
1

Spring Semester 2007 Programming and Data Structure 26

A Look Back at Arithmetic Operators:
the Increment and Decrement

Spring Semester 2007 Programming and Data Structure 27

Increment (++) and Decrement (--)

• Both of these are unary operators; they
operate on a single operand.

• The increment operator causes its operand
to be increased by 1.
– Example: a++, ++count

• The decrement operator causes its operand
to be decreased by 1.
– Example: i--, --distance

2

Spring Semester 2007 Programming and Data Structure 28

• Operator written before the operand (++i, --i))
– Called pre-increment operator.
– Operator will be altered in value before it is

utilized for its intended purpose in the program.
• Operator written after the operand (i++, i--)

– Called post-increment operator.
– Operator will be altered in value after it is utilized

for its intended purpose in the program.

Spring Semester 2007 Programming and Data Structure 29

Examples

Initial values :: a = 10; b = 20;

x = 50 + ++a; a = 11, x = 61

x = 50 + a++; x = 60, a = 11

x = a++ + --b; b = 19, x = 29, a = 11

x = a++ – ++a; Undefined value (implementation
dependent)

Called side effects:: while calculating some values,
something else get changed.

3

Spring Semester 2007 Programming and Data Structure 30

Control Structures that Allow
Repetition

Spring Semester 2007 Programming and Data Structure 31

Types of Repeated Execution

• Loop
– Group of instructions that are executed

repeatedly while some condition remains true.
• Counter-controlled repetition

– Definite repetition – know how many times
loop will execute.

– Control variable used to count repetitions.
• Sentinel-controlled repetition

– Indefinite repetition.
– Used when number of repetitions not known.
– Sentinel value indicates “end of data”.

4

Spring Semester 2007 Programming and Data Structure 32

Counter-controlled Repetition

• Counter-controlled repetition requires
– name of a control variable (or loop counter).
– initial value of the control variable.
– condition that tests for the final value of the

control variable (i.e., whether looping should
continue).

– increment (or decrement) by which the control
variable is modified each time through the
loop.

Spring Semester 2007 Programming and Data Structure 33

Examples

int counter =1; // initialization

while (counter <= 10) { // repetition condition
printf ("%d\n", counter);
++counter; // increment

}

int counter;

for (counter=1;counter<=10;counter++)
printf (“%d\n”, counter);

5

Spring Semester 2007 Programming and Data Structure 34

while Statement

• The “while” statement is used to carry out
looping operations, in which a group of
statements is executed repeatedly, as
long as some condition remains satisfied.

while (condition)
statement_to_repeat;

while (condition) {
statement_1;

...
statement_N;

}

Spring Semester 2007 Programming and Data Structure 35

C

statement(s)

true

false
Single-entry /

single-exit
structure

6

Spring Semester 2007 Programming and Data Structure 36

while :: Examples

int digit = 0;

while (digit <= 9)
printf (“%d \n”, digit++);

int weight;

while (weight > 65) {
printf ("Go, exercise, ");
printf ("then come back. \n");
printf ("Enter your weight: ");
scanf ("%d", &weight);
}

Spring Semester 2007 Programming and Data Structure 37

do-while Statement

• Similar to “while”, with the difference that
the check for continuation is made at the
end of each pass.
– In “while”, the check is made at the beginning.

• Loop body is executed at least once.

do {
statement-1
statement-2

statement-n
} while (condition);

7

Spring Semester 2007 Programming and Data Structure 38

C

statement(s)

true

false

Single-entry /
single-exit
structure

Spring Semester 2007 Programming and Data Structure 39

do-while :: Examples

int digit = 0;

do
printf (“%d \n”, digit++);

while (digit <= 9);

int weight;

do {
printf ("Go, exercise, ");
printf ("then come back. \n");
printf ("Enter your weight: ");
scanf ("%d", &weight);
} while (weight > 65) ;

8

Spring Semester 2007 Programming and Data Structure 40

• The “for” statement is the most commonly
used looping structure in C.

