

GEOMETRY

P Bhowmick

Computational and Digital Geometry

Convex Hulls and Ortho-convex Hulls

Partha Bhowmick

Associate Professor Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur India

NIT Durgapur

23 Jan 2014

P Bhowmick

Convex hull Algorithm Hull of Polygon

Orthogonal hull Observations Algorithm Result

Input: Point set P on xy-plane.

- P Bhowmick
- Convex hull Algorithm Hull of
- Orthogonal hull Observations Algorithm Result

P Bhowmick

Convex hull Algorithm Hull of

Orthogonal hull Observations Algorithm Result

GEOMETRY

P Bhowmick

Convex hull Algorithm Hull of Polygon

Orthogonal hull Observations Algorithm Result

 $|\mathcal{C}_P| = O(n)$: $O(n^3)$ time is quite high!

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Obs 1

The leftmost point p_L and the rightmost point p_R of P form the leftmost and the rightmost vertices of C_P .

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Obs 2

Clockwise traversal along the boundary of C_P always yields a right turn at each vertex of C_P .

GEOMETRY

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

The clue

Use turn type to decide whether a triplet of points forms a pair of consecutive edges of C_P .

But how?

We have $O(n^3)$ triplets of points!

We can avoid checking so many triplets if we use **incremental** approach.

A question

GEOMETRY

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Let $C_{P,i}$ = vertices of upper hull up to p_i . Then what's the relation between $C_{P,i+1}$ and $C_{P,i}$?

GEOMETRY

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

The answer $C_{P,i+1} \subseteq C_{P,i} \cup \{p_{i+1}\}.$ It's a strong observation \Rightarrow Incremental algorithm!

GEOMETRY

Incremental algorithm: Graham scan

 $\begin{array}{l} \text{After lexicographic sorting} \\ (x = \text{primary key}, \, y = \text{secondary key}) \end{array}$

Incremental algorithm: Graham scan

Incremental algorithm: Graham scan

Incremental algorithm: Graham scan

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Let $p_j \in \mathcal{C}_{P,i}$.

If $p_j \notin C_{P,i+1}$, then $p_j \notin C_{P,i+2}$, $p_j \notin C_{P,i+3}$, ..., $p_j \notin C_{P,n}$, since $C_{P,i+1} \subseteq C_{P,i} \cup \{p_{i+1}\}$. So, once p_j is removed from the upper hull, it's never reconsidered.

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Let $p_j \in C_{P,i}$. If $p_j \notin C_{P,i+1}$, then $p_j \notin C_{P,i+2}$, $p_j \notin C_{P,i+3}$, ..., $p_j \notin C_{P,n}$, since $C_{P,i+1} \subseteq C_{P,i} \cup \{p_{i+1}\}$. So, once p_j is removed from the upper hull, it's never reconsidered.

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Let $p_j \in C_{P,i}$. If $p_j \notin C_{P,i+1}$, then $p_j \notin C_{P,i+2}, p_j \notin C_{P,i+3}, \ldots, p_j \notin C_{P,n}$, since $C_{P,i+1} \subseteq C_{P,i} \cup \{p_{i+1}\}$.

So, once p_j is removed from the upper hull, it's never reconsidered.

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Let $p_j \in \mathcal{C}_{P,i}$. If $p_j \notin \mathcal{C}_{P,i+1}$, then $p_j \notin \mathcal{C}_{P,i+2}, p_j \notin \mathcal{C}_{P,i+3}, \dots, p_j \notin \mathcal{C}_{P,n}$, since $\mathcal{C}_{P,i+1} \subseteq \mathcal{C}_{P,i} \cup \{p_{i+1}\}$.

So, once p_j is removed from the upper hull, it's never reconsidered.

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Let $p_j \in \mathcal{C}_{P,i}$. If $p_j \notin \mathcal{C}_{P,i+1}$, then $p_j \notin \mathcal{C}_{P,i+2}, p_j \notin \mathcal{C}_{P,i+3}, \dots, p_j \notin \mathcal{C}_{P,n}$, since $\mathcal{C}_{P,i+1} \subseteq \mathcal{C}_{P,i} \cup \{p_{i+1}\}$.

So, once p_j is removed from the upper hull, it's never reconsidered.

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Data structure: Stack, whose $top = p_i$.

If top two vertices in stack and p_{i+1} do not form a right turn at p_i , then p_i is popped out for ever!

 \Rightarrow #pushes = n and #pops < n

 $\Rightarrow T(n) = O(n) \leftarrow$ no best, average, or worst case! For lexicographic sorting, it takes $O(n \log n)$ time.

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Data structure: Stack, whose $top = p_i$. If top two vertices in stack and p_{i+1} do not form a right turn at p_i , then p_i is popped out for ever!

