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Linked List
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Introduction

• A linked list is a data structure which can 
change during execution.
– Successive elements are connected by pointers.
– Last element points to NULL.
– It can grow or shrink in size during execution of 

a program.
– It can be made just as long as required.
– It does not waste memory space.

A B C

head
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• Keeping track of a linked list:
– Must know the pointer to the first element of 

the list (called start, head, etc.).

• Linked lists provide flexibility in allowing 
the items to be rearranged efficiently.
– Insert an element.
– Delete an element.
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Illustration: Insertion

Item to be 
inserted
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Illustration: Deletion

CA B

A B C
Item to be deleted
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In essence ...

• For insertion:
– A record is created holding the new item.
– The next pointer of the new record is set to link 

it to the item which is to follow it in the list.
– The next pointer of the item which is to precede 

it must be modified to point to the new item.
• For deletion:

– The next pointer of the item immediately 
preceding the one to be deleted is altered, and 
made to point to the item following the deleted 
item.
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Array versus Linked Lists

• Arrays are suitable for:
– Inserting/deleting an element at the end.
– Randomly accessing any element.
– Searching the list for a particular value.

• Linked lists are suitable for:
– Inserting an element.
– Deleting an element.
– Applications where sequential access is required.
– In situations where the number of elements 

cannot be predicted beforehand.



April 2, 2007 Programming and Data Structure 8

Types of Lists

• Depending on the way in which the links 
are used to maintain adjacency, several 
different types of linked lists are possible.

– Linear singly-linked list (or simply linear list)
• One we have discussed so far.

A B C

head
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– Circular linked list
• The pointer from the last element in the list points 

back to the first element.

A B C

head
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– Doubly linked list
• Pointers exist between adjacent nodes in both 

directions.
• The list can be traversed either forward or backward.
• Usually two pointers are maintained to keep track of 

the list, head and tail.

A B C

head tail
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Basic Operations on a List

• Creating a list
• Traversing the list
• Inserting an item in the list
• Deleting an item from the list
• Concatenating two lists into one
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List is an Abstract Data Type

• What is an abstract data type?
– It is a data type defined by the user.
– Typically more complex than simple data types 

like int, float, etc.
• Why abstract?

– Because details of the implementation are 
hidden.

– When you do some operation on the list, say 
insert an element, you just call a function.

– Details of how the list is implemented or how the 
insert function is written is no longer required.
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Conceptual Idea

List 
implementation

and the
related functions

Insert

Delete

Traverse
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Example: Working with linked list

• Consider the structure of a node as 
follows:

struct stud {  
int roll;
char  name[25];
int age;
struct stud *next;

};

/* A user-defined data type called “node” */

typedef struct stud node;
node *head;
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Creating a List
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How to begin?

• To start with, we have to create a node (the 
first node), and make head point to it.

head = (node *) malloc(sizeof(node));

head

next

age

name

roll
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Contd.

• If there are n number of nodes in the initial 
linked list:
– Allocate n records, one by one.
– Read in the fields of the records.
– Modify the links of the records so that the 

chain is formed.

A B C

head
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node *create_list() 
{ 

int k, n; 
node  *p, *head; 

printf ("\n How many elements to enter?"); 
scanf ("%d", &n); 

for  (k=0; k<n; k++) 
{ 

if (k == 0) {
head = (node *) malloc(sizeof(node)); 
p = head; 

}
else {

p->next  = (node *) malloc(sizeof(node)); 
p = p->next;      

}

scanf ("%d %s %d", &p->roll, p->name, &p->age); 
} 

p->next  =  NULL; 
return (head);

} 
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• To be called from main() function as:

node *head;
………
head = create_list();
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Traversing the List
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What is to be done?

• Once the linked list has been constructed 
and head points to the first node of the 
list,
– Follow the pointers.
– Display the contents of the nodes as they are 

traversed.
– Stop when the next pointer points to NULL.
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void display (node *head)
{

int count = 1;
node  *p;

p = head;
while (p != NULL)
{

printf ("\nNode %d: %d %s %d", count, 
p->roll, p->name, p->age);

count++;
p = p->next;      

}
printf ("\n");

}
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• To be called from main() function as:

node *head;
………
display (head);
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Inserting a Node in a List
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How to do?

• The problem is to insert a node before a 
specified node.
– Specified means some value is given for the 

node (called key).
– In this example, we consider it to be roll.

• Convention followed:
– If the value of roll is given as negative, the 

node will be inserted at the end of the list.
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Contd.
• When a node is added at the beginning,

– Only one next pointer needs to be modified.
• head is made to point to the new node.
• New node points to the previously first element.

• When a node is added at the end,
– Two next pointers need to be modified.

• Last node now points to the new node.
• New node points to NULL.

• When a node is added in the middle,
– Two next pointers need to be modified.

• Previous node now points to the new node.
• New node points to the next node.



