Programming & Data Structure
CS 11002

Partha Bhowmick
http://cse.iitkgp.ac.in/ pb

CSE Department
IIT Kharagpur

Spring 2012-2013

PB | CSE IITKGP | Spring 2012-2013 PDS

Pl

Instructors & TAs

Venue & Time
Room V1
Sections 1, 2, 3
MON + THURS + FRI — All 4:30-5:25

Instructors

Dr. Partha Bhowmick

(Email: bhowmick@gmail.com)
+ Prof. A. Basu + Prof. R. Mall

PB | CSE IITKGP | Spring 2012-2013 PDS

Plan

Instructors & TAs

Teaching Assistants

Mr Sanjoy Pratihar
(Email: sanjoy.pratihar@gmail.com)
Mr Kunal Banerjee
(Email: kunal.banerjee.cse@gmail.com)

Computer Science and Engineering Department

IIT Kharagpur

PB | CSE IITKGP | Spring 2012-2013 PDS

Marks Distribution

Class Test 1 7 Feb 2013, 6:45-7:45 PM 10 marks

Mid-Sem Exam 18-26 Feb 2013 25 + 5°
Class Test 11 21 Mar 2013, 6:45-7:45 PM 10 marks
End-Sem Exam 15 Apr 2013 45 + 5°

@5 marks for pre-midsem attendance;
b5 marks for post-midsem attendance.

Less than 75% attendance at any point of time is

subject to de-registration.

PB | CSE IITKGP | Spring 2012-2013 PDS

Plan

Course Content

Introduction; syllabus; books; class attendance; class
test dates; evaluation policy; compiler; 0S; data;
variables & constants; storage; flowcharts; printf() and
scanf () ; macros; math library; operators precedence; data
types & their operations; data operations (type cast);
control statements (if, else); loops (for, while,
do-while); logical operations; number system (decimal,
binary, hex); fractions.

Functions; parameters; arguments; declarations;
prototypes; examples; recursion; array.

Arrays; linear search; binary search (recursive) ;
applications; bubble sort; 2D arrays; strings; structures;
array of structures; pointers; pointer arithmetic for
arrays; dynamic memory allocation; calloc & malloc; call
by ref.

PB | CSE IITKGP | Sp

Plan

Course Content

File I/0; command line arguments; ADT; stack with array;
linked list; circular list; double-ended list; queues;

quick sort, etc.

IITKGP | Sp

Text Books

@ Programming with C, B.S. Gottfried,
TMH

Data Structures, S. Lipschutz, TMH

The C Programming Language,
B. W. Kernighan & D. M. Ritchie, PHI

Data Structures and Program Design,
R. L. Kruse, PHI

Introduction to Algorithms, T.H. Cormen
et al., PHI

PB | CSE IITKGP | Spring 2012-2013 PDS

Comp

Computer System: An Querview
VDU

—— 0o| Processor
Memory

Disk etc.

O O & 3
O O & 3

Keyboard
@ Mouse

PB | CSE IITKGP | Spring 2012-2013 PDS

Plan Comp Str Data Opr Expr/Stmt Iter

Computer System: An Querview

| CPU-Memory Bus |
Cache Memory .
I Main
DMA etc. Memory
MMU |
| 10 Bus
CPU
10 Controller 10 Controller
Mouse 10 Controller

DIl Graphics / Network
Disk 1T VDU

PB | CSE IITKGP | Spring 2012-2013

Computer & CPU

e Stored program computer: Processes
data using CPU.

PB | CSE IITKGP | Spring 2012-2013 PDS

Computer & CPU

e Stored program computer: Processes
data using CPU.

e CPU (Central Processing Unit): Follows a
sequence of instructions, i.e., computer
program.

PB | CSE IITKGP | Spring 2012-2013 PDS

Computer & CPU

e Stored program computer: Processes
data using CPU.

e CPU (Central Processing Unit): Follows a
sequence of instructions, i.e., computer
program.

@ Program: A finite sequence of instructions.

PB | CSE IITKGP | Spring 2012-2013 PDS

Computer & CPU

e Stored program computer: Processes
data using CPU.

e CPU (Central Processing Unit): Follows a
sequence of instructions, i.e., computer
program.

@ Program: A finite sequence of instructions.

@ Memory: Stores both program and data in
the computer.

PB | CSE IITKGP | Spring 2012-2013 PDS

Computer & CPU

e Stored program computer: Processes
data using CPU.

e CPU (Central Processing Unit): Follows a
sequence of instructions, i.e., computer
program.

@ Program: A finite sequence of instructions.

@ Memory: Stores both program and data in
the computer.

e Instruction Set: A finite set of (machine)
instructions associated with every CPU.

PB | CSE IITKGP | Spring 2012-2013 PDS

Computer & CPU

e Stored program computer: Processes
data using CPU.

e CPU (Central Processing Unit): Follows a
sequence of instructions, i.e., computer
program.

@ Program: A finite sequence of instructions.

@ Memory: Stores both program and data in
the computer.

e Instruction Set: A finite set of (machine)
instructions associated with every CPU.

PB | CSE IITKGP | Spring 2012-2013 PDS

Computer & CPU

e Program: Finally, after compilation, it is
an executable file or a binary file containing
a finite sequence of machine instructions of
the corresponding CPU.

@ Machine instruction: A finite-length
string of binary digits (bits).

e CPU types: Pentium, PowerPC, SPARC,
x86-64 —all have different instruction sets!

PB | CSE IITKGP | Spring 2012-2013 PDS

Computer & CPU

e Program: Finally, after compilation, it is
an executable file or a binary file containing
a finite sequence of machine instructions of
the corresponding CPU.

@ Machine instruction: A finite-length
string of binary digits (bits).

e CPU types: Pentium, PowerPC, SPARC,
x86-64 —all have different instruction sets!
So the machine-language program of one
computer need not run directly on another
machine.

PB | CSE IITKGP | Spring 2012-2013 PDS

Computer & CPU

An Intel 80486DX2 CPU

from above from below

PB | CSE IITKGP | Spring 2012-2013

Comp

Computer & CPU

Writable volatile random-access memory (RAM)
—primarily used as main memory in personal
computers, workstations, and servers.

PB | CSE IITKGP | Spring 2012-2013

Comp

Computer & CPU

Main Components of
il i - CPU

CU: Control unit extracts in-
structions from memory, decodes
and executes them, calling on the
--- --- ALU when necessary.

ALU: Arithmetic logic unit.

GPR File FPR File FPU: Floating-point unit (a

math coprocessor).
GPR: General purpose registers.
FPR: Floating-point registers.

ALU
Fru PC/IP: Program counter/

Other Registers and Latches instruction pointer.
IR: Instruction register.

PC IR etc.

PB | CSE IITKGP | Spring 2012-2013

Operating System

A computer is very difficult to use unless a core
master program is running on it. This core
master program is called its operating system
(OS). The OS provides a better view of the
available resources and also manages them
efficiently.

PB | CSE IITKGP | Spring 2012-2013 PDS

Comp

Programming Environment

PC with Intel Core 2 Duo CPU(+ MMU
+ cache).

e Operating System, Linux / SunOS.

e Editor: emacs, gedit, or vi.

e Compiler: GNU gcc for C language.

@ Thin Client and Server.
A thin client is a computer (and necessary
software) that does most its computational job

on a more powerful server. Large number of
clients share the same server.

PB | CSE IITKGP | Spring 2012-2013 PDS

First C Program

#include <stdio.h>

int main()

{
printf ("Hurray... My First C Program!\n");
return O;

} // first.c

PB | CSE IITKGP | Spring 2012-2013 PDS

Comp

Write, Compile, and Execute on Linux

OS

@ Open a text editor vi, emacs, or gedit:
$ emacs first.c
@ Write the C program and save it as first.c.