 \Rightarrow #pushes = n and #pops < n

 $\Rightarrow T(n) = O(n) \leftarrow$ no best, average, or worst case! For lexicographic sorting, it takes $O(n \log n)$ time.

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Data structure: Stack, whose $top = p_i$.

If top two vertices in stack and p_{i+1} do not form a right turn at p_i , then p_i is popped out for ever!

 \Rightarrow #pushes = n and #pops < n

 $\Rightarrow T(n) = O(n) \leftarrow$ no best, average, or worst case! For lexicographic sorting, it takes $O(n \log n)$ time.

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Data structure: Stack, whose $top = p_i$. If top two vertices in stack and p_{i+1} do not form a right turn at p_i , then p_i is popped out for ever! $\Rightarrow \#$ pushes = n and #pops < n $\Rightarrow T(n) = O(n) \leftarrow$ no best, average, or worst case! For lexicographic sorting, it takes $O(n \log n)$ time.

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Data structure: Stack, whose $top = p_i$. If top two vertices in stack and p_{i+1} do not form a right turn at p_i , then p_i is popped out for ever! $\Rightarrow \# \text{pushes} = n$ and # pops < n $\Rightarrow T(n) = O(n) \leftarrow \text{no best, average, or worst case!}$ For lexicographic sorting, it takes $O(n \log n)$ time.

Reference of Algorithms

GEOMETRY

- P Bhowmick
- Algorithm
- Hull of Polygon
- Orthogonal hull Observations Algorithm Besult

① Incremental — $O(n \log n) \triangleright n = \#$ points

- R. Graham, An Efficient Algorithm for Determining the Convex Hull of a Finite Point Set, *Info. Proc. Letters*, **1**, pp. 132–133, 1972.
- **2** Gift wrapping $O(nh) \triangleright h = \#$ hull vertices
 - R. A. Jarvis, On the Identification of the Convex Hull of a Finite Set of Points in the Plane, *Info. Proc. Letters*, **2**, pp. 18–21, 1973.
- **3** Divide and Conquer $O(n \log n)$
 - F. P. Preparata and S. J. Hong, Convex Hulls of Finite Sets of Points in Two and Three Dimensions, *Commun. ACM*, **20**, pp. 87–93, 1977.
- Marriage before Conquest O(n log h)
 D. G. Kirkpatrick and R. Seidel, The Ultimate Planar Convex Hull Algorithm?, SIAM J. Comput., 15, pp. 287–299, 1986.
- Simpler optimal output-sensitive O(n log h)
 T. M. Chan, Optimal Output-Sensitive Convex Hull Algorithms in Two and Three Dimensions, Discrete & Computational Geometry, 16, pp. 361–368, 1996.

Convex hull of a polygon

Linear-time algorithms

GEOMETRY

- P Bhowmick
- Convex hull Algorithm
- Hull of Polygon
- Orthogonal hull Observations Algorithm Result

- 1979 McCallum-Avis, IPL
- 2 1983 Lee, Intl. J. Computers & Info. Sc.
- 1983 Graham-Yao, J. Algorithms
- 1983 ElGindy-Avis-Toussaint, Computing
- **③** 1984 Bhattacharya-ElGindy, IEEE Trans. Info. Thy.
- 01985 Preparata-Shamos, Computational Geometry, Ch. 4
- 1985 Orlowski, Pattern Rec.
- **1986** Shin-Woo, Pattern Rec.
- 1987 Melkman, IPL

GEOMETRY

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull

Observations Algorithm Result

Digital object

(A = set/connected component of integer points)

GEOMETRY

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull

Observations Algorithm Result

(a necessary property)

GEOMETRY

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull

Observations Algorithm Result

	00			
	000			
	00			

Object A imposed on a grid G of size g = 4

GEOMETRY

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull

Observations Algorithm Result

				00				
_								
_								

Orthogonal hull \mathbb{C}_A

But no two consecutive Type 3 vertices

GEOMETRY

- P Bhowmick
- Convex hull Algorithm
- Hull of Polygon
- Orthogonal hull
- Algorithm Result

Step 1: Traverse the border of isothetic cover of A

GEOMETRY

- P Bhowmick
- Convex hull Algorithm
- Hull of Polygon
- Orthogonal hull
- Algorithm
- Result

GEOMETRY

- P Bhowmick
- Convex hull Algorithm
- Hull of Polygon
- Orthogonal hull
- Algorithm
- Result

GEOMETRY

- P Bhowmick
- Convex hull Algorithm
- Hull of Polygon
- Orthogonal hull
- Algorithm
- Result

GEOMETRY

- P Bhowmick
- Convex hull Algorithm
- Hull of Polygon
- Orthogonal hull
- Algorithm
- Result

