Programming & Data Structure
CS 11002

Partha Bhowmick
http://cse.iitkgp.ac.in/ pb

CSE Department
IIT Kharagpur

Spring 2012-2013

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers

Pointers Array Arith Scale Function malloc

Arrays and Pointers

A pointer is a variable that represents the
location of a data item.

Example

int *a; means a is a pointer to integer.

See also earlier slides on similar declaration of pointers.

PB | CSE IITKGP | Spring 2012-2013

Pointers

Arrays and Pointers

Why?
@ To access a variable defined outside the
function.

e To pass information back and forth between
a function and its reference point.

e To efficiently navigate through data tables.

@ To reduce the length and complexity of a
program.

@ Sometimes also increases the execution
speed.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers

Arrays and Pointers

int i, a[10];

In a[i], the array name a represents a pointer.
The value of a is the address of the 0th location,
le.,

a = &al0] and *a = al0].

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers

Arrays and Pointers

In general, for i =0,1,...,9,

a+ i = &ali] and *(a+ i) = a[i].

So,

&x(a+1i)) =&alil=a+1i
and

x(&ali]) = x(a+ 1) = ali].
Note

The operators * and & are inverse to each other.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Pointer Arithmetic

#include <stdio.h>
int main(){
char ¢ = ’A’;
int i = 10;
float f = 3.14;
double d = 31.459;

printf ("%6c --- location %u \n", c, (unsigned)&c);
printf ("%6d --- location %u \n", i, (unsigned)&i);
printf ("%6.3f --- location %u \n", f,(unsigned)&f);
printf ("%6.3f --- location %u \n", d,(unsigned)&d);
return O;

} //address.c

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Pointer Arithmetic

Output
A —-—- location 3218444239
10 ——- location 3218444232
3.140 --- location 3218444228
31.459 --- location 3218444216

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Pointer Arithmetic

#include <stdio.h>
int main(){
char *c, cl= ’A’;
int *i, i1 = 10;
float *xf, f1 = 3.14;
double *d, dl1 = 31.459;
c =&cl; i = &il; £ = &f1; d = &di;

printf ("%6c --- location %u \n", *c, (unsigned)c);
printf ("%6d --- location %u \n", *i, (unsigned)i);
printf ("%6.3f --- location %u \n", *f, (unsigned)f);
printf ("%6.3f --- location %u \n", *d, (unsigned)d);
return O;

} //pointer3.c

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Pointer Arithmetic

Output
A —--- location 3216152175
10 ——- location 3216152168
3.140 --- location 3216152164
31.459 --- location 3216152152

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers

Pointer Arithmetic

Note

@ char *c, cl= ’A’;

c = &cl; — is the pointer initialization.

e Pointer variables must point to a data of the
same type.
char *xc, cl= ’A’;
int *1i;
i = &cl; — throws compilation warning
and results to erroneous output.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers

Pointer Arithmetic

e Assigning an absolute address to a pointer
variable is prohibited.

@ Once a pointer has been assigned the address
of a variable, the value of the variable can be
accessed using the indirection operator (*).
char *c, cl= ’A’, c2;

c = &c2;
c2 = xc; — equivalent to c2 = c1;

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers

Pointer Arithmetic

e Like other variables, contents of pointer
variables can be used in expressions.

Example

int *pl, *p2, sum, prod;

sum = *pl + *p2;

prod = *pl * *p2;
prod = (*kpl) * (*p2);
*pl = *pl + 2;

x = *xpl / *p2 + 5;

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Pointer Arithmetic

@ The following are allowed in C.
e Add an integer to a pointer.
int i, a[5];
for (i=0; i<5; i++)
printf ("%u\n", (unsigned) (a+i));
Output:
3214950148
32149501562
3214950156
3214950160
3214950164

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Pointer Arithmetic

e Subtract an integer from a pointer.

e Subtract one pointer from another of the same
type.
Note: If p1 and p2 are both pointers to the
same array, then p2-p1 gives the number of
elements between pl and p2.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Pointer Arithmetic

@ The following are not allowed in C.
e Add two pointers.
pl = pl + p2;
e Multiply / divide a pointer in an expression.
pl = p2 / 5;
pl = pl - p2 * 10;

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers

Scale Factor

When an integer i is added to or subtracted from
an integer pointer variable pi, the scale factor
sizeof (int) times the value of i that actually
gets added with pi.

Example

pi = pi + 10; implies pi increases by
sizeof (int) *10.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale

Scale Factor

#i

nclude <stdio.h>

int main()A{

int i=1, *pi; char c=’A’, *pc;

pi = &i, pc = &c;

printf("pi = %u, pc = %u \n",
(unsigned)pi, (unsigned)pc);

pi = pi+l10; pc = pc+10;

printf("pi = %u, pc = %u \n",
(unsigned)pi, (unsigned)pc);

return 0;} //pointerd.c

Output
pi = 3214711672, pc = 3214711679
pi = 3214711712, pc = 3214711689

PB | CSE IITKGP | Spring 2012-2013 PDS

Function malloc

Pointers Array Arith Scale Function malloc

Scale Factor

Data Type Scale Factor

char
int
float
double

0 -

@ To verify:
printf ("#bytes for int = J%d.\n", sizeof(int));

@ For a struct newDataType, the scale factor is given
by sizeof (newDataType).

