
Linked List

Programming & Data Structure
CS 11002

Partha Bhowmick
http://cse.iitkgp.ac.in/˜pb

CSE Department
IIT Kharagpur

Spring 2012-2013

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List

Linked List Intro Create Insert Delete Types Exe

Introduction (1)

Definition
A linked list is a data structure consisting of a
sequence of nodes (records), which are connected
by pointers in succession.

Data Data Datahead

19 24 47head

19 24 47C F Phead

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Introduction (2)

19 24 47C F Phead

Properties

Successive nodes connected by pointers.

Last node points to NULL.

Nodes can dynamically change (grow/
shrink/ change in content) during execution.

Unlike array, it can be made just as long as
required, and hence space-efficient.

Admits efficient insertion / deletion of nodes.

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Introduction (3)

#include <stdio.h>

struct node {

int data;

struct node *next; //self-reference!

};

int main() { // selfRef2.c

struct node n;

n.next = &n; //head

printf("&n: %p\tn.next: %p\n", &n, n.next);

return 0; }

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Introduction (4)

Output
$ cc -Wall selfRef2.c

$ a.out

&n: 0xbff52f70 n.next: 0xbff52f70

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Introduction (5)

Basic Operations on a List

Creating a list

Traversing the list

Inserting an item in the list

Deleting an item from the list

Concatenating two lists into one

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Introduction (6)

List is an Abstract Data Type

Q: What is an abstract data type (ADT)?

A: It is a data type defined by the user, and typ-
ically more complex than simple data types
like int, float, etc.

Q: Why abstract?

A: Implementation details are hidden. To do
some operation on the list, e.g., insertion, we
just call a function. Details of implementa-
tion or the insert function are not required.

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Creation (1)

Consider the following node structure.

struct stud {

int roll;

char name[25];

int age;

struct stud *next;};

/* A user-defined data type called node */

typedef struct stud node;

node *head;

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Creation (2)

To start with, we have to create the first node
and make head point to it.

head = (node *) malloc(sizeof(node));

namehead

roll

age

next

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Creation (3)

node *create_list(){

int k, n; node *p, *head;

printf("\n How many elements to enter?");

scanf("%d", &n);

for(k=0; k<n; k++){

if(k == 0){

head = (node *)malloc(sizeof(node));

p = head;}

else{

p->next = (node *) malloc(sizeof(node));

p = p->next;}

scanf("%d %s %d", &p->roll, p->name, &p->age);

} //end for

p->next = NULL;

return(head);}

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Creation (4)

To be called from main() as follows.

int main(){

node *head;

...

head = create_list();

...

}

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Creation (5)

How to display or print

1 Follow the pointers, starting from head.
2 Display the contents of the nodes as they are

traversed.
3 Stop when the next pointer points to NULL.

19 24 47C F Phead

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Creation (6)

void display (node *head){

int count = 1;

node *p;

p = head;

while(p != NULL){

printf("\nNode %d: %d %s %d", count,

p->roll, p->name, p->age);

count++;

p = p->next;}

printf("\n");

}

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Creation (7)

To be called from main() as follows.

int main(){

node *head;

...

head = create_list();

display(head);

...

}

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Insertion (1)

19 24 47C F P

21 T node to be inserted

head

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Insertion (2)

19 24 47C F P

21 T

head

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Insertion (3)

19 24 47C F P21 Thead

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Insertion (4)

How to insert

The problem is to insert a new node before a
specified node, so that key (e.g., roll) of the new
node is smaller than that of the specified node.

3 cases
1 New node is added at the beginning
2 New node is added at the end
3 New node is added somewhere in the middle

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Insertion (5)

New node is added at the beginning

Only one next pointer needs to be modified.
head is made to point to the new node. New
node points to the previously first element.

19 24 47C F Phead

19 24 47C F P12 Qhead

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Insertion (6)

New node is added at the end

Two next pointers need to be modified. Last
node now points to the new node. New node
points to NULL.

19 24 47C F Phead

19 24 47C F P 53 Qhead

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Insertion (7)

New node is added somewhere in the
middle

Two next pointers need to be modified. Previous
node now points to the new node. New node
points to the next node.

