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Input: Point set P on xy-plane.
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convex hull
Output: Convex hull, Cp = a sequence of vertices/edges.
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Edge of Cp?



Convex hull

Convex hull

- Right # empty

No, it’s not an edge of Cp.
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Yes, it’s an edge of Cp.
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|P| =n = O(n?) pairs = O(n?) time
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ICp| = O(n): O(n?) time is quite high!
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Obs 1
The leftmost point p;, and the rightmost point pr of P form
the leftmost and the rightmost vertices of Cp.
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Obs 2
Clockwise traversal along the boundary of Cp always yields a
right turn at each vertex of Cp.
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The clue
Use turn type to decide whether a triplet of points forms a
pair of consecutive edges of Cp.
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But how?

We have O(n?) triplets of points!

We can avoid checking so many triplets if we use incremental
approach.
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A question
Let Cp; = vertices of upper hull up to p;.
Then what’s the relation between Cp;11 and Cp;?
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Better observations
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The answer

Crit1 € Cpi U{pis1}.
It’s a strong observation = Incremental algorithm!
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Incremental algorithm: Graham scan
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After lexicographic sorting
(x = primary key, y = secondary key)
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not in Cp
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Let p; € Cpﬂ'.
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Let pj € Cpﬂ'.
If pj & Cpit1,



Time complexity

GEOMETRY|

P Bhowmick

Algorithm

Let p; € Cpﬂ'.
If pj  Cpit1, then p; € Cpit2,p; €Cpit3,.--,0j & CPns
since Cpit1 € Cpi U {pis1}-



Time complexity

GEOMETRY|

P Bhowmick

Algorithm

Let pj € C Py
If pj € Cpiy1, then p; € Cpitr2,p; € Cpit3,---,0j € Crns
since Cpi+1 C Cpi U {pit1}-

So, once p; is removed from the upper hull, it’s never
reconsidered.
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Let pj € C Py
If pj € Cpiy1, then p; € Cpitr2,p; € Cpit3,---,0j € Crns
since Cpi+1 C Cpi U {pit1}-

So, once p; is removed from the upper hull, it’s never
reconsidered.
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Data structure:
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Data structure: Stack, whose top = p;.
If top two vertices in stack and p; 1 do not form a right turn
at p;, then p; is popped out for ever!
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Data structure: Stack, whose top = p;.
If top two vertices in stack and p; 1 do not form a right turn
at p;, then p; is popped out for ever!

= #pushes = n and #pops < n
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Data structure: Stack, whose top = p;.
If top two vertices in stack and p; 1 do not form a right turn
at p;, then p; is popped out for ever!

= #pushes = n and #pops < n

= T'(n) = O(n) < no best, average, or worst case!
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Data structure: Stack, whose top = p;.
If top two vertices in stack and p; 1 do not form a right turn
at p;, then p; is popped out for ever!

= #pushes = n and #pops < n

= T'(n) = O(n) < no best, average, or worst case!

For lexicographic sorting, it takes O(nlogn) time.



Reference of Algorithms
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@ Incremental — O(nlogn) > n = #points

P Bhowmick R. Graham, An Efficient Algorithm for Determining the Convex
Hull of a Finite Point Set, Info. Proc. Letters, 1, pp.132-133,
1972.

@ Gift wrapping — O(nh) > h = #hull vertices
R. A. Jarvis, On the Identification of the Convex Hull of a Finite
Set of Points in the Plane, Info. Proc. Letters, 2, pp. 18-21, 1973.

© Divide and Conquer — O(nlogn)
F. P. Preparata and S. J. Hong, Convex Hulls of Finite Sets of
Points in Two and Three Dimensions, Commun. ACM, 20,
pp. 87-93, 1977.

@ Marriage before Conquest — O(nlogh)
D. G. Kirkpatrick and R. Seidel, The Ultimate Planar Convex
Hull Algorithm?, SIAM J. Comput., 15, pp. 287-299, 1986.

@ Simpler optimal output-sensitive — O(nlogh)
T. M. Chan, Optimal Output-Sensitive Convex Hull Algorithms
in Two and Three Dimensions, Discrete & Computational
Geometry, 16, pp. 361-368, 1996.

