
Pointers Exercise

Programming & Data Structure
CS 11002

Partha Bhowmick
http://cse.iitkgp.ac.in/˜pb

CSE Department
IIT Kharagpur

Spring 2012-2013

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers

Pointers Exercise Array Arith Scale Function malloc

Arrays and Pointers (1)

A pointer is a variable that represents the
location of a data item.

Example

int *a; means a is a pointer to integer.

See also earlier slides on similar declaration of pointers.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Arrays and Pointers (2)

Why?

To access a variable defined outside the
function.

To pass information back and forth between
a function and its reference point.

To efficiently navigate through data tables.

To reduce the length and complexity of a
program.

Sometimes also increases the execution
speed.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Arrays and Pointers (3)

int i, a[10];

In a[i], the array name a represents a pointer.
The value of a is the address of the 0th location,
i.e.,

a ≡ &a[0] and ∗a ≡ a[0].

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Arrays and Pointers (4)

In general, for i = 0, 1, . . . , 9,

a + i ≡ &a[i] and ∗(a + i) ≡ a[i].

So,
&(∗(a + i)) ≡ &a[i] ≡ a + i

and
∗(&a[i]) ≡ ∗(a + i) ≡ a[i].

Note

The operators * and & are inverse to each other.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Pointer Arithmetic (1)

#include <stdio.h>

int main(){

char c = ’A’;

int i = 10;

float f = 3.14;

double d = 31.459;

printf("%6c --- location %u \n", c, (unsigned)&c);

printf("%6d --- location %u \n", i, (unsigned)&i);

printf("%6.3f --- location %u \n", f,(unsigned)&f);

printf("%6.3f --- location %u \n", d,(unsigned)&d);

return 0;

} //address.c

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Pointer Arithmetic (2)

Output

A --- location 3218444239

10 --- location 3218444232

3.140 --- location 3218444228

31.459 --- location 3218444216

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Pointer Arithmetic (3)

#include <stdio.h>

int main(){

char *c, c1= ’A’;

int *i, i1 = 10;

float *f, f1 = 3.14;

double *d, d1 = 31.459;

c = &c1; i = &i1; f = &f1; d = &d1;

printf("%6c --- location %u \n", *c, (unsigned)c);

printf("%6d --- location %u \n", *i, (unsigned)i);

printf("%6.3f --- location %u \n", *f, (unsigned)f);

printf("%6.3f --- location %u \n", *d, (unsigned)d);

return 0;

} //pointer3.c

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Pointer Arithmetic (4)

Output

A --- location 3216152175

10 --- location 3216152168

3.140 --- location 3216152164

31.459 --- location 3216152152

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Pointer Arithmetic (5)

Note

char *c, c1= ’A’;

...

c = &c1; → is the pointer initialization.

Pointer variables must point to a data of the
same type.
char *c, c1= ’A’;

int *i;

i = &c1; → throws compilation warning
and results to erroneous output.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Pointer Arithmetic (6)

Assigning an absolute address to a pointer
variable is prohibited.

Once a pointer has been assigned the address
of a variable, the value of the variable can be
accessed using the indirection operator (*).
char *c, c1= ’A’, c2;

c = &c2;

c2 = *c; → equivalent to c2 = c1;

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Pointer Arithmetic (7)

Like other variables, contents of pointer
variables can be used in expressions.

Example

int *p1, *p2, sum, prod;

...

sum = *p1 + *p2;

prod = *p1 * *p2;

prod = (*p1) * (*p2);

*p1 = *p1 + 2;

x = *p1 / *p2 + 5;

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Pointer Arithmetic (8)

The following are allowed in C.
Add an integer to a pointer.

int i, a[5];

for (i=0; i<5; i++)

printf("%u\n", (unsigned)(a+i));

Output:

3214950148

3214950152

3214950156

3214950160

3214950164

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Pointer Arithmetic (9)

Subtract an integer from a pointer.
Subtract one pointer from another of the same
type.
Note: If p1 and p2 are both pointers to the
same array, then p2-p1 gives the number of
elements between p1 and p2.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Pointer Arithmetic (10)

The following are not allowed in C.
Add two pointers.
p1 = p1 + p2;

Multiply / divide a pointer in an expression.
p1 = p2 / 5;

p1 = p1 - p2 * 10;

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Scale Factor (1)

When an integer i is added to or subtracted from
an integer pointer variable pi, the scale factor
sizeof(int) times the value of i that actually
gets added with pi.

Example

pi = pi + 10; implies pi increases by
sizeof(int)*10.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Scale Factor (2)

#include <stdio.h>

int main(){

int i=1, *pi; char c=’A’, *pc;

pi = &i, pc = &c;

printf("pi = %u, pc = %u \n",

(unsigned)pi, (unsigned)pc);

pi = pi+10; pc = pc+10;

printf("pi = %u, pc = %u \n",

(unsigned)pi, (unsigned)pc);

return 0;} //pointer4.c

Output

pi = 3214711672, pc = 3214711679

pi = 3214711712, pc = 3214711689

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Scale Factor (3)

Data Type Scale Factor

char 1

int 4

float 4

double 8

To verify:
printf("#bytes for int = %d.\n", sizeof(int));

For a struct newDataType, the scale factor is given
by sizeof(newDataType).