19 24 47C F Phead

19 24 47C F P21 Thead

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Insertion (8)

void insert (node **head){

int k = 0, rno;

node *p, *q, *new;

new = (node *) malloc(sizeof(node));

printf("\nData to be inserted: ");

scanf("%d %s %d", &new->roll, new->name, &new->age);

printf("\nInsert before roll (-ve for end):");

scanf("%d", &rno);

p = *head;

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Insertion (9)

if (p->roll == rno){ /* At the beginning */

new->next = p;

*head = new; }

else{

while((p != NULL) && (p->roll != rno)){

q = p;

p = p->next;}

if(p == NULL){ /* At the end */

q->next = new;

new->next = NULL;}

else if(p->roll == rno){ /* In the middle */

q->next = new;

new->next = p;}

}

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Insertion (10)

}

To be called from main() as follows.

node *head;

...

insert(&head);

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Delete (1)

19 24 47C F Phead

= node to be deleted

19 24 47C F Phead

19 24 47C F Phead

p

free(p)

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Delete (2)

How to delete

The problem is to delete a node whose key (e.g.,
roll) matches the specified value.

3 cases
1 Deleting the first node
2 Deleting the last node
3 Deleting an intermediate node

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Delete (3)

Deleting the first node

19 24 47C F Phead

p

19 24 47C F Phead

p->next

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Delete (4)

Deleting the last node

19 24 47C F Phead

p p->next = NULL

19 24 47C F Phead

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Delete (5)

Deleting an intermediate node

19 24 47C F Phead

19 24 47C F Phead

p p->next

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Delete (6)

void delete (node *head){

int rno;

node *p, *q;

printf("\nDelete for roll :");

scanf("%d", &rno);

p = head;

if(p->roll == rno){/* Delete the first element */

head = p->next;

free(p);}

else{

while((p != NULL) && (p->roll != rno)){

q = p;

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Delete (7)

p = p->next;}

if (p == NULL) /* Element not found */

printf("\nNo match - deletion failed");

else if (p->roll == rno){ /* Delete */

q->next=p->next;

free(p);}

}

}

To be called from main() as follows.

node *head;

...

delete(head);

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Circularly Linked List (1)

Data Data

head

Data

Unlike open or linear linked list, the last node of
circularly linked list points to its first node.

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Circularly Linked List (2)

Data Data

head

Data

Advantages

We can visit any node from any node, e.g., from
last node to first node in a single step. But in
linear linked list it is not possible to go to
previous nodes. And in doubly linked list, we will
have to traverse all through to visit last to first
node.

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Circularly Linked List (3)

Disadvantages

If proper care is not taken, then the problem
of infinite loop can occur.

It is not easy to reverse the linked list.

Visit to the previous node cannot be done in
a single step; we have to complete the entire
circle by traversing through all the other
nodes.
Doubly linked list is of course better in this
context.

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Doubly Linked List (1)

head tail

DataData Data

There are two pointers: head pointing to the first
node, and tail pointing to the last node of the
list.
For each node, there are two pointers: prev
pointing to the previous node and next pointing
to the next node. The prev of first node and the
next of last node are NULL, which shows the end
of list on both sides.

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Doubly Linked List (2)

Advantages

We can traverse in both both forward and
backward directions.

Easy to reverse the linked list.

We can visit any node from any node using
bidirectional pointers, which is not possible
in linear linked list.

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Doubly Linked List (3)

Disadvantages

Requires more space per node because of the
extra pointer to previous node.

Insertion and deletion take more time than
linear linked list because more pointer
operations are required than linear linked
list.

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Exercise (1)

1 Concatenate two given lists into one list.
node *concatenate (node *head1, node

*head2);

2 Insert an element in a linked list in sorted
order. The function will be called for every
element to be inserted.
void insert-sorted (node *head, node

*element);

PB | CSE IITKGP | Spring 2012-2013 PDS

Linked List Intro Create Insert Delete Types Exe

Exercise (2)

3 Always insert elements at one end, and
delete elements from the other end (first-in
first-out or FIFO: QUEUE).
void insertQ (node *head, node

*element);

node *deleteQ (node *head); /* Return

the deleted node */

PB | CSE IITKGP | Spring 2012-2013 PDS

	Linked List
	Intro
	Creation
	Insert
	Delete
	Types
	Exe