Combinatorial cases

Pattern 1331

Rule R11 $(l_1 = l_3)$: $\langle v_0(\mathbf{t_0}, l_0), v_1(\mathbf{1}, l_1), v_2(\mathbf{3}, l_2), v_3(\mathbf{3}, l_3), v_4(\mathbf{1}, l_4) \rangle \rightarrow \langle v_0(\mathbf{t_0}, l_0 + l_2 + l_4) \rangle$

Pattern 1331

Rule R12 $(l_1 > l_3)$: $\langle v_0(\mathbf{t_0}, l_0), v_1(\mathbf{1}, l_1), v_2(\mathbf{3}, l_2), v_3(\mathbf{3}, l_3), v_4(\mathbf{1}, l_4) \rangle \rightarrow \langle v_0(\mathbf{t_0}, l_0), v_1(\mathbf{1}, l_1 - l_3), v_2(\mathbf{3}, l_2 + l_4) \rangle$

Pattern **1331**

Rule R13 $(l_1 < l_3)$: $\langle v_0(\mathbf{t_0}, l_0), v_1(\mathbf{1}, l_1), v_2(\mathbf{3}, l_2), v_3(\mathbf{3}, l_3), v_4(\mathbf{1}, l_4) \rangle \rightarrow \langle v_0(\mathbf{t_0}, l_0 + l_2), v_3(\mathbf{3}, l_3 - l_1), v_4(\mathbf{1}, l_4) \rangle$

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observation Algorithm

Rule R21
$$(l_1 < l_3)$$
:
 $\langle v_0(\mathbf{t_0}, l_0), v_1(\mathbf{1}, l_1), v_2(\mathbf{3}, l_2), v_3(\mathbf{3}, l_3), v_4(\mathbf{3}, l_4) \rangle \rightarrow \langle v_0(\mathbf{t_0}, l_0 + l_2), v_3(\mathbf{3}, l_3 - l_1), v_4(\mathbf{3}, l_4) \rangle$

GEOMETRY

- P Bhowmick
- Convex hul Algorithm Hull of
- Orthogonal hull Observations Algorithm Result

Let v = current vertex (under traversal). $l_H =$ horizontal line thru' v_2 , $l_V =$ vertical line thru' v_4 . $l_H^- \cap l_V^- =$ region lying below l_H and left of l_V . **if** $v \in l_H^- \cap l_V^-$, **then** apply **R22**; **else** traverse ahead to get v.

GEOMETRY

P Bhowmick

Convex hul Algorithm Hull of

Orthogonal hull Observations Algorithm Result

Rule R22 $(l_1 \ge l_3 \text{ and } d = d_2)$: $\langle v_0(\mathbf{t_0}, l_0), v_1(\mathbf{1}, l_1), v_2(\mathbf{3}, l_2), v_3(\mathbf{3}, l_3), v_4(\mathbf{3}, l_4) \rangle \rightarrow \langle v_0(\mathbf{t_0}, l_0), v_1(\mathbf{1}, l'), v_2(\mathbf{3}, l_2 - l'') \rangle$ $d = \text{direction from } v, d_2 = \text{direction from } v_2.$ (3)

if $v \in l_H^- \cap l_V^-$, then apply **R23**; else traverse ahead to get v. **Rule R23** $(l_1 \ge l_3 \text{ and } d = d_3)$: $\langle v_0(\mathbf{t_0}, l_0), v_1(\mathbf{1}, l_1), v_2(\mathbf{3}, l_2), v_3(\mathbf{3}, l_3), v_4(\mathbf{3}, l_4) \rangle \rightarrow$ $\langle v_0(\mathbf{t_0}, l_0), v_1(\mathbf{1}, l_1 - l_3), v_2(\mathbf{3}, (l_2 - l''), v_3(\mathbf{3}, (l_1 - l_3 - l')) \rangle$

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull Observation

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull Observatior

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull Observatior

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull Observatior

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull Observation

GEOMETRY

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result Let n = # points on object border, g = grid size.

• Checking object containment in a cell: O(g) time.

#grid points visited: O(n/g)
⇒ Visiting all vertices: O(n/g) · O(g) = O(n) time.
Removal of a concavity (applying Rule): O(1) time.
Maximum #reductions: O(n/g) - 4

 \Rightarrow Total #operations: $(O(n/g) - 4) \cdot O(1) = O(n/g).$

Total time complexity: O(n) + O(n/g) = O(n).