PB | CSE IITKGP | Spring 2012-2013 PDS

Comp

Write, Compile, and Execute on Linux

OS

@ Open a text editor vi, emacs, or gedit:
$ emacs first.c
@ Write the C program and save it as first.c.
@ Compile first.c at $ prompt to get the
executable file first.out:
$ cc first.c -o first.out

Caution: The file first.c should be in the current directory.

PB | CSE IITKGP | Spring 2012-2013 PDS

Comp

Write, Compile, and Execute on Linux

OS

@ Open a text editor vi, emacs, or gedit:
$ emacs first.c
@ Write the C program and save it as first.c.
@ Compile first.c at $ prompt to get the
executable file first.out:
$ cc first.c -o first.out
Caution: The file first.c should be in the current directory.
@ If there is an error, go back to the editor and
fix it;
otherwise, run the first.out:
$./first.out

PB | CSE IITKGP | Spring 2012-2013 PDS

Comp

Write, Compile, and Execute on Linux

OS

@ Open a text editor vi, emacs, or gedit:
$ emacs first.c
@ Write the C program and save it as first.c.
@ Compile first.c at $ prompt to get the
executable file first.out:
$ cc first.c -o first.out
Caution: The file first.c should be in the current directory.
@ If there is an error, go back to the editor and
fix it;
otherwise, run the first.out:
$./first.out

PB | CSE IITKGP | Spring 2012-2013 PDS

The Second Program

#include <stdio.h>
#define MAX 99
int main()
{
int n;
printf ("Enter n: ");
scanf ("%d", &n);
if (n>MAX)
printf("\n Your number %d > %d\n", n, MAX);
else
printf ("\n Your number %d <= %d\n", n, MAX);
} // second.c

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchart Func Vars

Structure of a C Program

@ A program in C language consists of
functions and declarations.
Ex: printf(...) is a function.
int n or int func(...) are declarations.

PB | CSE IITKGP | Spring 2012-2013 PDS

Str

Structure of a C Program

@ A program in C language consists of
functions and declarations.
Ex: printf(...) is a function.
int n or int func(...) are declarations.

e It also has C preprocessor (cpp)
directives.
Ex: #include <...> or #define ...

PB | CSE IITKGP | Spring 2012-2013 PDS

Str

Structure of a C Program

@ A program in C language consists of
functions and declarations.
Ex: printf(...) is a function.
int n or int func(...) are declarations.

e It also has C preprocessor (cpp)
directives.
Ex: #include <...> or #define ...

e A function named main() is mandatory.

PB | CSE IITKGP | Spring 2012-2013 PDS

S Flowchart Func Vars Stmt & Opr Macros math i

Flowchart

Lamp doesn't work

Lamp
plugged in?

> Plug in lamp

Yes

Bulb
burned out?

[>| Replace bulb

Str Flowchart Func Vars Stmt & Opr Macros math if

Flowchart

A flowchart is a diagram (for a common people)
representing an algorithm or process, showing
the steps as boxes of various kinds, and their
order by connecting them with arrows.

PB | CSE IITKGP | Spring 2012-2013

Str Flowchart Func Vars Stmt & Opr Macros math if

Flowchart

A flowchart is a diagram (for a common people)
representing an algorithm or process, showing
the steps as boxes of various kinds, and their
order by connecting them with arrows.

A flowchart provides an easy-to-understand,
step-by-step solution to a given problem.

PB | CSE IITKGP | Spr

Str Flowchart Func Vars Stmt & Opr Macros math if

Flowchart

A flowchart is a diagram (for a common people)
representing an algorithm or process, showing
the steps as boxes of various kinds, and their
order by connecting them with arrows.

A flowchart provides an easy-to-understand,
step-by-step solution to a given problem.
Operations are shown in these boxes, and arrows
connecting them represent the flow of control.

PB | CSE IITKGP | Spr

Str Flowchart Func Vars Stmt & Opr Macros math if

Flowchart

A flowchart is a diagram (for a common people)
representing an algorithm or process, showing
the steps as boxes of various kinds, and their
order by connecting them with arrows.

A flowchart provides an easy-to-understand,
step-by-step solution to a given problem.
Operations are shown in these boxes, and arrows
connecting them represent the flow of control.

PB | CSE IITKGP | Spr

Str Flowchart Func Vars Stmt & Opr Macros math if

Flowchart to compute n!

PB | CSE IITKGP | S 012-2013

Str Flowchart Func Vars Stmt & Opr Macros math if

Flowchart to compute n!

PB | CSE IITKGP | S 012-2013

Str Flowchart Func Vars

Flowchart to compute n!

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchart Func Vars

Flowchart to compute n!

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchart Func Vars

Flowchart to compute n!

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchart Func Vars

Flowchart to compute n!

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchart Func Vars

Flowchart to compute n!

PB | CSE IITKGP | Spring 2012-2013

Str Flowchart Func Vars

Flowchart to compute n!

M input output
operation 20
=1 ; =
f=1r® =% %
local L loop g
variables i=i+1

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchart Func Vars Stmt & Opr Macros ma

C Function

A function definition in C language has
@ a name
a list of parameters (optional)
type of the value it returns (if any)
local variable declarations (if any)
a sequence of statements
comments (optional) for human
understanding
int add(int a, int b){//sum of two numbers
int c;
c=a+b;
return c;Jt

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchart Func Vars Stmt & Opr Macros math i

An Example with Three Functions

#include <stdio.h> // cpp directive
int gcd(int, int); // Func declaration
int sum(int small, int large) // Def
{ int i, total = 0, temp;
if (small> large){
temp=small; small=large; large=temp;}
for(i=small;i<=large;++i)
total += 1;
return total;
} // Def ends

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchart Func Vars Stmt & Opr Mac

An Example with Three Functions

int main() { // main function

int large, small;

printf ("Enter two non-ve integers: ");

scanf ("%d%d", &large, &small);

printf("%d + ... + %d = %d\n",
small,large,sum(large,small));

printf ("GCD(%d, %d) = %d\n",
large,small,gcd(large,small));

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchart Func Vars Stmt & Opr Macros math i

An Example with Three Functions

int gcd(int large, int small) {
// A recursive function
if (small == 0)
return large;
else
return gcd(small, large’small);
} // sample.c

PB | CSE IITKGP | Spring 2012-2013 PDS

Str

Preprocessing

e File name of a C program ends with “.c”.
Ex: sample.c.

@ #include <stdio.h>
A line starting with # is a C preprocessor
directive.
This directive tells the preprocessor to
include the header file for the standard 1/0
functions from the header files directory
(often /usr/include).

PB | CSE IITKGP | Spring 2012-2013 PDS

Str

Function invocation

Why declaring int gcd(int, int);
before main()?

The function gcd () is called or invoked in
main () before its definition.

The compiler translates the code sequentially,
and hence it encounters the invocation of gcd ()
before its definition.

Without declaration, it does not have any clue
about its return type and parameters.

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchart Func Vars

Function invocation

The declaration int gcd(int, int); provides
the necessary information regarding its
parameters and return type. It is known as
prototype or interface of the function.

Note: The header file stdio.h provides the prototypes of
printf () and scanf ().

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchart Func Vars

Function definition

int sum(int small, int large) // Def
{
int i, total = O;
if (small > large){ int temp=small;
small=large; large=temp;
+
for(i=small;i<=large;++i) total += 1i;
return total;
} // Def ends

The actual function definition specify name,
parameters, computation, and return value.

PB | CSE IITKGP | Spring 2012-2013 PDS

Str

Variable Declaration

int i, total = O;
@ i and total are variables local to the
function sum().

e Currently i does not have any value
(contains garbage), but total is initialized
to zero (0).

PB | CSE IITKGP | Spring 2012-2013 PDS

Variable Types

Basic: char c; int n; float x; double z;
Modifiers: signed char, unsigned char,
unsigned int, long double, etc.

Type Size Range

char 1 byte [—128,127]

int 4 bytes [—2147483648,2147483647]
float 4 bytes =£3.4 x 1073 to £3.4 x 10%]
double 8 bytes 1.7 x 1073% to £1.7 x 103"

1 byte = 8 bits.

