
1

Spring Semester 2007 Programming and Data Structure 1

Arrays

Indranil Sen Gupta
Dept. of Computer Science & Engg.

Indian Institute of Technology
Kharagpur

Spring Semester 2007 Programming and Data Structure 2

Basic Concept

• Many applications require multiple data
items that have common characteristics.
– In mathematics, we often express such groups

of data items in indexed form:
x1, x2, x3, …, xn

• Why are arrays essential for some
applications?
– Take an example.
– Finding the minimum of a set of numbers.

2

Spring Semester 2007 Programming and Data Structure 3

if ((a <= b) && (a <= c))
min = a;

else
if (b <= c)

min = b;
else

min = c;

if ((a <= b) && (a <= c) && (a <= d))
min = a;

else
if ((b <= c) && (b <= d))

min = b;
else

if (c <= d)
min = c;

else
min = d;

3 numbers

4 numbers

Spring Semester 2007 Programming and Data Structure 4

The Problem

• Suppose we have 10 numbers to handle.
• Or 20.
• Or 100.

• How to tackle this problem?
• Solution:

– Use arrays.

3

Spring Semester 2007 Programming and Data Structure 5

Using Arrays

• All the data items constituting the group
share the same name.

int x[10];

• Individual elements are accessed by
specifying the index.

x[0] x[1] x[2] x[9]

X is a 10-element one
dimensional array

Spring Semester 2007 Programming and Data Structure 6

Declaring Arrays

• Like variables, the arrays that are used in a
program must be declared before they are
used.

• General syntax:
type array-name[size];

– type specifies the type of element that will be
contained in the array (int, float, char, etc.).

– size is an integer constant which indicates the
maximum number of elements that can be stored
inside the array.

• Example: int marks[5];
– marks is an array containing a maximum of 5 integers.

4

Spring Semester 2007 Programming and Data Structure 7

• Examples:
int x[10];
char line[80];
float points[150];
char name[35];

• If we are not sure of the exact size of the
array, we can define an array of a large size.

int marks[50];

though in a particular run we may only be
using, say, 10 elements.

Spring Semester 2007 Programming and Data Structure 8

How an array is stored in memory?

• Starting from a given memory location, the
successive array elements are allocated
space in consecutive memory locations.

x: starting address of the array in memory
k: number of bytes allocated per array element

– Element a[i] :: allocated memory location at
address x + i*k

• First array index assumed to start at zero.

Array a
x x+k x+2k

5

Spring Semester 2007 Programming and Data Structure 9

Accessing Array Elements

• A particular element of the array can be
accessed by specifying two things:
– Name of the array.
– Index (relative position) of the element in the

array.
• In C, the index of an array starts from zero.
• Example:

– An array is defined as int x[10];

– The first element of the array x can be
accessed as x[0], fourth element as x[3], tenth
element as x[9], etc.

Spring Semester 2007 Programming and Data Structure 10

Contd.

• The array index must evaluate to an
integer between 0 and n-1 where n is the
number of elements in the array.

a[x+2] = 25;
b[3*x-y] = a[10-x] + 5;

6

Spring Semester 2007 Programming and Data Structure 11

A Warning

• In C, while accessing array elements,
array bounds are not checked.

• Example:
int marks[5];
:
:
marks[8] = 75;

– The above assignment would not necessarily
cause an error.

– Rather, it may result in unpredictable program
results.

Spring Semester 2007 Programming and Data Structure 12

Initialization of Arrays
• General form:

type array_name[size] = { list of values };

• Examples:
int marks[5] = {72, 83, 65, 80, 76};
char name[4] = {‘A’, ‘m’, ‘i’, ‘t’};

• Some special cases:
– If the number of values in the list is less than

the number of elements, the remaining
elements are automatically set to zero.
float total[5] = {24.2, -12.5, 35.1};

total[0]=24.2, total[1]=-12.5, total[2]=35.1,
total[3]=0, total[4]=0

7

Spring Semester 2007 Programming and Data Structure 13

Contd.