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Passing Pointers to Functions (1)

Q: Why are pointers passed to functions as ar-
guments?

A: A pointer to a data item within the caller
function allows the callee function to access
and alter the data for further usage by the
caller function.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Passing Pointers to Functions (2)

Example

Incorrect passing of arguments

void f(int i){i=10*i;}

int main(){

int i=1;

f(i);

printf("i = %d\n", i);

return 0;} //pointer5.c

Output: i = 1

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Passing Pointers to Functions (3)

Example

Correct passing of arguments

void f(int *pi){*pi = 10*(*pi);}

int main(){

int i=1;

f(&i);

printf("i = %d\n", i);

return 0;} //pointer6.c

Output: i = 10

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Passing Pointers to Functions (4)

Q: What is actually meant by passing a pointer
to a function?

A: It means passing the value stored in the
pointer variable, i.e., the address of the data
that the pointer points to.

Q: Is it pass by reference or pass by value?

A: In C, address of a data is passed.
So, pass by reference means passing the ad-
dress of the data.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Passing Pointers to Functions (5)

Example
swap—arguments passed by value—wrong!

main(){

int a=5, b=10;

swap (a, b);

printf ("\n a=%d, b=%d", a, b);}

void swap (int x, int y){

int t;

t = x; x = y; y = t;}

Output: a=5, b=10

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Passing Pointers to Functions (6)

Example
swap—arguments passed by reference—right

main(){

int a=5, b=10;

swap (&a, &b);

printf ("\n a=%d, b=%d", a, b);}

void swap (int *x, int *y){

int t;

t = *x; *x = *y; *y = t;}

Output: a=10, b=5

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Passing Pointers to Functions (7)

Example

scanf() versus printf()

int x, y;

scanf ("%d %d", &x, &y);

...

printf ("%d %d %d", x, y, x+y);

Q: Why to use ‘&’ in scanf() but not in printf()?

A: The function printf() needs only a value in order to
output it. But scanf() stores a value, and hence the
address of a place for its storage. The address is passed
through the pointer.

PB | CSE IITKGP | Spring 2012-2013 PDS

Dynamic

Memory

Allocation

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (1)

Why?

Many a time we face situations where data is
dynamic in nature due to following reasons.

Amount of data cannot be predicted
beforehand.

Number of data items keeps changing during
program execution.

Such situations can be handled more easily and
effectively using dynamic memory management
techniques.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (2)

Why not Array?

C language requires the number of elements in an
array to be specified at compile time. This often
leads to over-allocation causing wastage of
memory space or under-allocation resulting to
program failure.

Through dynamic memory allocation, memory
space required can be specified at execution time.
C supports allocating and freeing memory
dynamically using library routines.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (3)

Local Variables

Free Memory

Global Variables

Instructions

Stack

Heap

Permanent
storage area

MEMORY

Dynamic allocation is done from the free memory
space or heap during run time.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (4)

Memory Allocation Functions

malloc Allocates requested number of bytes and returns
a pointer to the first byte of the allocated space.

int *p;

p = (int *)malloc(100 * sizeof(int));

calloc Allocates space for an array of elements, initial-
izes them to zero, and then returns a pointer to
the memory.

free Frees previously allocated space.

realloc Modifies the size of previously allocated space.

These are defined in stdlib.h. Use man to see further details.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (5)

p = (int *) malloc(100 * sizeof(int));

p

4× 100 = 400 bytes of space

0 1 2
· · ·

99

A memory space of 100 times the size of int
= 400 bytes is reserved. The address of the
first byte of the allocated memory is assigned to
the pointer p.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (6)

malloc() always allocates a block of contiguous
bytes.
The allocation can fail if sufficient contiguous
memory space is not available. If it fails, then
malloc returns NULL.

if ((p = (int *) malloc(100 * sizeof(int)))

== NULL){

printf ("\nMemory cannot be allocated");

exit();

}

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (7)

Releasing the allocated space

When we no longer need the data stored in a
block of memory, we should release the block for
future use.