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchart Func Vars Stmt & Opr Macros math if

Statements

small=large; large=temp;

if (small > large){...}
for(i=small;i<=large;++i) ...;
return total;

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchart Func Vars Stmt & Opr Macros math if

Operators

Assignment: =

Arithmetic: +, -, *, /, %, ++, —=
Relational: ==, '=, <, <=, >, >=
Special assignment: +=, -=, x=, /=, Y=
Logical: &&, ||

PB | CSE IITKGP | Spring 2012-2013

Str

Library Functions

Library functions are supplied along with the
compiler.

Ex:
Reads from Keyboard: scanf ()
Writes on the VDU: printf ()

PB | CSE IITKGP | Spring 2012-2013 PDS

Compile and Run

$ cc sample.c

$./a.out

Enter two non-ve integers
12 18

18+ ... + 12 = 105

GCD(12, 18) =6

Note: Replace cc by gcc in the laboratory.

PB | CSE IITKGP | Spring 2012-2013 PDS

Str

Macro Definition:

#define identifier tokens
tokens should be at least one in number

Examples:

#define MAX 100

#define PI 3.14

#define HI(a,b) (((a)>(b))7? (a):(b))

PB | CSE IITKGP | Spring 2012-2013 PDS

Str

Flowchart Func Vars Stmt & Opr Macros math if

Macro Preprocessing

Original code

#include <stdio.h>
#define PI 3.14 //approx
int main() {
float r,cir;
printf ("radius=");
scanf ("%f",&r) ;
float cir=2*PI*r;
printf ("2*xPIxr=yf",x);
return O;
}//perimeter.c

After preprocessing

Macros replaced &

comments removed!

int main() {
float r,cir;
printf("radius=");
scanf ("%f",&r) ;
float cir=2%3.14%r;
printf ("2xPI*r=Jf" ,x);
return O;

3

Explain: Why PI is not replaced by 3.14 in

printf ("2*PI*r=)f" ,x)?

PB | CSE IITKGP | Spr

Str Flowchar " ‘ars Stmt & Opr Macros math if

Macro Definition with Parameters

#include <stdio.h>
#define EXCH(X,Y,T) ((T)=(X),X)=(Y),(Y)=(T))
int main() {
int m, n, temp;
scanf ("%d%d", &m, &n);
printf("m: %d, n: %d\n", m, n);
EXCH(m,n,temp) ;
printf("m: %d, n: %d\n", m, n);
return O;
} // preProc2.c

PB | CSE IITKGP | Spring 2012-2013

After Substitution

int main() {
int m, n, temp;
scanf ("%d%d", &m, &n);
printf("m: %d, n: %d\n", m, n);
((temp)=(m), (m)=(n), (n)=(temp));
printf("m: %d, n: %d\n", m, n);
return O;

PB | CSE IITKGP | Spring 2012-2013 PDS

Str Flowchar

Parenthesis of Macros

Use of parenthesis around the parameters is safer.
Otherwise there may be semantic error.

Ex:

#define MULT(X,Y) X*Y < wrong

printf ("2*(m+n): %d\n", MULT(2,m+n));

After substitution:
printf ("2*(m+n): %d\n", 2*m+n);

Correct:
#define MULT(X,Y) (X)*(Y)

PB | CSE IITKGP | Spring 2012-2013 PDS

wcros math if

Math Library

#include <stdio.h>

#include <math.h> //math library

int main(){
float r, a;
printf ("Enter r:"); scanf("%f", &r);
a=4.0 x atan(1.0) *r*r;
printf("r=f: Cir Area=)f\n", r, a);
return 0;} //cirArea.c

To compile with math library (for atan()):
$ cc -1m cirArea.c -o cirArea.out

PB | CSE IITKGP | Spring 2012-2013 PDS

Formatted Output

#include <stdio.h>

#include <math.h> //math library

int main(){
float r, a;
printf ("Enter r:"); scanf("%f", &r);
a=4.0 x atan(1.0) *r*r;
printf("r=%6.3f: Cir Area=J6.2f\n", r,a);
return 0;}

PB | CSE IITKGP | Spring 2012-2013 PDS

%6 .2f means the printed number will be of

at least 6 characters—including digits, decimal
point, and leading blanks—with always 2
characters in decimal place.

Ex:

$./cirArea.out
Enter r:1.0169
r=1.017: Cir Area= 3.25

PB | CSE IITKGP | Spring 2012-2013

Str

if-else statement

#include <stdio.h>
int main(){
int a, b, max;
printf ("Enter two integers: ");
scanf ("%d%d", &a, &b);
if (a>b) max=a;
else max=b;
printf ("Max (%d,%d)=%d.\n", a,b,max);
} //max.c

PB | CSE IITKGP | Spring 2012-2013 PDS

Flowchart Func Vars Stmt & Opr Macros math i

#include <stdio.h>
int main(){

int n, i, sum=0;

printf ("Enter a +ve integer: ");

scanf ("%d", &n);

for(i=1; i<=n; ++i) sum += i;

printf ("\nSum of 1+...+%d=%d.\n",n,sum);
}//sumn.c

PB | CSE IITKGP | Spr 012-2013 PDS

Str

Recursive Function

#include <stdio.h>
int sum(int n){
if (n==0) return O;
else return n+sum(n-1);
+
int main() {
int n;
printf ("Enter a +ve integer: ");
scanf ("%d", &n);
printf ("\nSum of 1+...+%d=%d.\n",n,sum(n));
}//sumnRec.c

PB | CSE IITKGP | Spring 2012-2013 PDS

e Data is stored in the memory as a string of
binary digits (0 and 1) having finite length.

PB | CSE IITKGP | Spring 2012-2013

e Data is stored in the memory as a string of
binary digits (0 and 1) having finite length.

@ In a machine instruction, a memory location
is identified by its address.

PB | CSE IITKGP | Spr

e Data is stored in the memory as a string of
binary digits (0 and 1) having finite length.

@ In a machine instruction, a memory location
is identified by its address.

@ In a high-level language like C or C++, a
location is identified with a name, called a
variable. A variable is bound to a memory
location.

PB | CSE IITKGP | Spring 2012-2013 PDS

e Data is stored in the memory as a string of
binary digits (0 and 1) having finite length.

@ In a machine instruction, a memory location
is identified by its address.

@ In a high-level language like C or C++, a
location is identified with a name, called a
variable. A variable is bound to a memory
location.

e Data can be read from a memory location
and a memory location can also be updated.

PB | CSE IITKGP | Spring 2012-2013 PDS

e Data is stored in the memory as a string of
binary digits (0 and 1) having finite length.

@ In a machine instruction, a memory location
is identified by its address.

@ In a high-level language like C or C++, a
location is identified with a name, called a
variable. A variable is bound to a memory
location.

e Data can be read from a memory location
and a memory location can also be updated.

PB | CSE IITKGP | Spring 2012-2013 PDS

Data Types Hex

Types of Data

In a high-level language:

e Data can be of many different types:
integers, rational numbers, real
numbers, complex numbers, vectors,
2D /3D points, matrices, characters, etc.

PB | CSE IITKGP | Spr

Data

Types of Data

In a high-level language:

e Data can be of many different types:
integers, rational numbers, real
numbers, complex numbers, vectors,
2D /3D points, matrices, characters, etc.

@ Some are built-in or primitive data types:
char, int, float.

PB | CSE IITKGP | Spring 2012-2013 PDS

Types of Data

In a high-level language:

e Data can be of many different types:
integers, rational numbers, real
numbers, complex numbers, vectors,
2D /3D points, matrices, characters, etc.

@ Some are built-in or primitive data types:
char, int, float.

e Complex data types can be defined by type
constructors.

