A Look Back at Arithmetic Operators:
the Increment and Decrement

Spring Semester 2007 Programming and Data Structure 26

Increment (++) and Decrement (--)

e Both of these are unary operators; they
operate on a single operand.

 The increment operator causes its operand
to be increased by 1.
— Example: a++, ++count

« The decrement operator causes its operand
to be decreased by 1.
— Example: i--, --distance

Spring Semester 2007 Programming and Data Structure 27




o Operator written before the operand (++i, --i))
— Called pre-increment operator.

— Operator will be altered in value before it is
utilized for its intended purpose in the program.

* Operator written after the operand (i++, i--)
— Called post-increment operator.

— Operator will be altered in value after it is utilized
for its intended purpose in the program.

Spring Semester 2007 Programming and Data Structure 28

Examples

Initial values :: a=10; b =20;

X =50 + ++a; a=11,x=61

X =50 + at++; Xx=60,a=11

X = at++ + --b; b=19,x=29,a=11

X = at+ — ++a; Undefined value (implementation
dependent)

Called side effects:: while calculating some values,
something else get changed.

Spring Semester 2007 Programming and Data Structure 29




Control Structures that Allow
Repetition

Spring Semester 2007 Programming and Data Structure 30

Types of Repeated Execution

« Loop

— Group of instructions that are executed
repeatedly while some condition remains true.

» Counter-controlled repetition

— Definite repetition — know how many times
loop will execute.

— Control variable used to count repetitions.
» Sentinel-controlled repetition
— Indefinite repetition.
— Used when number of repetitions not known.
— Sentinel value indicates “end of data”.

Spring Semester 2007 Programming and Data Structure 31




Counter-controlled Repetition

« Counter-controlled repetition requires
— name of a control variable (or loop counter).
initial value of the control variable.

condition that tests for the final value of the
control variable (i.e., whether looping should
continue).

increment (or decrement) by which the control
variable is modified each time through the

loop.
Spring Semester 2007 Programming and Data Structure 32
Examples
int counter =1; [l initialization
while (counter <= 10) { /I repetition condition
printf ("%d\n", counter );
++counter; [/l increment
}
int counter;
for (counter=1;counter<=10;counter++)
printf (“%d\n”, counter);

Spring Semester 2007 Programming and Data Structure 33




while Statement

 The “while” statement is used to carry out
looping operations, in which a group of
statements is executed repeatedly, as
long as some condition remains satisfied.

while (condition) while (condition) {
statement_to_repeat; statement_1;

statement_N;

}
Spring Semester 2007 Programming and Data Structure 34
e ————
false
Single-entry /
T single-exit
structure
statement(s)

Spring Semester 2007 Programming and Data Structure 35




while :: Examples

int digit = 0;

while (digit <=9)
printf (“%d \n”, digit++);

int weight;

while (weight > 65) {
printf ("Go, exercise, ");
printf ("then come back. \n");
printf ("Enter your weight: ");
scanf ("%d", &weight);
}

Spring Semester 2007 Programming and Data Structure 36

do-while Statement

 Similar to “while”, with the difference that
the check for continuation is made at the

end of each pass.

— In “while”, the check is made at the beginning.
 Loop body is executed at least once.

do {

statement-1
statement-2

statement-n
} while (condition );

Spring Semester 2007 Programming and Data Structure 37




Single-entry /
] single-exit
false structure

true

Spring Semester 2007 Programming and Data Structure 38

do-while :: Examples

int digit =0; int weight;

do {
printf ("Go, exercise, ");
printf ("then come back. \n");
printf ("Enter your weight: ");

do
printf (“%d \n”, digit++);
while (digit <=9);

scanf ("%d", &weight);
} while (weight >65) ;

Spring Semester 2007 Programming and Data Structure 39




for Statement

« The “for” statement is the most commonly
used looping structure in C.

* General syntax:

for (expressionl; expression2; expression3)
statement-to-repeat;

for (expressionl; expression2; expression3) {
statement_1;

statement_N;

}

Spring Semester 2007 Programming and Data Structure 40

e How it works?