– The size may be omitted. In such cases the
compiler automatically allocates enough space
for all initialized elements.

int flag[] = {1, 1, 1, 0};
char name[] = {‘A’, ‘m’, ‘i’, ‘t’};

Spring Semester 2007 Programming and Data Structure 14

Example 1: Find the minimum of a set of 10
numbers

#include <stdio.h>
main()
{

int a[10], i, min;

for (i=0; i<10; i++)
scanf (“%d”, &a[i]);

min = 99999;
for (i=0; i<10; i++)
{

if (a[i] < min)
min = a[i];

}
printf (“\n Minimum is %d”, min);

}

8

Spring Semester 2007 Programming and Data Structure 15

#include <stdio.h>
#define size 10

main()
{

int a[size], i, min;

for (i=0; i<size; i++)
scanf (“%d”, &a[i]);

min = 99999;
for (i=0; i<size; i++)
{

if (a[i] < min)
min = a[i];

}
printf (“\n Minimum is %d”, min);

}

Alternate
Version 1

Change only one
line to change the

problem size

Spring Semester 2007 Programming and Data Structure 16

#include <stdio.h>

main()
{

int a[100], i, min, n;

scanf (“%d”, &n);
/* Number of elements */

for (i=0; i<n; i++)
scanf (“%d”, &a[i]);

min = 99999;
for (i=0; i<n; i++)
{

if (a[i] < min)
min = a[i];

}
printf (“\n Minimum is %d”, min);

}

Alternate
Version 2

Define an array of
large size and use
only the required

number of elements

9

Spring Semester 2007 Programming and Data Structure 17

Example 2:
Computing

gpa
#include <stdio.h>
#define nsub 6

main()
{

int grade_pt[nsub], cred[nsub], i,
gp_sum=0, cred_sum=0, gpa;

for (i=0; i<nsub; i++)
scanf (“%d %d”, &grade_pt[i],

&cred[i]);

for (i=0; i<nsub; i++)
{

gp_sum += grade_pt[i] * cred[i];
cred_sum += cred[i];

}
gpa = gp_sum / cred_sum;
printf (“\n GPA is: %d”, gpa);

}

Handling two arrays
at the same time

Spring Semester 2007 Programming and Data Structure 18

Things you cannot do

• You cannot
– use “=” to assign one array variable to another:

a = b; /* a and b are arrays */

– use “==” to directly compare array variables:
if (a == b) ………..

– directly scanf or printf arrays:
printf (“……”, a);

10

Spring Semester 2007 Programming and Data Structure 19

How to copy the elements of one array to
another?

• By copying individual elements:

int a[25], b[25];
……
for (j=0; j<25; j++)

a[j] = b[j];

Spring Semester 2007 Programming and Data Structure 20

How to read the elements of an array?

• By reading them one element at a time.

int a[25];
……
for (j=0; j<25; j++)

scanf (“%f”, &a[j]);

• The ampersand (&) is necessary.
• The elements can be entered all in one line

or in different lines.

11

Spring Semester 2007 Programming and Data Structure 21

How to print the elements of an array?

• By printing them one element at a time.
for (j=0; j<25; j++)

printf (“\n %f”, a[j]);

– The elements are printed one per line.

printf (“\n”);
for (j=0; j<25; j++)

printf (“ %f”, a[j]);

– The elements are printed all in one line
(starting with a new line).

Spring Semester 2007 Programming and Data Structure 22

Character String

12

Spring Semester 2007 Programming and Data Structure 23

Introduction

• A string is an array of characters.
– Individual characters are stored in memory in

ASCII code.
– A string is represented as a sequence of

characters terminated by the null (‘\0’)
character.

‘\0’leH ol“Hello”

Spring Semester 2007 Programming and Data Structure 24

Declaring String Variables

• A string is declared like any other array:
char string-name [size];

– size determines the number of characters in
string_name.