PB | CSE IITKGP | Spring 2012-2013 PDS

Data ypes Hex Vars ptr const char

Simple Variable Declaration in C

Built-in data types of C language

char flag, grade = ’B’;

int count, index = 1;

float interest=7.25, principal=5000.0,
year;

PB | CSE IITKGP | Spring 2012-2013 PDS

Types Hex

e int has only (4 bytes =) 32 bits.

PB | CSE IITKGP | Spring 2012-2013

e int has only (4 bytes =) 32 bits.

e Its representation is in 2’s complement
form.

Ex:
000001015 = 11111010(1’s complement) =
11111010 + 1 = 11111011(2’s complement)

PB | CSE IITKGP | Spring 2012-2013 PDS

e int has only (4 bytes =) 32 bits.

e Its representation is in 2’s complement
form.

Ex:

000001015 = 11111010(1’s complement) =

11111010 + 1 = 11111011(2’s complement)
o Its range is —2% = —2147483648 to

231 — 1 = 2147483647.

PB | CSE IITKGP | Spring 2012-2013 PDS

Types Hex

@ A real number may have infinite information
content (irrational numbers) that cannot be
stored in a finite computer.

PB | CSE IITKGP | Spring 2012-2013

Types Hex

@ A real number may have infinite information
content (irrational numbers) that cannot be
stored in a finite computer.

e Data type float is an approximation of real
numbers with a fixed 32-bit size.

PB | CSE IITKGP | Spr

@ A real number may have infinite information
content (irrational numbers) that cannot be
stored in a finite computer.

e Data type float is an approximation of real
numbers with a fixed 32-bit size.

@ Special values such as nan (not a number,
e.g., v—1) and inf (infinity: 1.0/0.0) are
defined to handle errors in floating-point
operation.

PB | CSE IITKGP | Spring 2012-2013 PDS

Data Types

char is a Short Integer

@ In the binary world of computer, every
data—primitive or constructed—is encoded
as a bit string of finite length.

PB | CSE IITKGP | Spring 2012-2013 PDS

Data Types

char is a Short Integer

@ In the binary world of computer, every
data—primitive or constructed—is encoded
as a bit string of finite length.

@ The useful set of characters is encoded as a
set of 8-bit (one byte) or 16-bit integers.

PB | CSE IITKGP | Spring 2012-2013 PDS

Data Types

char is a Short Integer

@ In the binary world of computer, every
data—primitive or constructed—is encoded
as a bit string of finite length.

@ The useful set of characters is encoded as a
set of 8-bit (one byte) or 16-bit integers.

e The C language uses 8-bit ASCII encoding.!

LASCII stands for American Standard Code for Information
Interchange.

PB | CSE IITKGP | Spring 2012-2013 PDS

A few AébH Codes

char | decimal | binary | hex
0 48 0011 0000 | 30
9 b7 0011 1001 | 39
A 65 0100 0001 | 41
Z 90 0101 1010 | ba
a 97 0110 0001 | 61
z 122 | 0111 1010 | 7a

PB | CSE IITKGP | Spring 2012-2013

PDS

Dat

Binary to Hex

It is tedious to write a long string of binary
digits. A better way is to use radix-16 or
hexadecimal (Hex) number system with 16
digits {0, 1, ---, 9, A(10), B(11), C(12),
D(13), E(14), F(15)}.

To convert from binary to hex representation, the
bit string is grouped in blocks of 4 bits (nibble)
from the least significant side. Each block is
replaced by the corresponding hex digit.

PB | CSE IITKGP | Spring 2012-2013 PDS

Dat

Binary to Hex

0011 1110 0101 1011 0001 1101 0110 1001

¢
3 FE 5 B 1 D 6 9

We write 0x3E5B1D69 (in upper or lower case) for
a hex constant in C language.

PB | CSE IITKGP | Spring 2012-2013 PDS

Data Types Hex Vars ptr const char

Binary to Hex

752919
= 0000 0000 0000 0000 0001 1101 0110 1001,
= 00001D69;4 = 0x00001D69 = 0x1D69

—75291
= 1111 1111 1111 1111 1110 0010 1001 0111,
= OxFFFFE297

We shall discuss about this representation afterward.

PB | CSE IITKGP | Spring 2012-2013 PDS

Data Types Hex Vars ptr const char

Binary to Hex

float Data

7529.01¢
=0 1000 1011 110 1011 0100 1000 0000 00002

—7529.019
=1 1000 1011 110 1011 0100 1000 0000 00002

This representations are different from that of 7529 or
—17529.

PB | CSE IITKGP | Spring 2012-2013 PDS

Data

Binary to Hex

A = 0100 0001, = Ox41

1 =0011 0001, = 0x31

char 1 is not same as int 1 or float 1.0.

PB | CSE IITKGP | Spring 2012-2013 PDS

Dat: es Hex V. nst char

Few Other Built-in Types of C

@ unsigned int (unsigned):
32-bit unsigned binary,
0 to 2%2 — 1 = 4294967295.

@ long int: same as int.

@ long long int:
64-bit signed binary;,
—20% = 9223372036854775808 to
203 — 1 = 9223372036854775807.

@ double:
64-bit IEEE 754 double-precision format.

PB | CSE IITKGP | Spring 2012-2013 PDS

Data Types Hex Vars ptr const char

Constants of Primitive Types

@ int: 123, —123
@ float: 1.23, -1.23e-02
@ char: A, 5, %

A floating-point constant is often taken in
double-precision format.

PB | CSE IITKGP | Spring 2012-2013 PDS

Data ypes Hex Vars ptr const

A Variable and Its Memory Locatlon

Either the compiler gen-
erates code to allocate

memory or it is allo- Main Memory

cated when the process oo
image (e.g., a.out) is address content
loaded.

[-value r-value

PB | CSE IITKGP | Spring 2012-2013

Data ypes Hex Vars ptr const

A Variable and Its Memory Locatlon

Either the compiler gen-
erates code to allocate

memory or it is allo- Main Memory

cated when the process oo
image (e.g., a.out) is address content
loaded.

[-value r-value
The allocated memory
location has an address oo

or [-value and a con-
tent or r-value.

PB | CSE IITKGP | Spring 2012-2013

Data ypes Hex Vars ptr const

A Variable and Its Memory Locatlon

The allocated space is

of fixed size to store int count;

the data of the specified

type; e.g., 4 bytes for

int. address
of count

garbage

PB | CSE IITKGP | Spring 2012-2013

Data ypes Hex Vars ptr const

A Variable and Its Memory Locatlon

The allocated space is

of fixed size to store int count;
the data of the specified

type; e.g., 4 bytes for

int. address
Unless initialized, the of count
content or the r-value

is undefined after the
declaration.

garbage

PB | CSE IITKGP | Spring 2012-2013 PDS

Data ypes Hex Vars ptr const chaz

Variable and Its Memory Location

The r-value can be initialized or updated.

count=10; count += 5;
address — address
10 15
of count of count

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointer

@ The address or [-value of a variable can be
extracted using the unary operator ‘&’.

@ This [-value can be stored in another
variable of type int * known as pointer
type.
int count = 10, *cP;
cP = &count;

PB | CSE IITKGP | Spring 2012-2013 PDS

Data Type

Memory Locations for Other Types

float cgpa;
char grade;

e Memory allocations are similar for other
data types, e.g., float and char.

@ The only difference is the size of the
allocated space.

PB | CSE IITKGP | Spring 2012-2013 PDS

Data

Constant: const

A declaration can be qualified to define a name of
a constant.
const double pi = 3.14159265358979323846

In this case we cannot modify pi; its value is
stored in the read-only memory segment.

PB | CSE IITKGP | Spring 2012-2013 PDS

Data

Constant: const

#include <stdio.h>

int main() {
const double pi = 3.1415926535897932;
pi = pi + 1; return O;

}//const.c

$ cc const.c

const.c: In function ’main’:
const.c:4: error: assignment of
read-only variable ’pi’

$

PB | CSE IITKGP | Spring 2012-2013 PDS

Dat

Reading char Data

A program expected to read two characters from
two lines.

