CS10003: Programming and Data Structures
Spring 2026
Class Test 1, February 05, 2026

Time: 1 Hour Full marks: 20
SECTION: ROLL NO.: NAME:

Q1 Q2 Q3 Q4 Q5 TOTAL

3 7 3 5 2 20

INSTRUCTIONS

=

Answer ALL questions.

2. Write the answers either within the boxes provided or on the blank lines to be filled up. Any
answer written elsewhere will not be evaluated. Final answers must be written by pen, answers
written in pencil will not be evaluated.

Q.1. Answer the following questions as directed.

a) Which of the following are valid datatypes in C? Write ONLY the valid datatypes in the box

provided. 1]
double
unsigned short double
string unsigned short
unsigned double

[+0.5 for each correct answer, -0.5 for each wrong answer, minimum 0]

b) Which of the following 4 strings are valid C variable names? Write ONLY the valid variables in

the box provided. [1]
do_while .
10number_sum do_while
_bterms _bterms
Sum-of -terms

[+0.5 for each correct answer, -0.5 for each wrong answer, minimum 0]

Page 1 of 9

c) What will be the value of the following expressions? [1]

22+14*15/12%2*2.5 24.5

2*3.2 - 17/2/2.5 * 4/((float) 10)/4 6.08

[For each expression, +0.5 for correct answer, 0 for wrong answer, binary]
Q.2. What will be printed when the following programs are executed?

a) #include <stdio.h> [1]
int main() {
int x = -11; green
if (x = 0) printf(“red"):
else if (x < 0)
printf(“blue"):
else printf("green");

[+1 for correct answer, 0 otherwise, binary]

return O;
}
b) Assume that the program below is executed with input 243612. [1]

#include <stdio.h>

int main() {
char x = '0’, y = O;
while (x - '0' < B) { 15

scanf("%c”, &x);
y +=x-"0;

:)rin'rf(‘“Vd\n" v); [+1 for correct answer, 0 otherwise, binary]
return O;

}

c) #include <stdio.h> [1]
int main() {

int x=0,y=5, z=10; x=3,y=17,2=16

while (1) {
X++;
if (y > z) break: [+1 if all 3 correct,
y += 4%x; z += 2*x; +0.5 if any 2 correct, 0 otherwise.

} Ignore x=, y= z= printing]

printf("x = %d, y = %d, z = %d", x, y, z);

return O; Page 2 of 9
}

d) #include <stdio.h> [1]
int main()
{
char choice = 'b’; int x = 5;
switch(choice)

{

case 'a’: x += b;

35
case 'b': x += 10;

case ‘c': x += 20; break:
default: x += 100; break:
case 'e’: x += 30; [+1 for correct answer, 0 otherwise, binary]

}
printf("%d", x); return O;

e) #tinclude <stdio.h> [1]
int main() {

intx=1,y=0,z=1, p:

for (p = 0: p < 10; ++p) {

y = (x=x%2) ? z : -z;

-10

ZH, X+t [+1 for correct answer, 0 otherwise, binary]

}
printf("%d", y). return O;
}
f) #include <stdio.h> 4
int main() {
int A[71={0, 1, 2, 3, 0, 0, 10}
inti=0;
do {
A[i+1] = A[i] + A[i+1]. 6
i++;
} while (A[i] > 0 && i < 6);
printf("%d”, A[5]); [+1 for correct answer, 0 otherwise, binary]
return O;
}

Page 3 0of 9

9) #include <stdio.h> [1]

int main() {
inti=0, j=0;
1
while (++i < 7) i += ++j; 0, 3
printf("%d, %d\n", i, j):
return O;

}

[+1 if both correct, 0.5 if any one correct, 0 otherwise.]

Q.3. An integer is a perfect square if its square root is also an integer. Fill in the blanks in the C
program below so that it prints all the odd perfect squares between 1 and N (including 1 and N),
where N is read from the user. Do not use any mathematical functions. [1+1+1]

#include <stdio.h>
int main()

{

int i, N, square;
scanf (“%d”, &N);
printf (“The odd perfect squares between 1 and %d are: \n", N) :

for (i = 1;i <= N; i++){

if (% 2==1){

square = i * i;

if (square > N) {

/* no further odd squares can be found
so no need to check anything anymore */

break:

} else {
/* Print odd perfect square */

printf("%d\n “, square) :

}

return O;

[For each blank, +1 for correct answer, 0 otherwise, binary.
No marks for “continue” instead of “break” in 37 blank,
Other variations in 15t and 2" blanks are given due credit if correct]

Page 4 of 9

Q.4. Given a 1-d array X, we want to counts the number of even-spaced inversions in the array. We call
a pair of indices (i, j) in the array an inversion if X[i] > X[j] AND i < j (both conditions must be
true). Further, the inversion is said to be even-spaced if the difference between i and j is even.
Fill up the missing code below to complete the program so that it counts the number of even-
spaced inversions in the array arr. [1+1+2+1]

#include<stdio.h>
int main(){
int arr[] = {10,9,8,7,6,5,4,3,2,1}.
/*Stores the count of even-spaced inversions*/

int even_inv_cnt = 0 :

int i, j.

/* Tterating over all pairs of elements*/
for(i = 0; i < 9 ;i++) {

for(j =i+ 1; | < 10; j++){
/*Checking if even-spaced inversions*/

if ((arr[i] > arr[j]) && ((j - %2 == 0)) {
++even_inv_cnt;

}

printf("Number of even-spaced inversions:%d", even_inv_cnt):
return O;

[For first and last blank, +1 for correct answer, 0 otherwise, binary
For the second blank, 0.5 for each of “i +1” and *“j < 10”
For the third blank, 2 if fully correct, 1 if one of the conditions around && is correct, 0

otherwise
Other variations in the blanks in “for” and “if” are given due credit if correct]]

Q.5. Fill up the missing lines below so that the program initializes the array S with the characters a,
b, ¢, d, e, and \n, in that order, and then prints the number of characters in S not counting the \n
So it should print 5 if the code is executed. However, you are not allowed to use 5 directly
anywhere. [1+1]

#include <stdio.h>

int main()

{
int i = -1; char S[10] = {'a’, 'b’, ¢, 'd’, "e’, "\n'};
while (S[++i] = "\n");
printf("The no. of characters in S is %d", i);

return O; Page 5 of 9

[For first blank, +1 for correct answer, 0 otherwise, binary. No marks if single quotes are
not given.

For 2"d blank, +1 if fully correct, +0.5 if they have not done or done wrongly the i++, but
the \n check is done, 0 otherwise]

- The End---

Page 6 of 9

ROUGH WORK ONLY
(Nothing written here will be considered for evaluation)

Page 7 of 9

ROUGH WORK ONLY
(Nothing written here will be considered for evaluation)

Page 8 of 9

ROUGH WORK ONLY
(Nothing written here will be considered for evaluation)

Page 9 of 9