• When a character string is assigned to a
character array, it automatically appends
the null character (‘\0’) at the end of the
string.
– size should be equal to the number of

characters in the string plus one.

13

Spring Semester 2007 Programming and Data Structure 25

Examples

char name[30];
char city[15];
char dob[11];

• A string may be initialized at the time of
declaration.

char city[15] = “Calcutta”;
char city[15] = {‘C’, ‘a’, ‘l’, ‘c’, ‘u’,

‘t’, ‘t’, ‘a’};
char dob[] = “12-10-1975”;

Equivalent

Spring Semester 2007 Programming and Data Structure 26

Reading Strings from the Keyboard

• Two different cases will be considered:
– Reading words
– Reading an entire line

14

Spring Semester 2007 Programming and Data Structure 27

Reading “words”
• scanf can be used with the “%s” format

specification.
char name[30];
:
:
scanf (“%s”, name);

– The ampersand (&) is not required before the
variable name with “%s”.

– The problem here is that the string is taken to
be upto the first white space (blank, tab,
carriage return, etc.)

• If we type “Rupak Biswas”
• name will be assigned the string “Rupak”

Spring Semester 2007 Programming and Data Structure 28

Reading a “line of text”

• In many applications, we need to read in
an entire line of text (including blank
spaces).

• We can use the getchar() function for the
purpose.

15

Spring Semester 2007 Programming and Data Structure 29

char line[81], ch;
int c=0;
:
:
do

{
ch = getchar();
line[c] = ch;
c++;

}
while (ch != ‘\n’);

c = c – 1;
line[c] = ‘\0’;

Read characters
until CR (‘\n’) is
encountered

Make it a valid
string

Spring Semester 2007 Programming and Data Structure 30

Reading a line :: Alternate Approach

char line[81];
:
:
scanf (“%[ABCDEFGHIJKLMNOPQRSTUVWXYZ]”, line);

char line[81];
:
:
scanf (“%[^\n]”, line);

Reads a string containing uppercase
characters and blank spaces

Reads a string containing any characters

16

Spring Semester 2007 Programming and Data Structure 31

Writing Strings to the Screen

• We can use printf with the “%s” format
specification.

char name[50];
:
:
printf (“\n %s”, name);

Spring Semester 2007 Programming and Data Structure 32

Processing Character Strings

• There exists a set of C library functions for
character string manipulation.
– strcpy :: string copy
– strlen :: string length
– strcmp :: string comparison
– strtcat :: string concatenation

• It is required to add the line
#include <string.h>

17

Spring Semester 2007 Programming and Data Structure 33

strcpy()

• Works very much like a string assignment
operator.

strcpy (string1, string2);

– Assigns the contents of string2 to string1.
• Examples:

strcpy (city, “Calcutta”);
strcpy (city, mycity);

• Warning:
– Assignment operator do not work for strings.

city = “Calcutta”; INVALID

Spring Semester 2007 Programming and Data Structure 34

strlen()

• Counts and returns the number of characters
in a string.

len = strlen (string);

/* Returns an integer */

– The null character (‘\0’) at the end is not counted.
– Counting ends at the first null character.

18

Spring Semester 2007 Programming and Data Structure 35

char city[15];
int n;
:
:
strcpy (city, “Calcutta”);
n = strlen (city);

n is assigned 8

Spring Semester 2007 Programming and Data Structure 36

strcmp()

• Compares two character strings.
int strcmp(string1, string2);

– Compares the two strings and returns 0 if they
are identical; non-zero otherwise.