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Passing Pointers to Functions

Q:

A:

Why are pointers passed to functions as ar-
guments?

A pointer to a data item within the caller
function allows the callee function to access
and alter the data for further usage by the
caller function.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Passing Pointers to Functions

Example

Incorrect passing of arguments

void f(int i){i=10%i;}
int main(){
int i=1;
f(1);
printf("i = %d\n", 1i);
return 0;} //pointer5.c

Output: i = 1

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Passing Pointers to Functions

Example

Correct passing of arguments

void f(int *pi){*pi = 10x(*pi);}
int main(O{

int i=1;

f(&i);

printf("i = %d\n", 1i);

return 0;} //pointer6.c

Output: i = 10

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Passing Pointers to Functions

Q:

A:

What is actually meant by passing a pointer
to a function?

It means passing the value stored in the
pointer variable, i.e., the address of the data
that the pointer points to.

: Is it pass by reference or pass by value?

: In C, address of a data is passed.

So, pass by reference means passing the ad-
dress of the data.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Functi

Passing Pointers to Functions

Example
swap—arguments passed by value—wrong!

main(){
int a=5, b=10;
swap (a, b);
printf ("\n a=%d, b=%d", a, b);}

void swap (int x, int y){
int t;

Output: a=5, b=10

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Functi

Passing Pointers to Functions

Example
swap—arguments passed by reference—right

main(){
int a=5, b=10;
swap (&a, &b);
printf ("\n a=%d, b=%d", a, b);’}

void swap (int *x, int *y){
int t;
t = *x; *x = ¥y; ¥y = t;}

Output: a=10, b=5

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Passing Pointers to Functions

Example

scanf () versus printf ()

int x, y;
scanf ("%d %d", &x, &y);

printf ("%d %d %4d", x, y, x+y);

Q: Why to use ‘&’ in scanf () but not in printf()?

A: The function printf () needs only a value in order to
output it. But scanf () stores a value, and hence the
address of a place for its storage. The address is passed
through the pointer.

PB | CSE IITKGP | Spring 2012-2013 PDS

Dynamic
Memory
Allocation

Pointers Array Arith Scale Function

Dynamic Memory Allocation

Why?

Many a time we face situations where data is
dynamic in nature due to following reasons.

e Amount of data cannot be predicted
beforehand.

e Number of data items keeps changing during
program execution.

Such situations can be handled more easily and

effectively using dynamic memory management
techniques.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function

Dynamic Memory Allocation

Why not Array?

C language requires the number of elements in an
array to be specified at compile time. This often
leads to over-allocation causing wastage of
memory space or under-allocation resulting to
program failure.

Through dynamic memory allocation, memory
space required can be specified at execution time.
C supports allocating and freeing memory
dynamically using library routines.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function

Dynamic Memory Allocation

Local Variables Stack

Free Memory | Heap

Global Variables
Permanent

Instructions storage area

MEMORY

Dynamic allocation is done from the free memory
space or heap during run time.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Dynamic Memory Allocation

Memory Allocation Functions

malloc Allocates requested number of bytes and returns
a pointer to the first byte of the allocated space.
int *p;
p = (int *)malloc(100 * sizeof(int));

calloc Allocates space for an array of elements, initial-
izes them to zero, and then returns a pointer to
the memory.

free Frees previously allocated space.

realloc Modifies the size of previously allocated space.

These are defined in stdlib.h. Use man to see further details.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function

Dynamic Memory Allocation

4 x 100 = 400 bytes of space

A memory space of 100 times the size of int

= 400 bytes is reserved. The address of the
first byte of the allocated memory is assigned to
the pointer p.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function

Dynamic Memory Allocation

malloc() always allocates a block of contiguous
bytes.

The allocation can fail if sufficient contiguous
memory space is not available. If it fails, then
malloc returns NULL.

if ((p = (int *) malloc(100 * sizeof(int)))
== NULL){
printf ("\nMemory cannot be allocated");
exit();
by

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function

Dynamic Memory Allocation

Releasing the allocated space

When we no longer need the data stored in a
block of memory, we should release the block for
future use.

How? By using the free function: free(p);

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function

Dynamic Memory Allocation

Ways of declaration of 2D arrays

#tdefine MAXROW 4
#define MAXCOL 5

int A[MAXROW] [MAXCOL];
int (*B) [MAXCOL];

int *C[MAXROW] ;

int **D;

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function

Dynamic Memory Allocation

int A[MAXROW] [MAXCOL];
= A is a statically allocated array.

int (*B) [MAXCOL];
= B is a pointer to an array of MAXCOL integers.

int *C[MAXROW] ;
= C is an array of MAXROW int pointers.

int *xD;
= D is a pownter to an int pointer.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Dynamic Memory Allocation

A[0] Al1] Al2] A[3]

Note: A[i][j] = A[0][0] 4+ MAXCOL X i+ j

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function

Dynamic Memory Allocation

e All these are essentially different in terms of
memory management.

e Except A, the three other arrays support
dynamaic memory allocation.