• General syntax:
for (expression1; expression2; expression3)

statement-to-repeat;

for (expression1; expression2; expression3) {
statement_1;

statement_N;
}

for Statement

Spring Semester 2007 Programming and Data Structure 41

• How it works?
– “expression1” is used to initialize some variable

(called index) that controls the looping action.
– “expression2” represents a condition that must

be true for the loop to continue.
– “expression3” is used to alter the value of the

index initially assigned by “expression1”.

int digit;

for (digit=0; digit<=9; digit++)

printf (“%d \n”, digit);

9

Spring Semester 2007 Programming and Data Structure 42

expression2

statement(s)

true

false
Single-entry /

single-exit
structure

expression1

expression3

Spring Semester 2007 Programming and Data Structure 43

for :: Examples

int fact = 1, i;

for (i=1; i<=10; i++)
fact = fact * i;

int sum = 0, N, count;

scanf (“%d”, &N);

for (i=1; i<=N, i++)
sum = sum + i * i;

printf (“%d \n”, sum);

10

Spring Semester 2007 Programming and Data Structure 44

• The comma operator
– We can give several statements separated by

commas in place of “expression1”, “expression2”,
and “expression3”.

for (fact=1, i=1; i<=10; i++)
fact = fact * i;

for (sum=0, i=1; i<=N, i++)
sum = sum + i * i;

Spring Semester 2007 Programming and Data Structure 45

for :: Some Observations

• Arithmetic expressions
– Initialization, loop-continuation, and

increment can contain arithmetic
expressions.

for (k = x; k <= 4 * x * y; k += y / x)

• "Increment" may be negative (decrement)
for (digit=9; digit>=0; digit--)

• If loop continuation condition initially false:
– Body of for structure not performed.
– Control proceeds with statement after for

structure.

11

Spring Semester 2007 Programming and Data Structure 46

Specifying “Infinite Loop”

while (1) {
statements

}

for (; ;)
{

statements
}

do {
statements

} while (1);

Spring Semester 2007 Programming and Data Structure 47

The break Statement Revisited

• Break out of the loop { }
– can use with

• while
• do while
• for
• switch

– does not work with
• if
• else

• Causes immediate exit from a while, do/while, for or
switch structure.

• Program execution continues with the first
statement after the structure.

12

Spring Semester 2007 Programming and Data Structure 48

A Complete Example

#include <stdio.h>
main()
{

int fact, i;

fact = 1; i = 1;

while (i<10) { /* run loop –break when fact >100*/
fact = fact * i;
if (fact > 100) {

printf ("Factorial of %d above 100", i);
break; /* break out of the while loop */

}
i ++ ;

}
}

Spring Semester 2007 Programming and Data Structure 49

The continue Statement

• Skips the remaining statements in the body
of a while, for or do/while structure.
– Proceeds with the next iteration of the loop.

• while and do/while
– Loop-continuation test is evaluated immediately

after the continue statement is executed.
• for structure

– expression3 is evaluated, then expression2 is
evaluated.

13

Spring Semester 2007 Programming and Data Structure 50

An Example with “break” & “continue”

fact = 1; i = 1; /* a program to calculate 10 !
while (1) {

fact = fact * i;
i ++ ;
if (i<10)

continue; /* not done yet ! Go to loop and
perform next iteration*/

break;
}

Spring Semester 2007 Programming and Data Structure 51

ANNOUNCEMENT REGARDING
CLASS TEST 1

14

Spring Semester 2007 Programming and Data Structure 52

Time and Venue

• Date: February 8, 2007
• Time: 6 PM to 7 PM

– Students must occupy seat within 5:45 PM,
and carry identity card with them.

• Venue: VIKRAMSHILA COMPLEX
– Section 1 :: Room V1
– Section 2 :: Room V2
– Section 3 :: Room V3
– Section 4 :: Room V4
– Section 5 (AE to EG):: Room V1
– Section 5 (Rest):: Room V2

Spring Semester 2007 Programming and Data Structure 53

Syllabus

• Variables and constants
• Number system
• Assignment statements
• Conditional statements
• Loops
• Simple input/output