How? By using the free function: free(p);

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (8)

Ways of declaration of 2D arrays

#define MAXROW 4

#define MAXCOL 5

...

int A[MAXROW][MAXCOL];

int (*B)[MAXCOL];

int *C[MAXROW];

int **D;

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (9)

int A[MAXROW][MAXCOL];

⇒ A is a statically allocated array.

int (*B)[MAXCOL];

⇒ B is a pointer to an array of MAXCOL integers.

int *C[MAXROW];

⇒ C is an array of MAXROW int pointers.

int **D;

⇒ D is a pointer to an int pointer.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (10)

A

A[0] A[1] A[2] A[3]

=
0 1 2 19

0

1

2

3

0 1 2 3 4

A[2][3]

4 9 143

= A[0][0] + 2× 5 + 3
= A[0][0] + 13

Note: A[i][j] ≡ A[0][0] + MAXCOL× i + j

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (11)

All these are essentially different in terms of
memory management.

Except A, the three other arrays support
dynamic memory allocation.

When properly allocated memory, each of
these can be used to represent a
MAXROW-by-MAXCOL array.

In all the four cases, the (i, j)th entry is
accessed as array name[i][j].

A and B are pointers to arrays, whereas C and
D are arrays of pointers.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (12)

int (*B)[MAXCOL];

B is a pointer to an array of COLSIZE integers. So
it can be allocated ROWSIZE rows in the following
way:

B = (int (*)[COLSIZE])malloc(ROWSIZE *

sizeof(int[COLSIZE]));

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (13)

int *C[MAXROW];

C is a static array of ROWSIZE int pointers.
Therefore, C itself cannot be allocated memory.
The individual rows of C should be allocated
memory.

int i;

for (i=0; i<ROWSIZE; ++i)

C[i] = (int *)malloc(COLSIZE * sizeof(int));

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (14)

int **D;

D is dynamic in both directions. First, it should
be allocated memory to store ROWSIZE int
pointers, each meant for a row of the 2D array.
Each row pointer, in turn, should be allocated
memory for COLSIZE int data.

int i;

D = (int **)malloc(ROWSIZE * sizeof(int *));

for (i=0; i<ROWSIZE; ++i)

D[i] = (int *)malloc(COLSIZE * sizeof(int));

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (15)

D D[0]

D[3]

D[1]

D[2]

D[0][0]

D[3][4]

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (16)

#include <stdio.h>

#include <stdlib.h>

int **allocate (int h, int w){

int **p, i;

//p = (int **) malloc(h * sizeof (int *));

p = (int **) calloc(h, sizeof (int *));

for (i=0;i<h;i++)

// p[i] = (int *) malloc(w * sizeof (int));

p[i] = (int *) calloc(w,sizeof (int));

return(p);

}

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (17)

void read_data (int **p, int h, int w){

int i, j;

for (i=0;i<h;i++)

for (j=0;j<w;j++)

scanf ("%d", &p[i][j]);

}

void print_data (int **p, int h, int w){

int i, j;

for (i=0;i<h;i++){

for (j=0;j<w;j++)

printf ("%5d ", p[i][j]);

printf ("\n");}

}

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (18)

int main(){

int **p, M, N;

printf ("Give M and N: \n");

scanf ("%d%d", &M, &N);

p = allocate (M, N);

read_data (p, M, N);

printf ("\nThe array read as \n");

print_data (p, M, N);

return 0;

} //calloc.c

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise Array Arith Scale Function malloc

Dynamic Memory Allocation (19)

$ cc -Wall calloc.c -o calloc.out

$./calloc.out

Give M and N:

3 4

Enter the elements:

1 2 3 4

5 6 7 10

11 21 31 41

The array read as

1 2 3 4

5 6 7 10

11 21 31 41

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise

Ex 1 (1)

How many bytes you require to represent the
following structure?

struct RECORD {

char name[80];

int age;

float height;

char address[5][80];

} rec;

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise

Ex 1 (2)

printf("rec size in bytes = %d\n",

sizeof(rec.name) +

sizeof(rec.age) +

sizeof(rec.height)+

sizeof(rec.address));

printf("rec size in bytes = %d\n",

sizeof(rec));

rec size in bytes = 488

rec size in bytes = 488

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise

Ex 2

Output?

char try[]="1234567890\n";

printf("strlen: %d, sizeof: %d\n",

strlen(try),sizeof(try));

strlen: 11, sizeof: 12

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise

Ex 2

Output?

char try[]="1234567890\n";

printf("strlen: %d, sizeof: %d\n",

strlen(try),sizeof(try));

strlen: 11, sizeof: 12

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise

Ex 3

Fill in the gap to compute the length of a string.

int length(char str[]){

int i=0;

while(_____________________);

return(____________________);

}

int length(char str[]){

int i=0;

while(str[i++]!=’\0’);

return(--i);

}

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Exercise

Ex 3

Fill in the gap to compute the length of a string.

int length(char str[]){

int i=0;

while(_____________________);

return(____________________);

}

int length(char str[]){

int i=0;

while(str[i++]!=’\0’);

return(--i);

}

PB | CSE IITKGP | Spring 2012-2013 PDS

	Pointers
	Array
	Pointer Arithmetic
	Scale Factor
	Passing Pointers to a Function
	Dynamic Memory Allocation

	Exercise

