, 2007 Programming and Data Structure 20

Traversing the List

April 2, 2007 Programming and Data Structure 21

What is to be done?

• Once the linked list has been constructed
and head points to the first node of the
list,
– Follow the pointers.
– Display the contents of the nodes as they are

traversed.
– Stop when the next pointer points to NULL.

April 2, 2007 Programming and Data Structure 22

void display (node *head)
{

int count = 1;
node *p;

p = head;
while (p != NULL)
{

printf ("\nNode %d: %d %s %d", count,
p->roll, p->name, p->age);

count++;
p = p->next;

}
printf ("\n");

}

April 2, 2007 Programming and Data Structure 23

• To be called from main() function as:

node *head;
………
display (head);

April 2, 2007 Programming and Data Structure 24

Inserting a Node in a List

April 2, 2007 Programming and Data Structure 25

How to do?

• The problem is to insert a node before a
specified node.
– Specified means some value is given for the

node (called key).
– In this example, we consider it to be roll.

• Convention followed:
– If the value of roll is given as negative, the

node will be inserted at the end of the list.

April 2, 2007 Programming and Data Structure 26

Contd.
• When a node is added at the beginning,

– Only one next pointer needs to be modified.
• head is made to point to the new node.
• New node points to the previously first element.

• When a node is added at the end,
– Two next pointers need to be modified.

• Last node now points to the new node.
• New node points to NULL.

• When a node is added in the middle,
– Two next pointers need to be modified.

• Previous node now points to the new node.
• New node points to the next node.

April 2, 2007 Programming and Data Structure 27

void insert (node **head)
{

int k = 0, rno;
node *p, *q, *new;

new = (node *) malloc(sizeof(node));

printf ("\nData to be inserted: ");
scanf ("%d %s %d", &new->roll, new->name, &new->age);

printf ("\nInsert before roll (-ve for end):");
scanf ("%d", &rno);

p = *head;

if (p->roll == rno) /* At the beginning */
{

new->next = p;
*head = new;

}

April 2, 2007 Programming and Data Structure 28

else
{

while ((p != NULL) && (p->roll != rno))
{

q = p;
p = p->next;

}

if (p == NULL) /* At the end */
{

q->next = new;
new->next = NULL;

}
else if (p->roll == rno)

/* In the middle */
{

q->next = new;
new->next = p;

}
}

}

The pointers
q and p
always point
to consecutive
nodes.

April 2, 2007 Programming and Data Structure 29

• To be called from main() function as:

node *head;
………
insert (&head);

April 2, 2007 Programming and Data Structure 30

Deleting a node from the list

April 2, 2007 Programming and Data Structure 31

What is to be done?

• Here also we are required to delete a
specified node.
– Say, the node whose roll field is given.

• Here also three conditions arise:
– Deleting the first node.
– Deleting the last node.
– Deleting an intermediate node.

April 2, 2007 Programming and Data Structure 32

void delete (node **head)
{

int rno;
node *p, *q;

printf ("\nDelete for roll :");
scanf ("%d", &rno);

p = *head;
if (p->roll == rno)

/* Delete the first element */
{

*head = p->next;
free (p);

}

April 2, 2007 Programming and Data Structure 33

else
{

while ((p != NULL) && (p->roll != rno))
{

q = p;
p = p->next;

}

if (p == NULL) /* Element not found */
printf ("\nNo match :: deletion failed");

else if (p->roll == rno)
/* Delete any other element */

{
q->next = p->next;
free (p);

}
}

}

April 2, 2007 Programming and Data Structure 34

Few Exercises to Try Out
• Write a function to:

– Concatenate two given list into one big list.
node *concatenate (node *head1, node *head2);

– Insert an element in a linked list in sorted order.
The function will be called for every element to be
inserted.

void insert_sorted (node **head, node *element);
– Always insert elements at one end, and delete

elements from the other end (first-in first-out
QUEUE).

void insert_q (node **head, node*element)
node *delete_q (node **head) /* Return the deleted node */

April 2, 2007 Programming and Data Structure 35

Abstract Data Types

April 2, 2007 Programming and Data Structure 36

Definition

• An abstract data type (ADT) is a specification
of a set of data and the set of operations that
can be performed on the data.

• Such data type is abstract in the sense that it
is independent of various concrete
implementations.

• Some examples follow.