April 2, 2007 Programming and Data Structure 27

void insert (node **head) 
{ 

int k = 0, rno; 
node *p, *q, *new; 

new = (node *) malloc(sizeof(node)); 

printf ("\nData to be inserted: ");
scanf ("%d %s %d", &new->roll, new->name, &new->age); 

printf ("\nInsert before roll (-ve for end):"); 
scanf ("%d", &rno); 

p = *head; 

if (p->roll == rno)      /* At the beginning */
{ 

new->next = p; 
*head = new; 

} 
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else 
{

while ((p != NULL) && (p->roll != rno))      
{ 

q = p; 
p = p->next; 

}      

if  (p == NULL)       /* At the end */
{ 

q->next = new;    
new->next = NULL;     

} 
else if  (p->roll  == rno)     

/* In the middle */
{ 

q->next = new; 
new->next = p; 

} 
}

} 

The pointers 
q and p 
always point 
to consecutive 
nodes.
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• To be called from main() function as:

node *head;
………
insert (&head);
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Deleting a node from the list
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What is to be done?

• Here also we are required to delete a 
specified node.
– Say, the node whose roll field is given.

• Here also three conditions arise:
– Deleting the first node.
– Deleting the last node.
– Deleting an intermediate node.
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void  delete (node **head) 
{ 

int rno; 
node  *p, *q; 

printf ("\nDelete for roll :"); 
scanf ("%d", &rno); 

p = *head; 
if  (p->roll == rno)            

/* Delete the first element */
{ 

*head = p->next;   
free (p); 

} 
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else
{

while  ((p != NULL) && (p->roll != rno))      
{ 

q = p; 
p  =  p->next; 

}      

if  (p == NULL)      /* Element not found */
printf ("\nNo match :: deletion failed");

else if (p->roll == rno)           
/* Delete any other element */

{        
q->next  =  p->next; 
free (p); 

} 
}

} 
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Few Exercises to Try Out
• Write a function to:

– Concatenate two given list into one big list.
node  *concatenate (node *head1, node *head2);

– Insert an element in a linked list in sorted order. 
The function will be called for every element to be 
inserted.

void  insert_sorted (node **head,  node *element);
– Always insert elements at one end, and delete 

elements from the other end (first-in first-out 
QUEUE).

void  insert_q (node **head,  node*element)
node  *delete_q (node **head) /* Return the deleted node */
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Abstract Data Types
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Definition

• An abstract data type (ADT) is a specification 
of a set of data and the set of operations that 
can be performed on the data.

• Such data type is abstract in the sense that it 
is independent of various concrete 
implementations.

• Some examples follow.
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Example 1 :: Complex numbers

struct cplx {
float  re;
float  im;

}
typedef struct cplx complex;

complex *add (complex a, complex b);
complex *sub (complex a, complex b);
complex *mul (complex a, complex b);
complex *div (complex a, complex b);
complex *read();
void print (complex a);

Structure 
definition

Function 
prototypes
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Complex
Number

add

print

mul

sub

read

div
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Example 2 :: Set manipulation

struct node {
int element;
struct node *next;

}
typedef struct node set;

set  *union (set a, set b);
set  *intersect (set a, set b);
set  *minus (set a, set b);
void insert (set a, int x);
void delete (set a, int x);
int size (set a);

Structure 
definition

Function 
prototypes
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Set

union

size

minus

intersect

delete

insert
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Example 3 :: Last-In-First-Out STACK

Assume:: stack contains integer elements

void push (stack s, int element);
/* Insert an element in the stack */

int pop (stack s);
/* Remove and return the top element */

void create (stack  s);
/* Create a new stack */

int isempty (stack s);
/* Check if stack is empty */

int isfull (stack s);
/* Check if stack is full */
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STACK

push

create

pop

isfull

isempty
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Visualization of a Stack

In Out

ABC CB
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Contd.

• We shall look into two different ways of 
implementing stack:
– Using arrays
– Using linked list
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Example 4 :: First-In-First-Out QUEUE

Assume:: queue contains integer elements

void enqueue (queue q, int element);
/* Insert an element in the queue */

int dequeue (queue q);
/* Remove an element from the queue */

queue *create();
/* Create a new queue */

int isempty (queue q);
/* Check if queue is empty */

int size (queue q);
/* Return the no. of elements in queue */
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QUEUE

enqueue

create

dequeue

size

isempty
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Visualization of a Queue

In Out

AC B AB
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Stack Implementation
a) Using arrays
b) Using linked list
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Basic Idea

• In the array implementation, we would:
– Declare an array of fixed size (which determines the 

maximum size of the stack).
– Keep a variable which always points to the “top” of the 

stack.
• Contains the array index of the “top” element.

