
1

20 March 2007 Programming and Data Structure 1

File Handling

20 March 2007 Programming and Data Structure 2

What is a file?

• A named collection of data, stored in
secondary storage (typically).

• Typical operations on files:
– Open
– Read
– Write
– Close

• How is a file stored?
– Stored as sequence of bytes, logically

contiguous (may not be physically contiguous
on disk).

2

20 March 2007 Programming and Data Structure 3

– The last byte of a file contains the end-of-file
character (EOF), with ASCII code 1A (hex).

– While reading a text file, the EOF character can
be checked to know the end.

• Two kinds of files:
– Text :: contains ASCII codes only
– Binary :: can contain non-ASCII characters

• Image, audio, video, executable, etc.
• To check the end of file here, the file size value (also

stored on disk) needs to be checked.

20 March 2007 Programming and Data Structure 4

File handling in C

• In C we use FILE * to represent a pointer to a
file.

• fopen is used to open a file. It returns the
special value NULL to indicate that it is unable to
open the file.
FILE *fptr;
char filename[]= "file2.dat";
fptr = fopen (filename,"w");
if (fptr == NULL) {
printf (“ERROR IN FILE CREATION”);

/* DO SOMETHING */
}

3

20 March 2007 Programming and Data Structure 5

Modes for opening files

• The second argument of fopen is the
mode in which we open the file. There are
three modes.

"r" opens a file for reading.

"w" creates a file for writing, and writes over all
previous contents (deletes the file so be
careful!).

"a" opens a file for appending – writing on the
end of the file.

20 March 2007 Programming and Data Structure 6

• We can add a “b” character to indicate
that the file is a binary file.
– “rb”, “wb” or “ab”

fptr = fopen (“xyz.jpg”, “rb”);

4

20 March 2007 Programming and Data Structure 7

The exit() function

• Sometimes error checking means we want
an "emergency exit" from a program.

• In main() we can use return to stop.
• In functions we can use exit() to do this.
• Exit is part of the stdlib.h library.

exit(-1);
in a function is exactly the same as

return -1;
in the main routine

20 March 2007 Programming and Data Structure 8

Usage of exit()

FILE *fptr;
char filename[]= "file2.dat";
fptr = fopen (filename,"w");
if (fptr == NULL) {
printf (“ERROR IN FILE CREATION”);
/* Do something */
exit(-1);

}
………

5

20 March 2007 Programming and Data Structure 9

Writing to a file using fprintf()

• fprintf() works just like printf() and
sprintf() except that its first argument
is a file pointer.

FILE *fptr;
Fptr = fopen ("file.dat","w");
/* Check it's open */

fprintf (fptr, "Hello World!\n");
fprintf (fptr, “%d %d”, a, b);

20 March 2007 Programming and Data Structure 10

Reading Data Using fscanf()

FILE *fptr;
Fptr = fopen (“input.dat”, “r”);
/* Check it's open */
if (fptr == NULL)
{
printf(“Error in opening file \n”);

}
fscanf (fptr, “%d %d”,&x, &y);

• We also read data from a file using fscanf().

6

20 March 2007 Programming and Data Structure 11

Reading lines from a file using fgets()
We can read a string using fgets().

FILE *fptr;
char line [1000];
/* Open file and check it is open */
while (fgets(line,1000,fptr) != NULL)
{

printf ("Read line %s\n",line);
}

fgets() takes 3 arguments – a string, maximum
number of characters to read, and a file pointer.
It returns NULL if there is an error (such as EOF).

20 March 2007 Programming and Data Structure 12

Closing a file

• We can close a file simply using fclose()
and the file pointer.

FILE *fptr;
char filename[]= "myfile.dat";
fptr = fopen (filename,"w");
if (fptr == NULL) {

printf ("Cannot open file to write!\n");
exit(-1);

}
fprintf (fptr,"Hello World of filing!\n");
fclose (fptr);

7

20 March 2007 Programming and Data Structure 13

Three special streams

• Three special file streams are defined in
the <stdio.h> header
– stdin reads input from the keyboard
– stdout send output to the screen
– stderr prints errors to an error device (usually

also the screen)

• What might this do?
fprintf (stdout,"Hello World!\n");

20 March 2007 Programming and Data Structure 14

An example program
#include <stdio.h>
main()
{
int i;

fprintf(stdout,"Give value of i \n");
fscanf(stdin,"%d",&i);
fprintf(stdout,"Value of i=%d \n",i);
fprintf(stderr,"No error: But an example to
show error message.\n");
}

Give value of i
15
Value of i=15
No error: But an example to show error message.