April 2, 2007 Programming and Data Structure 37

Example 1 :: Complex numbers

struct cplx {
float re;
float im;

}
typedef struct cplx complex;

complex *add (complex a, complex b);
complex *sub (complex a, complex b);
complex *mul (complex a, complex b);
complex *div (complex a, complex b);
complex *read();
void print (complex a);

Structure
definition

Function
prototypes

April 2, 2007 Programming and Data Structure 38

Complex
Number

add

print

mul

sub

read

div

April 2, 2007 Programming and Data Structure 39

Example 2 :: Set manipulation

struct node {
int element;
struct node *next;

}
typedef struct node set;

set *union (set a, set b);
set *intersect (set a, set b);
set *minus (set a, set b);
void insert (set a, int x);
void delete (set a, int x);
int size (set a);

Structure
definition

Function
prototypes

April 2, 2007 Programming and Data Structure 40

Set

union

size

minus

intersect

delete

insert

April 2, 2007 Programming and Data Structure 41

Example 3 :: Last-In-First-Out STACK

Assume:: stack contains integer elements

void push (stack s, int element);
/* Insert an element in the stack */

int pop (stack s);
/* Remove and return the top element */

void create (stack s);
/* Create a new stack */

int isempty (stack s);
/* Check if stack is empty */

int isfull (stack s);
/* Check if stack is full */

April 2, 2007 Programming and Data Structure 42

STACK

push

create

pop

isfull

isempty

April 2, 2007 Programming and Data Structure 43

Visualization of a Stack

In Out

ABC CB

April 2, 2007 Programming and Data Structure 44

Contd.

• We shall look into two different ways of
implementing stack:
– Using arrays
– Using linked list

April 2, 2007 Programming and Data Structure 45

Example 4 :: First-In-First-Out QUEUE

Assume:: queue contains integer elements

void enqueue (queue q, int element);
/* Insert an element in the queue */

int dequeue (queue q);
/* Remove an element from the queue */

queue *create();
/* Create a new queue */

int isempty (queue q);
/* Check if queue is empty */

int size (queue q);
/* Return the no. of elements in queue */

April 2, 2007 Programming and Data Structure 46

QUEUE

enqueue

create

dequeue

size

isempty

April 2, 2007 Programming and Data Structure 47

Visualization of a Queue

In Out

AC B AB

April 2, 2007 Programming and Data Structure 48

Stack Implementation
a) Using arrays
b) Using linked list

April 2, 2007 Programming and Data Structure 49

Basic Idea

• In the array implementation, we would:
– Declare an array of fixed size (which determines the

maximum size of the stack).
– Keep a variable which always points to the “top” of the

stack.
• Contains the array index of the “top” element.

• In the linked list implementation, we would:
– Maintain the stack as a linked list.
– A pointer variable top points to the start of the list.
– The first element of the linked list is considered as the

stack top.

April 2, 2007 Programming and Data Structure 50

Declaration

#define MAXSIZE 100

struct lifo
{

int st[MAXSIZE];
int top;

};
typedef struct lifo

stack;

struct lifo
{

int value;
struct lifo *next;

};
typedef struct lifo

stack;

stack *top;

ARRAY LINKED LIST

April 2, 2007 Programming and Data Structure 51

Stack Creation

void create (stack *s)
{

(*s).top = -1;

/* s.top points to
last element
pushed in;
initially -1 */

}

void create (stack **top)
{

*top = NULL;

/* top points to NULL,
indicating empty
stack */

}

ARRAY
LINKED LIST

April 2, 2007 Programming and Data Structure 52

Pushing an element into the stack
void push (stack *s, int element)

{
if ((*s).top == (MAXSIZE-1))
{

printf (“\n Stack overflow”);
exit(-1);

}
else
{

(*s).top ++;
(*s).st [(*s).top] = element;

}
}

ARRAY

April 2, 2007 Programming and Data Structure 53

void push (stack **top, int element)
{

stack *new;

new = (stack *) malloc(sizeof(stack));
if (new == NULL)
{

printf (“\n Stack is full”);
exit(-1);

}

new->value = element;
new->next = *top;
*top = new;

}

LINKED LIST

April 2, 2007 Programming and Data Structure 54

Popping an element from the stack

int pop (stack *s)
{

if ((*s).top == -1)
{

printf (“\n Stack underflow”);
exit(-1);

}
else
{

return ((*s).st[(*s).top--]);
}

}

ARRAY

April 2, 2007 Programming and Data Structure 55

int pop (stack **top)
{

int t;
stack *p;

if (*top == NULL)
{

printf (“\n Stack is empty”);
exit(-1);

}
else
{

t = (*top)->value;
p = *top;
*top = (*top)->next;
free (p);
return t;

}
}

LINKED LIST

April 2, 2007 Programming and Data Structure 56

Checking for stack empty

int isempty (stack s)
{

if (s.top == -1)
return 1;

else
return (0);

}

int isempty (stack *top)
{

if (top == NULL)
return (1);

else
return (0);

}

ARRAY LINKED LIST

April 2, 2007 Programming and Data Structure 57

Checking for stack full

int isfull (stack s)
{

if (s.top ==
(MAXSIZE–1))

return 1;
else

return (0);
}

• Not required for linked list
implementation.