• In the linked list implementation, we would:
– Maintain the stack as a linked list.
– A pointer variable top points to the start of the list.
– The first element of the linked list is considered as the 

stack top.
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Declaration

#define MAXSIZE 100

struct lifo
{

int st[MAXSIZE];
int top;

};
typedef struct lifo

stack;

struct lifo
{

int value;
struct lifo *next;

};
typedef struct lifo

stack;

stack *top;

ARRAY LINKED LIST
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Stack Creation

void create (stack *s)
{

(*s).top = -1;       

/* s.top points to  
last element 
pushed in;  
initially -1 */

}

void create (stack **top)
{

*top = NULL;

/* top points to NULL,
indicating empty
stack            */

}

ARRAY
LINKED LIST
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Pushing an element into the stack
void push (stack *s, int element)

{
if ((*s).top == (MAXSIZE-1))
{

printf (“\n Stack overflow”);
exit(-1);

}
else
{

(*s).top ++;
(*s).st [(*s).top] = element;

}
}

ARRAY
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void push (stack **top, int element)
{

stack *new;

new = (stack *) malloc(sizeof(stack));
if (new == NULL)
{

printf (“\n Stack is full”);
exit(-1);

}

new->value = element; 
new->next = *top;
*top = new;

} 

LINKED LIST
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Popping an element from the stack

int pop (stack *s)
{

if ((*s).top == -1)
{

printf (“\n Stack underflow”);
exit(-1);

}
else
{

return ((*s).st[(*s).top--]);
}

}

ARRAY
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int pop (stack **top)
{

int t;  
stack *p;

if (*top == NULL)
{

printf (“\n Stack is empty”);
exit(-1);

}
else
{

t = (*top)->value;
p = *top;
*top = (*top)->next;
free (p);
return t;

}
}

LINKED LIST
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Checking for stack empty

int isempty (stack s)
{

if (s.top == -1)  
return 1;

else  
return (0);

}

int isempty (stack *top)
{

if (top == NULL)
return (1);

else
return (0);

}

ARRAY LINKED LIST
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Checking for stack full

int isfull (stack s)
{

if (s.top == 
(MAXSIZE–1))     

return 1;
else 

return (0);
}

• Not required for linked list 
implementation.

• In the push() function, we 
can check the return value 
of malloc().
– If -1, then memory cannot 

be allocated.

ARRAY LINKED LIST
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Example main function :: array

#include <stdio.h>
#define MAXSIZE 100

struct lifo
{

int st[MAXSIZE];
int top;

};
typedef struct lifo stack;

main()
{
stack A, B; 
create(&A);  create(&B);
push(&A,10);
push(&A,20);

push(&A,30);
push(&B,100);  push(&B,5);

printf (“%d %d”, pop(&A),
pop(&B));

push (&A, pop(&B));

if (isempty(B))
printf (“\n B is empty”);

}
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Example main function :: linked list

#include <stdio.h>
struct lifo
{

int value;
struct lifo *next;

};
typedef struct lifo stack;

main()
{

stack *A, *B;
create(&A); create(&B);
push(&A,10); 
push(&A,20);

push(&A,30);
push(&B,100);  
push(&B,5);

printf (“%d %d”,  
pop(&A), pop(&B));

push (&A, pop(&B));

if (isempty(B))
printf (“\n B is 

empty”);
}
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Queue Implementation using Linked 
List
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Basic Idea

• Basic idea:
– Create a linked list to which items would be 

added to one end and deleted from the other 
end.

– Two pointers will be maintained:
• One pointing to the beginning of the list (point from 

where elements will be deleted).
• Another pointing to the end of the list (point where 

new elements will be inserted).

Front

Rear



April 2, 2007 Programming and Data Structure 62

struct fifo {
int value;
struct fifo *next;

};
typedef struct fifo queue;

queue *front, *rear;

Declaration
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Creating a queue

void createq (queue **front, queue **rear)
{

*front =  NULL;
*rear  =  NULL;

}
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Inserting an element in queue
void enqueue (queue **front, queue **rear, int x)
{

queue *ptr;
ptr = (queue *) malloc(sizeof(queue));

if (*rear == NULL)    /* Queue is empty */
{

*front = ptr;   
*rear  = ptr;
ptr->value = x;
ptr->next = NULL;

}
else              /* Queue is not empty */
{

(*rear)->next = ptr;
*rear = ptr;
ptr->value = x;
ptr->next = NULL;

}
}
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Deleting an element from queue
int dequeue (queue **front, queue **rear)
{

queue *old;   int k;

if  (*front == NULL)              /* Queue is empty */
printf (“\n Queue is empty”);

else if (*front == *rear)          /* Single element */
{

k = (*front)->value;  
free (*front);    front = rear = NULL;
return (k);   

}
else
{

k = (*front)->value;   old = *front;             
*front = (*front)->next;
free (old);
return (k);

}
}
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Checking if empty

int isempty (queue *front)
{

if (front == NULL)
return (1);

else
return (0);

}
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Example main function

#include <stdio.h>
struct fifo
{

int value;
struct fifo *next;

};
typedef struct fifo queue;

main()
{
queue *Af, *Ar;
create (&Af, &Ar);
enqueue (&Af,&Ar,10); 
enqueue (&Af,&Ar,20);

enqueue(&Af,&Ar,30);

printf (“%d %d”,
dequeue (&Af,&Ar),    
dequeue(&Af,&Ar));

if (isempty(Af))
printf (“\n Q is empty”);

}
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Some Applications of Stack
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Applications ….

• Handling function calls and return
• Handling recursion
• Parenthesis matching
• Evaluation of expressions

– Polish postfix and prefix notations