8

20 March 2007 Programming and Data Structure 15

Input File & Output File redirection

• One may redirect the standard input and
standard output to other files (other than
stdin and stdout).

• Usage: Suppose the executable file is
a.out:

$./a.out <in.dat >out.dat

scanf() will read data inputs from the file
“in.dat”, and printf() will output results
on the file “out.dat”.

20 March 2007 Programming and Data Structure 16

A Variation

$./a.out <in.dat >>out.dat

scanf() will read data inputs from the file
“in.dat”, and printf() will append results
at the end of the file “out.dat”.

9

20 March 2007 Programming and Data Structure 17

Reading and Writing a character

• A character reading/writing is equivalent
to reading/writing a byte.

int getchar();
int putchar(int c);

int fgetc(FILE *fp);
int fputc(int c, FILE *fp);

• Example:
char c;
c = getchar();
putchar(c);

stdin, stdout

file

20 March 2007 Programming and Data Structure 18

Example: use of getchar() & putchar()

#include <stdio.h>
main()
{
int c;

printf("Type text and press return to
see it again \n");

printf("For exiting press <CTRL D> \n");
while((c = getchar()) != EOF)

putchar(c);
}

10

20 March 2007 Programming and Data Structure 19

Command Line Arguments

20 March 2007 Programming and Data Structure 20

What are they?

• A program can be executed by directly typing a
command at the operating system prompt.
$ cc –o test test.c
$./a.out in.dat out.dat
$ prog_name param_1 param_2 param_3 ..

– The individual items specified are separated
from one another by spaces.

• First item is the program name.
– Variables argc and argv keep track of the items

specified in the command line.

11

20 March 2007 Programming and Data Structure 21

How to access them?

• Command line arguments may be passed
by specifying them under main().

int main (int argc, char *argv[]);

Argument
Count

Array of strings
as command line

arguments including
the command itself.

20 March 2007 Programming and Data Structure 22

Example: Contd.

$./a.out s.dat d.dat

argc=3 ./a.out
s.dat
d.dat

argv

argv[0] = “./a.out” argv[1] = “s.dat” argv[2] = “d.dat”

12

20 March 2007 Programming and Data Structure 23

Example: reading command line arguments

#include <stdio.h>
#include <string.h>

int main(int argc,char *argv[])
{

FILE *ifp, *ofp;
int i, c;
char src_file[100],dst_file[100];

if(argc!=3) {
printf ("Usage: ./a.out <src_file> <dst_file> \n");
exit(0);

}
else {
strcpy (src_file, argv[1]);
strcpy (dst_file, argv[2]);

}

20 March 2007 Programming and Data Structure 24

Example: contd.

if ((ifp = fopen(src_file,"r")) == NULL) {
printf ("File does not exist.\n");
exit(0);

}

if ((ofp = fopen(dst_file,"w")) == NULL) {
printf ("File not created.\n");
exit(0);

}

while ((c = fgetc(ifp)) != EOF) {
fputc (c,ofp);

}

fclose(ifp);
fclose(ofp);

}

13

20 March 2007 Programming and Data Structure 25

Example: with command-line arguments

• Write a program which will take the
number of data items, followed by the
actual data items on the command line,
and print the average.

$./a.out 6 10 17 35 12 28 33

No. of data items argv[1] = “10”

argv[2] = “17”, and so on

20 March 2007 Programming and Data Structure 26

Getting numbers from strings

• Once we have got a string with a number
in it (either from a file or from the user
typing) we can use atoi or atof to
convert it to a number.

• The functions are part of stdlib.h
char numberstring[]= "3.14";
int i;
double pi;
pi = atof (numberstring);
i = atoi ("12");

Both of these functions return 0 if they have a problem.

14

20 March 2007 Programming and Data Structure 27

• Alternatively, we can use sscanf() .
• For example, if argv[1]=“10” and
argv[2]=“17”, then we can read their
values into integer variables as:

sscanf (argv[1], “%d”, &n1);
sscanf (argv[2], “%d”, &n2);

20 March 2007 Programming and Data Structure 28

Reading one line at a time

• It is quite common to want to read every
line in a program. The best way to do this
is a while loop using fgets() .
FILE *fptr;
char tline[100];
fptr = fopen ("sillyfile.txt", "r");

/* check it's open */
while (fgets (tline, 100, fptr) != NULL) {

printf ("%s", tline); // Print it
}

fclose (fptr);