#include <stdio.h>
int main() {
char c, d;
printf ("Enter two characters: ");
scanf ("%c", &c);
scanf ("%c", &d);
printf ("%c..%c\n", c, d);
return O;
} // charRead.c

PB | CSE IITKGP | Spring 2012-2013 PDS

Dat

Reading char Data

$ cc charRead.c

$ a.out

Enter two characters: 1
1..

$

Why? It does not read the second character.
The reason is that pressing of Enter key injects a
non-printable character \n (newline) in the input
stream.

PB | CSE IITKGP | Spring 2012-2013 PDS

Dat

Reading char Data

Replace: printf ("Jc..%c\n", c, d);
by: printf ("%c..%d\n", c, d);

$ cc charRead.c
$ a.out

Enter two characters: 1
1..10
$

Why 10!7 It’s the ASCII value of \n (newline).

PB | CSE IITKGP | Spring 2012-2013 PDS

Dat

Reading char Data

To read proper input,
Replace: scanf ("%c", &d);
by: scanf (" %c", &d); < A gap before Jc

$ cc charRead.c

$ a.out

Enter two characters: 1
2

1..2

How? The gap is matched with \n.

PB | CSE IITKGP | Spring 2012-2013 PDS

Basic Assignment and
Arithmetic Operators

PB | CSE IITKGP | Spring 2012-2013 PDS

arith pre & asso

Assignment Operator =

PB | CSE IITKGP | S 012-2013

Opr

Assignment Operator =

int count;
count = 10;

@ The first line declares the variable count.

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Assignment Operator =

int count;
count = 10;

@ The first line declares the variable count.

@ In the second line, the assignment
operator (=) is used to store 10 in the
location of count.

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Assignment Operator =

int count;
count = 10;

@ The first line declares the variable count.
@ In the second line, the assignment

operator (=) is used to store 10 in the
location of count.

e In C language, count = 10 is called an
expression.
Value of the expression here is 10.

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Assignment Operator =

int count;
count = 10;

@ The first line declares the variable count.
@ In the second line, the assignment

operator (=) is used to store 10 in the
location of count.

e In C language, count = 10 is called an
expression.
Value of the expression here is 10.

@ The semicolon converts the expression to a
statement.

PB | CSE IITKGP | Spring 2012-2013 PDS

= expr cast arith pre & asso

C expression

PB | CSE IITKGP | S 012-2013

Opr

C expression

count = 2*%count + 5;

@ Here the variable count is used on both sides
of the assignment operator. There are two
constants: 2 and 5, and three operators: =
(assignment), * (multiplication) and +
(addition).

@ count = 2*count + 5 is an expression and
count 2xcount + 5; Is a statement.

PB | CSE IITKGP | Spring 2012-2013 PDS

Type Casting

Opr = expr cast arith pre & ass

Type Casting

e A float data can be assigned to an int
variable:
int count = (int)7.5;
But there may be loss of precision.

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Type Casting

e A float data can be assigned to an int
variable:
int count = (int)7.5;
But there may be loss of precision.

e An int data can also be assigned to a
variable of type float:
float cgpa = (float)2147483647;
But here also there may be loss of
information.

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Type Casting

e A float data can be assigned to an int
variable:
int count = (int)7.5;
But there may be loss of precision.

e An int data can also be assigned to a
variable of type float:
float cgpa = (float)2147483647;
But here also there may be loss of
information.

@ This process is called type casting.

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Type Casting Error

#include <stdio.h>

int main() {
int count = (int)7.5;
float cgpa = (float)2147483647;
printf ("count: %d\n", count);
printf("cgpa: %e\n", cgpa);
return 0; }

$ cc temp.c

$./a.out

count: 7

cgpa: 2.147484e+09

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Type Casting Error

#include <stdio.h>
int main() { // floatEq.c
float a = 1.3;
if (a == 1.3) printf("1i. Equal\n");
else printf("1. Not equall\n");
if (a == (float)1.3) printf("2. Equall\n");
else printf("2. Not equall\n");
return 0;}

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Type Casting Error

$ cc floatEq.c
$./a.out

1. Not equal
2. Equal

PB | CSE IITKGP | Spring 2012-2013

(] ast arith

Why Type Casting Error

@ The assignment of a floating-point data to
an int variable or vice versa is not a simple
operation due to the difference in their
internal representations.

e For int count = (int)7.5, the fractional
part is removed and 7 is stored in 32-bit
integer representation (2’s complement
form).

PB | CSE IITKGP | Spring 2012-2013 PDS

(] ast arith

Why Type Casting Error

@ For float cgpa = (float)2147483647, the
integer 2147483647 is converted to
floating-point form in IEEE 754
single-precision format. In this format, a
lesser number of bits (23 bits) are available
for storing the significant digits, resulting to
a loss of precision.

PB | CSE IITKGP | Spring 2012-2013 PDS

= expr cast arith pre & asso

Arithmetic Operators

PB | CSE IITKGP | Spring 2012-2013

Opr = cast arith pr

Five Basic Arithmetic Operator

+ (addition), - (subtraction), * (multiplication),
/ (division), % (modulo or mod).

a’%b produces the remainder when a is divided by
b. Here, the first operand a should be a
non-negative integer and the second operand b
should be a positive integer.

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Operation mod (%)

#include <stdio.h>

int main() {
printf ("0%10 = %d\n", 0%10);
printf ("10%4 = %d\n", 10%4);
printf ("-10%4 = %d\n", -10%4);
return 0; }

$ cc temp2.c

$./a.out Caution: The operator % does not ex-
0%10 = 0 tract the remainder correctly for nega-
10%4 = 2 tive operands.

-10%4 = -2

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr = expr cast arith pr

Pre- and Post- Increments / Decrements

int count = 10, total = 10;
++count;
total++;

@ ++count implies pre-increment and total++
implies post-increment.

e After execution of the corresponding
statements, the value of each location is 11.

e But the value of the expression ++count is
11 and that of total++ is 10.

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr = expr cast arith pr

Pre- and Post- Increments / Decrements

Similarly we have pre- and post-decrement
operators:

int count = 10, total = 10;

—-—count;

total——;

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr = expr cast arith pre & asso error

More Assignment Operators

int count = 10, total = 10;
count += bxtotal;

The meaning of the expression:
count += b*total is
count = count + b5xtotal.

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr = expr cast arith pre & asso

Operator Overloading

The first four operators (+, —, %, /) can be used
for int, float, and char data?. But the fifth
operator (%) cannot be used on float data.

2The actual operations of addition, subtraction, etc. on int and
float data are quite different due to the difference in their
representations.

PB | CSE IITKGP | Spr

Op cast arith pre & asso error

Mixed Mode Operations

e Mixed mode operations among int, float,
and char data are permitted.

e If one operand is of type float and the other
one is of type int, then the int data will be
converted to the closest float representation
before performing the operation.

PB | CSE IITKGP | Spring 2012-2013 PDS

Op cast arith pre & asso error

Mixed Mode Operations

char ¢ = ’a’; // ASCII value 97
printf ("%d*%f = %f\n", n, a, nx*a);
printf ("%dx%f+lic = %f\n",n,a,c,n*xa+c);

$./a.out
4%2 .500000 = 10.000000
4x2 .500000+a = 107.000000

PB | CSE IITKGP | Spring 2012-2013 PDS

Op cast arith pre & asso error

Mixed Mode Operations

Caution: Error may creep in during division on
int data.

Examples:

printf ("1/3%30.0=%f\n", 1/3%30.0);
= 1/3%10.0=0.000000

printf ("10.0%1/3=%f\n", 10.0%1/3);
= 10.0%1/3=3.333333

printf("10.0%(1/3)=%f\n", 10.0%(1/3));
= 10.0%(1/3)=0.000000

PB | CSE IITKGP | Spring 2012-2013 PDS

Precedence and Associativity

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr = expr cast arith pre & asso error

Precedence and Associativity

e +, —, x / have left-to-right associativity.
e *, /, % have the same precedence, and it is
higher than + and -, which also have the

same precedence.