@ When properly allocated memory, each of
these can be used to represent a
MAXROW-by-MAXCOL array.

@ In all the four cases, the (i, j)th entry is
accessed as array name[i] [j].

@ A and B are pointers to arrays, whereas C and
D are arrays of pointers.

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function

Dynamic Memory Allocation

int (*B) [MAXCOL];

B is a pointer to an array of COLSIZE integers. So
it can be allocated ROWSIZE rows in the following
way:

B = (int (%) [COLSIZE])malloc(ROWSIZE =*
sizeof (int [COLSIZE]));

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function

Dynamic Memory Allocation

int *C[MAXROW] ;

C is a static array of ROWSIZE int pointers.
Therefore, C itself cannot be allocated memory.
The individual rows of C should be allocated

memory.

int 1i;
for (i=0; i<ROWSIZE; ++i)
Cl[i] = (int *)malloc(COLSIZE * sizeof (int));

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale

Dynamic Memory Allocation

int *xD;

D is dynamic in both directions. First, it should
be allocated memory to store ROWSIZE int
pointers, each meant for a row of the 2D array.
Each row pointer, in turn, should be allocated
memory for COLSIZE int data.

int 1i;
D = (int **)malloc(ROWSIZE * sizeof (int *));
for (i=0; i<ROWSIZE; ++i)

D[i] = (int *)malloc(COLSIZE * sizeof (int));

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function

Dynamic Memory Allocation

D D[0] D[0] [0]
P o | o

D[1] | «T—>
D[2] | «T—»
D[3] | «++——» °

D[3][4]

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Dynamic Memory Allocation

#include <stdio.h>
#include <stdlib.h>

int **allocate (int h, int w){
int **p, 1;

//p = (int **) malloc(h * sizeof (int *));
p = (int **) calloc(h, sizeof (int *));
for (i=0;i<h;i++)
// pli] = (int *) malloc(w * sizeof (int));
pli] = (int *) calloc(w,sizeof (int));
return(p);

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Dynamic Memory Allocation

void read_data (int *xp, int h, int w){
int 1, j;
for (i=0;i<h;i++)
for (j=0;j<w;j++)
scanf ("%d", &plil[j1);
+
void print_data (int **p, int h, int w){
int 1, j;
for (i=0;i<h;i++){
for (j=0;j<w;j++)
printf ("%5d4 ", p[il[j1);
printf ("\n");}
+

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Dynamic Memory Allocation

int main(){
int **p, M, N;

printf ("Give M and N: \n");
scanf ("%d%d", &M, &N);
p = allocate (M, N);
read_data (p, M, N);
printf ("\nThe array read as \n");
print_data (p, M, N);
return O;
} //calloc.c

PB | CSE IITKGP | Spring 2012-2013 PDS

Pointers Array Arith Scale Function malloc

Dynamic Memory Allocation

$ cc -Wall calloc.c -o calloc.out
$./calloc.out
Give M and N:

34

Enter the elements:
1234

567 10

11 21 31 41

The array read as
1 2 3 4
5 6 7 10
11 21 31 41

PB | CSE IITKGP | Spring 2012-2013 PDS

How many bytes you require to represent the
following structure?

struct RECORD {

char name[80];

int age;

float height;

char address[5] [80];
} rec;

PB | CSE IITKGP | Spring 2012-2013 PDS

printf("rec size in bytes = %d\n",

sizeof (rec.
sizeof (rec.
sizeof (rec.
sizeof (rec.

printf("rec size in bytes = %d\n",
sizeof (rec));

rec size in bytes
rec size 1in bytes

name) +
age) +
height)+
address)) ;

488
488

PB | CSE IITKGP | Spring 2012-2013 PDS

Output?

char try[]="1234567890\n";
printf("strlen: %d, sizeof: %d\n",
strlen(try),sizeof (try));

PB | CSE IITKGP | Spring 2012-2013 PDS

Output?

char try[]="1234567890\n";
printf("strlen: %d, sizeof: %d\n",
strlen(try),sizeof (try));

strlen: 11, sizeof: 12

PB | CSE IITKGP | Spring 2012-2013 PDS

Fill in the gap to compute the length of a string.

int length(char str[]){

int 1=0;
while(_____________________)
return(____________________);

¥

PB | CSE IITKGP | Spring 2012-2013 PDS

Fill in the gap to compute the length of a string.
int length(char str[]){

int 1=0;
while(_____________________)
return(____________________);

¥

int length(char str([]){
int 1i=0;
while(str[i++]!="\0");
return(--i);

}

PB | CSE IITKGP | Spring 2012-2013 PDS

	Pointers
	Array
	Pointer Arithmetic
	Scale Factor
	Passing Pointers to a Function
	Dynamic Memory Allocation

	Exercise