GEOMETRY

- P Bhowmick
- Convex hull Algorithm
- Hull of Polygon
- Orthogonal hull Observations Algorithm Result

- Let n = # points on object border, g = grid size.
 - **(**) Checking object containment in a cell: O(g) time.
 - 2 #grid points visited: O(n/g)
 - ⇒ Visiting all vertices: O(n/g) · O(g) = O(n) time.
 Premoval of a concavity (applying Rule): O(1) time.
 Maximum #reductions: O(n/g) 4.
 ⇒ Total #operations: (O(n/g) 4) · O(1) = O(n/g)
 - Total time complexity: O(n) + O(n/g) = O(n).

GEOMETRY

P Bhowmick

- Convex hull Algorithm
- Hull of Polygon
- Orthogonal hull Observations Algorithm Result

- Let n = # points on object border, g = grid size.
 - **(**) Checking object containment in a cell: O(g) time.
 - **2** #grid points visited: O(n/g)
 - \Rightarrow Visiting all vertices: $O(n/g) \cdot O(g) = O(n)$ time.
 - Removal of a concavity (applying Rule): O(1) time.
 Maximum #reductions: O(n/g) 4.
 ⇒ Total #operations: (O(n/g) 4) · O(1) = O(n/g)
 - Total time complexity: O(n) + O(n/g) = O(n).

GEOMETRY

- P Bhowmick
- Convex hull Algorithm
- Hull of Polygon
- Orthogonal hull Observations Algorithm Result

- Let n =#points on object border, g =grid size.
 - **(**) Checking object containment in a cell: O(g) time.
 - **2** #grid points visited: O(n/g)
 - \Rightarrow Visiting all vertices: $O(n/g) \cdot O(g) = O(n)$ time.
 - O Removal of a concavity (applying Rule): O(1) time.
 - Maximum #reductions: O(n/g) 4.
 ⇒ Total #operations: (O(n/g) 4) · O(1) = O(n/g).
 Total time complexity: O(n) + O(n/g) = O(n).

GEOMETRY

P Bhowmick

- Convex hull Algorithm
- Hull of Polygon
- Orthogonal hull Observations Algorithm Result

- Let n = # points on object border, g = grid size.
 - **(**) Checking object containment in a cell: O(g) time.
 - **a** #grid points visited: O(n/g) \Rightarrow Visiting all vertices: $O(n/g) \cdot O(g) = O(n)$ time.
 - **③** Removal of a concavity (applying Rule): O(1) time.
 - Maximum #reductions: O(n/g) 4.
 - ⇒ Total #operations: $(O(n/g) 4) \cdot O(1) = O(n/g)$. 3) Total time complexity: O(n) + O(n/g) = O(n).

GEOMETRY

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result Let n =#points on object border, g =grid size.

- Checking object containment in a cell: O(g) time.
- **a** #grid points visited: O(n/g) \Rightarrow Visiting all vertices: $O(n/g) \cdot O(g) = O(n)$ time.
- **③** Removal of a concavity (applying Rule): O(1) time.
- Maximum #reductions: O(n/g) 4. \Rightarrow Total #operations: $(O(n/g) - 4) \cdot O(1) = O(n/g)$.
- **5** Total time complexity: O(n) + O(n/g) = O(n).

GEOMETRY

P Bhowmick

- Convex hull Algorithm
- Hull of Polygon
- Orthogonal hull Observations Algorithm Result

- Let n =#points on object border, g =grid size.
 - **(**) Checking object containment in a cell: O(g) time.

 - **③** Removal of a concavity (applying Rule): O(1) time.
 - Maximum #reductions: O(n/g) 4. \Rightarrow Total #operations: $(O(n/g) - 4) \cdot O(1) = O(n/g)$.
 - Total time complexity: O(n) + O(n/g) = O(n).

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

digital object = 10541 points

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Isothetic cover

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

Orthogonal hull

Result

GEOMETRY

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm **Result**

#vertices = 18, 16, 16

Result

GEOMETRY

P Bhowmick

Convex hull Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm **Result**

vertices = 120, 60, 32

Result

GEOMETRY

P Bhowmick

Convex hul Algorithm

Hull of Polygon

Orthogonal hull Observations Algorithm Result

#vertices = 88, 44, 32

Feature analysis

- Concavity strength and concavity relation
- Narrow mouthed concavity
- Concavity complexity

References

GEOMETRY

- P Bhowmick
- Convex hull Algorithm
- Hull of Polygon
- Orthogonal hull Observations Algorithm **Result**

- A. Biswas, P. Bhowmick, M. Sarkar, B. B. Bhattacharya, A linear-time combinatorial algorithm to find the orthogonal hull of an object on the digital plane, *Information Sciences*, **216**, pp. 176–195, 2012.
- A. Biswas, P. Bhowmick, B. B. Bhattacharya, Construction of isothetic covers of a digital object: A combinatorial approach, Journal of Visual Communication and Image Representation, 21, pp. 295–310, 2010.

Thank you