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

= is Right Associative
int count = 10, n ;
n = count 2*%xcount + 5;

The variable n gets the updated value of count,
i.e., 25.

Precedence of =

The precedence of assignment operator(s) is lower
than every other operator except the comma ()
operator.

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr = expr cast arith pre & asso error

Precedence and Associativity

The unary ++ and -- have higher precedence
than *, /, %.

PB | CSE IITKGP | Spring 2012-2013 PDS

Errors in _
Computer Arithmetic

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Overflow Problem

2147483647 + 1 = —2147483648 < range overflow

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr = pr cast arith

Range Overflow Proble»m

An example: 2147483647 + 1 = —2147483648

#include <stdio.h>

int main() { // intOverflow.c
int n = 2147483647,
printf("n+1: %d\n", n+1);
return 0; }

$ cc intOverflow.c
$./a.out
n+l: -2147483648

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Precision Loss

An example: 10° +107° = 10°

#include <stdio.h>

int main() { // lossPreci.c
float a = 1.0e-40, b = 1.0e+5, c;
c = atb;
printf ("%e + %e = %e\n", a, b, c);
if (b == a+b) printf("Equal\n");
else printf("not Equal\n");
return 0;}

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Precision Loss

$ cc lossPreci.c

$ a.out

9.999946e-41 + 1.000000e+05 = 1.000000e+05
Equal

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr = exy rith pre & asso error

Law of Associativity Fails!

An example: 0.3 x 1071 + (0.3 x 1071 4 10°) #
(0.3 x 107 4 0.3 x 10711) 4 10°

#include <stdio.h>
int main() { // lawAsso.c
float a=0.3e-14, b=0.3e-14, c=1.0e+5;
if (a+(b+tc) == (atb)+c) printf("Equal\n");
else printf("not Equal\n");
return 0; }

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr = ex]

Law of Associativity Fails!

$ cc lawAsso.c
$ a.out
not Equal

$

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Division by Zero

Division of int data by zero gives error at run
time.

#include <stdio.h>

int main(){ //divIntZero.c
int n = 10, m;
printf ("Enter an integer: ");
scanf ("%d", &m);
printf ("n/m: %d\n", n/m);
return 0;}

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Division by Zero

$ cc divIntZero.c

$./a.out

Enter an integer: O
Floating point exception

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Division by Zero

Division of float or double data by zero
does not generate any error at run time.
The result is inf, which can be used if needed.

#include <stdio.h>
#include <math.h>
int main(){ //divFloatZero.c
float n = 10.0, m, r;
printf ("Enter a number: ");
scanf ("%f", &m);
printf("n/m= %f\n", r = n/m);
printf ("atan(%f) = %f\n", r, atan(r));
return 0;}

PB | CSE IITKGP | Spring 2012-2013

Opr

Division by Zero

$ cc divFloatZero.c -1m
$ a.out

Enter a number: O

n/m= inf

atan(inf) = 1.570796

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Integer <+ Character

e If a char data (8 bits) is assigned to an int
type variable (32 bits), then the ASCII value
of the char data is stored in the location of
the int type variable.

e But if an int data is assigned to a char type
variable, then the least significant § bits of
the int data are stored in the location of
char type variable.

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Integer <+ Character

#include <stdio.h>

int main(){ // int2char.c
int count=’C’; char grade=1345;
printf ("count=%d, grade=j,c\n",count,grade);
return O;}

$ cc int2char.c

int2char.c: In function ’main’:
int2char.c:3: warning: overflow in
implicit constant conversion

$./a.out

count=67, grade=A

PB | CSE IITKGP | Spring 2012-2013 PDS

Opr

Integer <+ Character

Reasons

@ Why int count=’C’ gives count=67:
ASCII value of C is 67, which is stored in the
location of count.

@ Why char grade=1345 gives grade=A:
Binary representation of 1345 is 0000 0000
0000 0000 0000 0101 0100 0001.

The decimal value of the least significant
byte (8 bits) is 65, which is the ASCII value
of A.

PB | CSE IITKGP | Spring 2012-2013 PDS

LLLLT,
&

Expression & Statement

@ A pure expression has a value, e.g., 2, —2,
—a, —2*a+b.

e A command or statement changes the
content of a location but does not have a
value.

e In C language, many expressions are impure
and cause side effects by changing values of
locations, e.g. ++count, n = 2*m + 4,

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-else switch

Expression & Statement

e Any expression in C (with or without any
side effect) can be converted to a statement
by putting a semicolon at the end. These are
called expression statements.

@ This blurs the distinction between an
expression and a command in C language.

@ A semicolon in C language, unlike Algol or
Pascal languages, does not compose two
statements to form a new statement.
Rather, it forms or terminate a statement.

PB | CSE IITKGP | Spring 2012-2013 PDS

Expression & Statement

@ A semicolon itself may be viewed as null
statement (no operation).

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-else switch

Compound Statement

e A sequence of statements within a pair of
curly braces forms a single compound
statement or block.

@ Variables can be declared within a block and
are local to the block.

@ A name clash is resolved in favor of the local
object /block.

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-else

Compound Statement

#include <stdio.h>
int main(){ //blockVar.c
int a = 10, b = 20, ¢ = 30;
{ int b = 200, c = 300;
{ int ¢ = 3000;
printf ("L3> a=)d, b=¥d, c=%d\n",
a, b, c);’}
printf ("L2> a=Jd, b=Jd, c=%d\n",
a, b, c);r
printf ("L3> a=}d, b=¥%d, c=%d\n",
a, b, c);
return 0;}

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-e

Compound Statement

$ cc blockVar.c

$./a.out

L3> a=10, b=200, ¢=3000
L2> a=10, b=200, c=300
L3> a=10, b=20, c¢=30

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-else switch

Change in Control Flow

@ Depending on data, it may be necessary to
perform different sets of operations in a
program.

e This calls for control flow to make
data-dependent choice of the execution
statements.

Example. Write a C Program that reads two
int data from the keyboard, finds the larger
among them, and prints it on the VDU (screen).

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-e

Change in Control Flow

#include <stdio.h>
int main(){ //findLarger.c
int a, b, larger;
printf ("Enter two integer data: ");
scanf ("%d%d", &a, &b);
if (a > b) larger = a;
else larger = b;
printf ("\nlarger=Jd\n",larger) ;
return 0;}

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt

if Statement

We use a command called if-statement for
controlling the execution sequence in
findLarger.c.

Structure of if-statement:
if (expression) statement, else statements
if (expression) statement

In findLarger.c, we use the first type:

expression: a > b
statement;: larger
statementy: larger

o
o P

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-else switch

Relational and Boolean Expressions

Two new types of expressions are used in
if-statement and other control-flow constructs of
C language. They are called relational and
boolean expressions.

C language does not have distinct truth values
(TrRUE and FALSE). Rather, the value zero (0)
is treated as FALSE and any non-zero value is
treated as TRUE.

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-e tch

Relational and Boolean Expressions @)

#include <stdio.h>

int main(){ //TrueFalse.c
int a;
scanf ("%d", &a);
if (a) printf("non-zero\n");
else printf("zero\n");
return 0;}

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-e tch

Relational and Boolean Expressions 3)

$ cc TrueFalse.c
$./a.out

0

zZero

$./a.out

-1

Non-zero

$./a.out

1

NoNn-zero

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-else switch

Relational Operators

Following are the relational operators with their
usual meaning.

== (equal to), !'= (not-equal to), < (less than) >
(greater than), <= (less than or equal to), >=
(greater than or equal to).

The usual operands of relational operators are
int, float, char, etc. Their values are boolean.

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-else switch

Logical Operators

&& (logical and), ~ (logical not), || (logical or).

The operands and values of logical operators are
boolean values. Find out the precedence and
associativity of these operators from the book.