• Examples:
if (strcmp(city, “Delhi”) == 0)

{ ……. }

if (strcmp(city1, city2) != 0)
{ ……. }

19

Spring Semester 2007 Programming and Data Structure 37

strcat()

• Joins or concatenates two strings
together.

strcat (string1, string2);

– string2 is appended to the end of string1.
– The null character at the end of string1 is

removed, and string2 is joined at that point.
• Example:

strcpy(name1, “Amit ”);

strcpy(name2, “Roy“);

strcat(name1, name2);

‘\0’imA t

‘\0’yoR

imA t ‘\0’yoR

Spring Semester 2007 Programming and Data Structure 38

Example
/* Read a line of text and count the number of
uppercase letters */
#include <stdio.h>
#include <string.h>
main()
{

char line[81];
int i, n, count=0;
scanf (“%[^\n]”, line);
n = strlen (line);
for (i=0; i<n; i++)

if (isupper(line[i])
count++;

printf (“\n The number of uppercase letters in
the string %s is %d”, line, count);
}

20

Spring Semester 2007 Programming and Data Structure 39

Two Dimensional Arrays

• We have seen that an array variable can
store a list of values.

• Many applications require us to store a
table of values.

7040686550

8076857488

7270807568

7665908275Student 1

Student 2

Student 3

Student 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Spring Semester 2007 Programming and Data Structure 40

Contd.

• The table contains a total of 20 values, five
in each line.
– The table can be regarded as a matrix

consisting of four rows and five columns.
• C allows us to define such tables of items

by using two-dimensional arrays.

21

Spring Semester 2007 Programming and Data Structure 41

Declaring 2-D Arrays

• General form:
type array_name[row_size][column_size];

• Examples:
int marks[4][5];
float sales[12][25];
double matrix[100][100];

Spring Semester 2007 Programming and Data Structure 42

Accessing Elements of a 2-D Array

• Similar to that for 1-D array, but use two
indices.
– First indicates row, second indicates column.
– Both the indices should be expressions which

evaluate to integer values.
• Examples:

x[m][n] = 0;
c[i][k] += a[i][j] * b[j][k];
a = sqrt (a[j*3][k]);

22

Spring Semester 2007 Programming and Data Structure 43

How is a 2-D array is stored in
memory?

• Starting from a given memory location, the
elements are stored row-wise in consecutive
memory locations.

x: starting address of the array in memory
c: number of columns
k: number of bytes allocated per array element

Element a[i][j] :: allocated memory
location at address x + (i * c + j) * k

a[0]0] a[0][1] a[0]2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3]

Row 0 Row 1 Row 2

Spring Semester 2007 Programming and Data Structure 44

How to read the elements of a 2-D
array?

• By reading them one element at a time

for (i=0; i<nrow; i++)
for (j=0; j<ncol; j++)
scanf (“%f”, &a[i][j]);

• The ampersand (&) is necessary.
• The elements can be entered all in one line

or in different lines.

23

Spring Semester 2007 Programming and Data Structure 45

How to print the elements of a 2-D
array?

• By printing them one element at a time.
for (i=0; i<nrow; i++)

for (j=0; j<ncol; j++)
printf (“\n %f”, a[i][j]);

– The elements are printed one per line.

for (i=0; i<nrow; i++)
for (j=0; j<ncol; j++)
printf (“%f”, a[i][j]);

– The elements are all printed on the same line.

Spring Semester 2007 Programming and Data Structure 46

Contd.

for (i=0; i<nrow; i++)
{

printf (“\n”);
for (j=0; j<ncol; j++)
printf (“%f ”, a[i][j]);

}

– The elements are printed nicely in matrix form.
• How to print two matrices side by side?

24

Spring Semester 2007 Programming and Data Structure 47

Example: Matrix Addition

#include <stdio.h>

main()
{

int a[100][100], b[100][100],
c[100][100], p, q, m, n;

scanf (“%d %d”, &m, &n);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

scanf (“%d”, &a[p][q]);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

scanf (“%d”, &b[p][q]);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

c[p]q] = a[p][q] + b[p][q];

for (p=0; p<m; p++)
{

printf (“\n”);
for (q=0; q<n; q++)

printf (“%f ”, a[p][q]);
}

}

Spring Semester 2007 Programming and Data Structure 48

Passing Arrays to a Function
• An array name can be used as an

argument to a function.
– Permits the entire array to be passed to the

function.
– The way it is passed differs from that for

ordinary variables.
• Rules:

– The array name must appear by itself as
argument, without brackets or subscripts.