• In the push() function, we
can check the return value
of malloc().
– If -1, then memory cannot

be allocated.

ARRAY LINKED LIST

April 2, 2007 Programming and Data Structure 58

Example main function :: array

#include <stdio.h>
#define MAXSIZE 100

struct lifo
{

int st[MAXSIZE];
int top;

};
typedef struct lifo stack;

main()
{
stack A, B;
create(&A); create(&B);
push(&A,10);
push(&A,20);

push(&A,30);
push(&B,100); push(&B,5);

printf (“%d %d”, pop(&A),
pop(&B));

push (&A, pop(&B));

if (isempty(B))
printf (“\n B is empty”);

}

April 2, 2007 Programming and Data Structure 59

Example main function :: linked list

#include <stdio.h>
struct lifo
{

int value;
struct lifo *next;

};
typedef struct lifo stack;

main()
{

stack *A, *B;
create(&A); create(&B);
push(&A,10);
push(&A,20);

push(&A,30);
push(&B,100);
push(&B,5);

printf (“%d %d”,
pop(&A), pop(&B));

push (&A, pop(&B));

if (isempty(B))
printf (“\n B is

empty”);
}

April 2, 2007 Programming and Data Structure 60

Queue Implementation using Linked
List

April 2, 2007 Programming and Data Structure 61

Basic Idea

• Basic idea:
– Create a linked list to which items would be

added to one end and deleted from the other
end.

– Two pointers will be maintained:
• One pointing to the beginning of the list (point from

where elements will be deleted).
• Another pointing to the end of the list (point where

new elements will be inserted).

Front

Rear

April 2, 2007 Programming and Data Structure 62

struct fifo {
int value;
struct fifo *next;

};
typedef struct fifo queue;

queue *front, *rear;

Declaration

April 2, 2007 Programming and Data Structure 63

Creating a queue

void createq (queue **front, queue **rear)
{

*front = NULL;
*rear = NULL;

}

April 2, 2007 Programming and Data Structure 64

Inserting an element in queue
void enqueue (queue **front, queue **rear, int x)
{

queue *ptr;
ptr = (queue *) malloc(sizeof(queue));

if (*rear == NULL) /* Queue is empty */
{

*front = ptr;
*rear = ptr;
ptr->value = x;
ptr->next = NULL;

}
else /* Queue is not empty */
{

(*rear)->next = ptr;
*rear = ptr;
ptr->value = x;
ptr->next = NULL;

}
}

April 2, 2007 Programming and Data Structure 65

Deleting an element from queue
int dequeue (queue **front, queue **rear)
{

queue *old; int k;

if (*front == NULL) /* Queue is empty */
printf (“\n Queue is empty”);

else if (*front == *rear) /* Single element */
{

k = (*front)->value;
free (*front); front = rear = NULL;
return (k);

}
else
{

k = (*front)->value; old = *front;
*front = (*front)->next;
free (old);
return (k);

}
}

April 2, 2007 Programming and Data Structure 66

Checking if empty

int isempty (queue *front)
{

if (front == NULL)
return (1);

else
return (0);

}

April 2, 2007 Programming and Data Structure 67

Example main function

#include <stdio.h>
struct fifo
{

int value;
struct fifo *next;

};
typedef struct fifo queue;

main()
{
queue *Af, *Ar;
create (&Af, &Ar);
enqueue (&Af,&Ar,10);
enqueue (&Af,&Ar,20);

enqueue(&Af,&Ar,30);

printf (“%d %d”,
dequeue (&Af,&Ar),
dequeue(&Af,&Ar));

if (isempty(Af))
printf (“\n Q is empty”);

}

April 2, 2007 Programming and Data Structure 68

Some Applications of Stack

April 2, 2007 Programming and Data Structure 69

Applications ….

• Handling function calls and return
• Handling recursion
• Parenthesis matching
• Evaluation of expressions

– Polish postfix and prefix notations