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-else switch

if-else Statement

To find the largest among three integers.

Version 1

#include <stdio.h>

int main(){
int a, b, c, largest;
printf ("Enter three integers: ");
scanf ("%d%d%d", &a, &b, &c);
if (a > b) largest = a; else largest = b;
if (c > largest) largest = c;
printf("\nlargest = %d\n", largest);
return O;}

PB | CSE IITKGP | Spring 2012-2013 PDS

E /Stmt Rel+Bool Opr if-else

if-else Statement

Version 2

#include <stdio.h>

int main(){
int a, b, largest;
printf ("Enter three integers: ");
scanf ("%d%d%d", &largest, &a, &b);
if (a > largest) largest = a;
if (b > largest) largest = b;
printf("\nlargest = %d\n", largest);
return O;}

We use three variables but one input data may be
lost at the end.

PB | CSE IITKGP | Spr 012-2013 PDS

E /Stmt Rel+Bool Opr if-else

if-else Statement

Version 3

#include <stdio.h>

int main(){
int a, largest;
printf ("Enter three integers: ");
scanf ("%d%d", &largest, &a);
if (a > largest) largest = a;
scanf ("%d", &a);
if (a > largest) largest = a;
printf("\nlargest = %d\n", largest);
return O;}

We use two variables but two input data may be
lost at the end.

PB | CSE IITKGP | Spr 012-2013 PDS

E /Stmt Rel+Bool Opr if-else

if-else Statement

Version 4

#include <stdio.h>
int main(){
int a, b, ¢, largest;
printf ("Enter three integers: ");
scanf ("%d%d%d", &a, &b, &c);
if (a > b)
if (a > c¢) largest = a;
else largest = c;
else if (b > c) largest = b;
else largest = c;
printf ("\nlargest = %d\n", largest);
return O;}

PB | CSE IITKGP | Spr 012-2013 PDS

Expr/Stmt

if-else Statement

This is an example of nested if statement. No
input data is lost in this case.

Note
Statements within the if and the else parts may
be compound statements.

if (expression) {
statement

statement;

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-else switch

if-else Statement

if (expression) {
statement;

statement;

else {
statement;

statement,,

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt

if-else Statement

Proper bracing

if and else-if statements can be nested.

The else part will be associated to the

nearest if.

It is better to use curly braces to disambiguate
the association.

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-else

if-else Statement

The following code needs no bracing for if and
else-if statements.

#include <stdio.h>
int main(){
int data;
printf ("Enter an integer: ");
scanf ("%d", &data);
if (data<0) printf("-ve\n");
else if (data == 0) printf("zero\n");
else printf ("+ve\n");
return O;}

PB | CSE IITKGP | Spr 012-2013 PDS

E /Stmt Rel+Bool Opr if-else

if-else Statement

The following code needs bracing for if and
else-if statements.

#include <stdio.h>
int main(){
int data;
printf ("Enter an integer: ");
scanf ("%d", &data);
if (data>0)
if (datakb) printf("not divisible by 5\n");
else printf("-ve data\n"); // incorrect association
return O;

PB | CSE IITKGP | Spr 012-2013 PDS

Expr/Stmt

if-else Statement

$ cc temp23.c

temp23.c: In function ‘main’:
temp23.c:7: warning: suggest explicit
braces to avoid ambiguous ‘else’

$./a.

Enter

$./a.

Enter

out
an integer: -3
out
an integer: 3

not divisible by 5

$./a.

Enter

out
an integer: 10

-ve data

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-else

if-else Statement

#include <stdio.h>
int main(){
int data;
printf ("Enter an integer: ");
scanf ("%d", &data);
if (data>0){
if (data%5) printf("not divisible by 5\n");
+
else printf("-ve data\n");
return 0;}

PB | CSE IITKGP | Spr 012-2013 PDS

Expr/Stmt Rel+Bool Opr if-else switch

if-else Statement

$ cc temp23a.c

$./a.out

Enter an integer: -3
-ve data

$./a.out

Enter an integer: 3
not divisible by 5

$./a.out

Enter an integer: 10

$

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt

switch Statement

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt

switch Statement

e C language uses switch statement to take
multi-way decision.

@ The decision is taken by matching the value
of an expression to a value from a finite set
of constants.

@ Based on the decision, the control of
execution is transfered.

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt Rel+Bool Opr if-else switch

switch Statement

switch (expression) {
case const-expi: statement;
case const-expy: statements

case const-expy: statementy
default: statementyiq

}

PB | CSE IITKGP | Spring 2012-2013

Expr/Stmt Rel+Bool Opr if-else switch

switch Statement

Example Read a non-negative integer and take
different actions depending on the remainders
obtained by dividing the data by 5.

#include <stdio.h>

int main() { // switchNoBreak.c
int data;
printf ("Enter a +ve integer: ");
scanf ("%d", &data);
switch(data%5) {

case 0: printf("remainder = 0\n");
case 1: printf("remainder = 1\n");
case 2: printf("remainder = 2\n");
case 3: printf("remainder = 3\n");

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt

switch Statement

default: printf("remainder = 4\n");

3

return O;

}

$ cc switchNoBreak.c

$./a.out

Enter a +ve integer: 27
remainder = 2

remainder = 3

remainder = 4

The control is falling through. It is to be
transfered out of the switch statement.

PB | CSE IITKGP | Spring 2012-2013 PDS

Expr/Stmt

Rel+Bool Opr if-else switc

switch Statement

PB | CSE IITKGP | Spring 2012-2013

PDS

Always use

break statement
to avoid the fall-
through.

It forces the control
out of the switch
statement.

Expr/Stmt

switch Statement

#include <stdio.h>
int main(){\\ switchBreak.c
int data;
printf("Enter a +ve integer: ");
scanf ("%d", &data);
switch(data%5){
case 0: printf("remainder O\n"); break;
case 1: printf("remainder 1\n"); break;
case 2: printf("remainder 2\n"); break;
case 3: printf("remainder 3\n"); break;
default: printf("remainder 4\n");
}

return O;}

PB | CSE IITKGP | Spr

Expr/Stmt Rel+Bool Opr if-else switch

switch Statement

$ cc switchBreak.c

$./a.out

Enter a +ve integer: 27
remainder 2

PB | CSE IITKGP | Spring 2012-2013

Iter while for

Iteration in C

Why Iteration

It is often necessary to execute a sequence of
statements repeatedly to compute certain value.

PB | CSE IITKGP | Spring 2012-2013 PDS

Why Iteration

It is often necessary to execute a sequence of
statements repeatedly to compute certain value.
Every imperative programming language provides
different constructs (statements) to perform this
iterative computation.

PB | CSE IITKGP | Spring 2012-2013 PDS

Why Iteration

It is often necessary to execute a sequence of
statements repeatedly to compute certain value.
Every imperative programming language provides
different constructs (statements) to perform this
iterative computation.

Example problems:
1. Compute n!

PB | CSE IITKGP | Spring 2012-2013 PDS

Why Iteration

It is often necessary to execute a sequence of
statements repeatedly to compute certain value.
Every imperative programming language provides
different constructs (statements) to perform this
iterative computation.

Example problems:

1. Compute n!
2. Compute GCD(m, n)

PB | CSE IITKGP | Spring 2012-2013 PDS

Why Iteration

It is often necessary to execute a sequence of
statements repeatedly to compute certain value.
Every imperative programming language provides
different constructs (statements) to perform this
iterative computation.

Example problems:

1. Compute n!
2. Compute GCD(m, n)
3. Find the product of two or more matrices

PB | CSE IITKGP | Spring 2012-2013 PDS

Why Iteration

It is often necessary to execute a sequence of
statements repeatedly to compute certain value.
Every imperative programming language provides
different constructs (statements) to perform this
iterative computation.