– The corresponding formal argument is written
in the same manner.

• Declared by writing the array name with a pair of
empty brackets.

25

Spring Semester 2007 Programming and Data Structure 49

Example: Transpose of a matrix

void transpose (x, n)
int x[][3], n;
{

int p, q;

for (p=0; p<n; p++)
for (q=0; q<n; q++)
{

t = x[p][q];
x[p][q] = x[q][p];
x[q][p] = t;

}
}

10 20 30

40 50 60

70 80 90

10 20 30

40 50 60

70 80 90

Spring Semester 2007 Programming and Data Structure 50

The Correct Version

void transpose (x, n)
int x[][3], n;
{

int p, q;

for (p=0; p<n; p++)
for (q=p; q<n; q++)
{
t = x[p][q];
x[p][q] = x[q][p];
x[q][p] = t;

}
}

10 20 30

40 50 60

70 80 90

10 40 70

20 50 80

30 60 90

26

Spring Semester 2007 Programming and Data Structure 51

Example Usage

main()
{

int n;
float list[100], avg;
:
avg = average(n,list);
:

}

float average(a,x)
int a;
float x[];
{

:
sum = sum + x[i];

}

We can also write

float x[100];

But the way the
function is written
makes it general; it
works with arrays of
any size.

Spring Semester 2007 Programming and Data Structure 52

The Actual Mechanism
• When an array is passed to a function, the

values of the array elements are not passed
to the function.
– The array name is interpreted as the address of

the first array element.
– The formal argument therefore becomes a pointer

to the first array element.
– When an array element is accessed inside the

function, the address is calculated using the
formula stated before.

– Changes made inside the function are thus also
reflected in the calling program.

27

Spring Semester 2007 Programming and Data Structure 53

Contd.

• Passing parameters in this way is called
call-by-reference.

• Normally parameters are passed in C using
call-by-value.

• Basically what it means?
– If a function changes the values of array elements,

then these changes will be made to the original
array that is passed to the function.

– This does not apply when an individual element is
passed on as argument.

Spring Semester 2007 Programming and Data Structure 54

Example: Minimum of a set of numbers

#include <stdio.h>

main()
{
int a[100], i, n;

scanf (“%d”, &n);
for (i=0; i<n; i++)
scanf (“%d”, &a[i]);

printf (“\n Minimum is %d”,
minimum(a,n));

}

int minimum (x,size)
int x[], size;
{
int i, min = 99999;

for (i=0;i<size;i++)
if (min < a[i])

min = a[i];
return (min);

}

28

Spring Semester 2007 Programming and Data Structure 55

Passing 2-D Arrays

• Similar to that for 1-D arrays.
– The array contents are not copied into the

function.
– Rather, the address of the first element is passed.

• For calculating the address of an element in
a 2-D array, we need:
– The starting address of the array in memory.
– Number of bytes per element.
– Number of columns in the array.

• The above three pieces of information must
be known to the function.

Spring Semester 2007 Programming and Data Structure 56

Example Usage

#include <stdio.h>

main()
{
int a[15][25],b[15]25];
:
:

add (a, b, 15, 25);
:

}

void add (x,y,rows,cols)
int x[][25], y[][25];
int rows, cols;
{

:
}

We can also write

int x[15][25], y[15][25];

29

Spring Semester 2007 Programming and Data Structure 57

Some Exercise Problems to Try Out

• Find the mean and standard deviation of a
set of n numbers.

• A shop stores n different types of items.
Given the number of items of each type
sold during a given month, and the
corresponding unit prices, compute the
total monthly sales.

• Multiple two matrices of orders mxn and
nxp respectively.