— “expressionl” is used to initialize some variable
(called index) that controls the looping action.

— “expression2” represents a condition that must
be true for the loop to continue.

— “expression3d” is used to alter the value of the
index initially assigned by “expressionl”.

int digit;

for (digit=0; digit<=9; digit++)
printf (“%d \n”, digit);

Spring Semester 2007 Programming and Data Structure 41




l

expressionl

_ false _
expression2 Single-entry /
single-exit
true structure
statement(s)
expression3
Spring Semester 2007 Programming and Data Structure 42
for :: Examples
int fact =1, i; int sum =0, N, count;
for (i=1; i<=10; i++) scanf (“%d”, &N);
fact = fact * i;

for (i=1; i<=N, i++)

sum =sum +i *i;

printf (“%d \n”, sum);

Spring Semester 2007 Programming and Data Structure

43




e The comma operator

— We can give several statements separated by
commas in place of “expressionl”, “expression2”,
and “expression3”.

for (fact=1, i=1; i<=10; i++)
fact = fact * i;

for (sum=0, i=1; i<=N, i++)
sum =sum +i *i;

Spring Semester 2007 Programming and Data Structure 44

for :: Some Observations

o Arithmetic expressions

— Initialization, loop-continuation, and
increment can contain arithmetic
expressions.

for(k=x; k<=4*x*y;, k+=y/x)

* "Increment” may be negative (decrement)
for (digit=9; digit>=0; digit--)

» If loop continuation condition initially false:

— Body of for structure not performed.

— Control proceeds with statement after for
structure.

Spring Semester 2007 Programming and Data Structure 45

10



Specifying “Infinite Loop”

while (1) { for ()
statements {
} statements
}
do {
statements
} while (1);
Spring Semester 2007 Programming and Data Structure 46

The break Statement Revisited

» Break out of the loop { }
— can use with
e while
e do while
e for
e switch
— does not work with
o if
e else

e Causes immediate exit from a while, do/while, for or
switch structure.

* Program execution continues with the first
statement after the structure.

Spring Semester 2007 Programming and Data Structure 47

11



A Complete Example

#include <stdio.h>
main()
{
int fact, i;
fact=1; i =1;
r while (i<10) { /* run loop —break when fact >100*/
fact = fact *i;
if (fact >100) {
printf ("Factorial of %d above 100", i);
break; /* break out of the while loop */
}
i++;
~ }
}
Spring Semester 2007 Programming and Data Structure 48

The continue Statement

o Skips the remaining statements in the body
of a while, for or do/while structure.
— Proceeds with the next iteration of the loop.
 while and do/while
— Loop-continuation test is evaluated immediately
after the continue statement is executed.
» for structure

— expression3is evaluated, then expression2 is
evaluated.

Spring Semester 2007 Programming and Data Structure 49

12



An Example with “break” & “continue”

fact=1;i =1, [* a program to calculate 10 !
while (1) {
fact = fact * i;
i ++;
if (i<10)
continue; /* not done yet ! Go to loop and
perform next iteration*/
break;
}
Spring Semester 2007 Programming and Data Structure 50

ANNOUNCEMENT REGARDING
CLASS TEST 1

Spring Semester 2007 Programming and Data Structure 51

13



Time and Venue

o Date: February 8, 2007

e Time: 6 PMto 7 PM

— Students must occupy seat within 5:45 PM,
and carry identity card with them.

 Venue: VIKRAMSHILA COMPLEX

— Section 1 :: Room V1
— Section 2 :: Room V2
— Section 3 :: Room V3
— Section 4 :: Room V4
— Section 5 (AE to EG):: Room V1
— Section 5 (Rest):: Room V2
Spring Semester 2007 Programming and Data Structure 52
Syllabus

e Variables and constants
* Number system

e Assignment statements
e Conditional statements
 Loops

» Simple input/output

Spring Semester 2007 Programming and Data Structure 53

14