Example problems:

1. Compute n!

2. Compute GCD(m, n)

3. Find the product of two or more matrices

4. Sort a list of integers in non-decreasing order

PB | CSE IITKGP | Spring 2012-2013 PDS

Why Iteration

It is often necessary to execute a sequence of
statements repeatedly to compute certain value.
Every imperative programming language provides
different constructs (statements) to perform this
iterative computation.

Example problems:

1. Compute n!

2. Compute GCD(m, n)

3. Find the product of two or more matrices

4. Sort a list of integers in non-decreasing order

and so on, and so many!

PB | CSE IITKGP | Spring 2012-2013 PDS

Write a program to compute the following sum:

Spn=14+2+3+---+n,
where n is the input.

The best way to do it is to use the closed form
or the formula:

~ n(n+1)
Sy = 5

PB | CSE IITKGP | Spring 2012-2013 PDS

Example

And we can write a program to do this.

#include <stdio.h>
int main(){
int n;
printf ("Enter a +ve integer: ");
scanf ("%d", &n);
printf("1+ ...+%d = %d\n",
n, nx(n+1)/2);
return 0;}

PB | CSE IITKGP | Spring 2012-2013 PDS

Example

$ cc -Wall temp26a.c

$./a.out

Enter a +ve integer: b
1+ ...+56 =15

PB | CSE IITKGP | Spring 2012-2013 PDS

Example

An alternate way using while loop

#include <stdio.h>
int main(){
int n, sum = 0;
printf ("Enter a +ve integer: ");
scanf ("%d", &n);
while(n > 0) {
sum = n + sum,
--n; }
printf("sum: %d\n", sum);
return 0;}

PB | CSE IITKGP | Spring 2012-2013 PDS

Example

$ cc -Wall temp26.c

$./a.out

Enter a +ve integer: b
sum: 15

PB | CSE IITKGP | Spring 2012-2013

The

A Suspense Thriller by Frederick Knott

ASU Theatre

Presents

Iter

while Statement

e while statement in C is one of the
constructs used for iterative computation.

@ The structure or syntax of while is:
while (expression) {statement(s)}

@ The while loop will not be entered if the
loop-control expression evaluates to FALSE
(zero) even before the first iteration.

@ break statement can be used to come out of
the while loop.

PB | CSE IITKGP | Spring 2012-2013 PDS

Iter

while Statement

@ The previous while program destroys the
input data. That can be avoided by
introducing a third variable where the value
of n can be copied.

@ To compute the following sum:
ST(LC) _ 1c+2c+_.._|_nc:zic’

where ¢ is another input data (+ve int),
we use nested while loops.

PB | CSE IITKGP | Spring 2012-2013 PDS

Iter while for

while Statement

#include <stdio.h>
int main(){
int n, ¢, sum = 0, m;
printf ("Enter the number of terms: ");
scanf ("%d", &n);
printf ("Enter the power: ");
scanf ("%d", &c);
m = n; // save the input data
while(n > 0){ // outer while
int i=0, p=1; // local to the block
while(i++ < ¢) p *= n; // inner while
sum += p; --n;} // end of outer while
printf("sum = %d\n", sum);
return O;}

PB | CSE IITKGP | Spr

Iter

while Statement

PB | CSE IITKGP | Spring 2012-2013 PDS

do-while Loop

Useful for things that want to loop at least once.
The structure is

do {
statement
} while(condition);

@ The condition is tested at the end of the
block instead of the beginning; so the
statement block will be executed at least
once.

PB | CSE IITKGP | Spring 2012-2013 PDS

do-while Loop

e If the condition is true, it jumps back to the
beginning of the block and executes the
(simple or compound) statement again.

@ do-while loop is essentially the same as
while loop except that the loop body
(statement block) is guaranteed to execute at
least once.

PB | CSE IITKGP | Spring 2012-2013 PDS

for Statement

It is an sterative construct in C language.
The structure or syntax of this statement is:

for (expy; exps; exps) { statement }

@ expy: for initialization before entering the
loop.
@ crpy: to decide whether to enter or continue

the loop.

PB | CSE IITKGP | Spring 2012-2013 PDS

for Statement

e cxps: executed after execution of the
statement part of the loop; it is used
essentially to update the loop control
condition.

@ All three expressions can be omitted.
If exps is omitted, then the condition is
TRUE.
Ex: for(i=1; ;i++)

e A statement may be simple or compound, as
well as null (;).
Ex: for(i=1;i>0;i++);

PB | CSE IITKGP | Spring 2012-2013 PDS

Iter while for

Example on for Loop

A program to compute the sum of first n natural
numbers.

#include <stdio.h>
int main(A{
int n, i, sum = 0;
printf ("Enter a +ve integer: ");
scanf ("%d", &n);
for(i=1, sum=0; i<=n; ++i)
sum += 1i;
printf("0+ ... + %d = %d\n", n, sum);
return O;}

PB | CSE IITKGP | Spr 012-2013 PDS

Example on for Loop

Here exp; is i=1, sum=0.

We have used the comma operator to join two
simple statements.

The resultant compound statement is evaluated
left to right and has the lowest precedence among
the operators.

PB | CSE IITKGP | Spring 2012-2013 PDS

while and for Loops

A while statement can be simulated by a for
statement.

while(exp) stmt = for(; exp;) stmt

PB | CSE IITKGP | Spring 2012-2013 PDS

while and for Loops

Similarly, a for statement can be simulated by a
while statement and expression statements.

for(expl; exp2; exp3) stmt
= expl; while(exp2) {stmt exp3;}

Caution! This equivalence is not true if there is
a continue statement in stmt.

PB | CSE IITKGP | Spring 2012-2013 PDS

Iter while for

Another example on for Loop

Read n int data and print the largest among
them.

The first input is the number of data, n, and
subsequent inputs are a sequence of n int data.

PB | CSE IITKGP | Spring 2012-2013 PDS

Iter while for

Another example on for Loop

Inductive Definition
1rgSt(dlv d27 e 7dn)

. d1 if n= 1,
| maz(dy,lrgst(ds,--- ,d,)) ifn>1

PB | CSE IITKGP | Spring 2012-2013 PDS

Iter while for

Another example on for Loop

#include <stdio.h>
int main(){
int n, largest, i=1;
printf ("Enter n: ");
scanf ("%d", &n);
printf ("Enter %d data: ", n);
scanf ("%d", &largest);
for(i=2; i<=n; ++i){
int temp; //local to block
scanf ("%d", &temp);
if (temp > largest) largest = temp;}
printf ("Largest: %d\n", largest);
return 0;}

PB | CSE IITKGP | Spring 2012-2013 PDS

Iter while for

Another example on for Loop

Special Termination
@ It is not necessary to know the number of
data a priori.
@ We can use EOF (end-of-file) (defined in
stdio.h) to terminate the input.
e Every call to scanf () returns the number of
data read.

e If Ctrl+D is pressed from the keyboard, then
scanf () returns EOF.

PB | CSE IITKGP | Spring 2012-2013 PDS

Iter while for

Another example on for Loop

#include <stdio.h>
int main() {
int largest, count = 0, temp;
printf ("Enter integer data\n");
printf("and terminate by Ctrl+D\n");
scanf ("%d", &largest); // at least one data
++count;
for(; scanf("}d", &temp)'!= EOF;){
printf("%d ", temp);
if (temp > largest) largest = temp;
++count;}
printf ("\nLargest among %d data: %d\n",
count, largest);
return O;7}

PB | CSE IITKGP | Spring 2012-2013 PDS

	Plan
	Computer
	Structure of a C Program
	Flowchart
	C Functions
	Variables
	Statements & Operators
	Macros
	Math Library
	if-else, for loop, functions

	Data
	Types
	Hex
	Vars
	ptr
	const
	char

	Basic Assignment and Arithmetic Operators
	Assignment Operator
	C expression
	Type Casting
	Arithmetic Operators
	Precedence and Associativity
	Errors in Computer Arithmetic

	Expression & Statement
	Rel+Bool Opr
	if-else
	switch Statement

	Iteration in C
	while Loop
	for Loop