Algorithm



Convex hull of a polygon
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Polygon




Linear-time algorithms
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Convex Hull versus Orthogonal Hull

GEOMETRY|

P Bhowmick

Orthogonal
hull

Digital object
(A = set/connected component of integer points)
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hull

Convex hull C4



Convex Hull versus Orthogonal Hull
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Orthogonal
hull

Any straight line has at most one segment of intersection
(a necessary property)



Convex Hull versus Orthogonal Hull
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Orthogonal
hull

Object A imposed on a grid G of size g =4
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hull

Orthogonal hull C»4



Convex Hull versus Orthogonal Hull
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Orthogonal
hull
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Any horizontal or vertical line has at most one segment of
intersection (a necessary property)
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There are both left and right turns!
(clockwise)
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or, both right and left turns
(anticlockwise)

R
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Observations

(\ ]

or, 90° (Type 1) and 270° (Type 3) vertices
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But no two consecutive Type 3 vertices
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Observations

Two consecutive Type 3 vertices defy the necessary property
of line intersection
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Step 1: Traverse the border of isothetic cover of A
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Step 2: If 33, then process to remove the concavity.
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Step 2: If 33, then process to remove the concavity.




Algorithm

GEOMETRY|

P Bhowmick

Algorithm

Step 2: If 33, then process to remove the concavity.
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Step 2: If 33, then process to remove the concavity.




Combinatorial cases

Just 1331 and 1333 (= 1333™)



Pattern 1331
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Rule R11 (ll = l3)2
(vo(to,lo),v1(1,11),v2(3,12),v3(3,13),v4(1,14)) —
(vo(to,lo +l2 + 14))
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Rule R12 (ll > l3):
(vo(to,lo),v1(1,11),v2(3,12),v3(3,13),v4(1,14)) —
(vo(to,lo),v1(1,l1 —l3),v2(3, 12 + 14))
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Rule R13 (ll < l3):
(vo(to,lo),v1(1,11),v2(3,12),v3(3,13),v4(1,14)) —
(vo(to,lo +12),v3(3, 13 — 11),v4(1, ls))




Pattern 1333
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Rule R21 (ll < 13):
(vo(to,lo), vi(1, 1), v2(3,12), v3(3,13), va(3,14)) —
(vo(to,lo + 12),v3(3,13 — 11),v4(3,14))
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Algorithm

Let v = current vertex (under traversal).
lfr = horizontal line thru’ ve, lyy = vertical line thru’ vy.
Iy N1y, = region lying below Iy and left of [y

if v € [;; N, then apply R22; else traverse ahead to get v.



Pattern 1333

Rule R22 (I; > I3 and d = da):
(vo(to, o), v1(1, 1), v2(8,12), v3(3,13), va(3,ls)) —
(vo(to,lo), v1(1,1'), va(3,12 —1"))

d = direction from v, dy = direction from vs.
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if v € [;; N[}, then apply R23; else traverse ahead to get v.
Rule R23 (I; > I3 and d = d3):

<U0(t0, lo), 1}1(1, ll), 1)2(3, lg), 1}3(3, lg), 1)4(3, l4)> —

<U0(t0, lo), ’Ul(l, ll — lg), ’1)2(3, (lg - l”), 1}3(3, (ll - l3 - ll)>
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Time Complexity
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Let n = #points on object border, g = grid size.
P Bhowmick

@ Checking object containment in a cell: O(g) time.

Algorithm



Time Complexity

GEOMETRY|

Let n = #points on object border, g = grid size.
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@ Checking object containment in a cell: O(g) time.
@ #grid points visited: O(n/g)

Algorithm



Time Complexity

Let n = #points on object border, g = grid size.
@ Checking object containment in a cell: O(g) time.

@ #grid points visited: O(n/g)
= Visiting all vertices: O(n/g) - O(g) = O(n) time.
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Let n = #points on object border, g = grid size.
@ Checking object containment in a cell: O(g) time.

@ #grid points visited: O(n/g)
= Visiting all vertices: O(n/g) - O(g) = O(n) time.
@ Removal of a concavity (applying Rule): O(1) time.
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Let n = #points on object border, g = grid size.
@ Checking object containment in a cell: O(g) time.
@ #grid points visited: O(n/g)

= Visiting all vertices: O(n/g) - O(g) = O(n) time.
@ Removal of a concavity (applying Rule): O(1) time.
@ Maximum #reductions: O(n/g) — 4.



Time Complexity

GEOMETRY|

Let n = #points on object border, g = grid size.
@ Checking object containment in a cell: O(g) time.
@ #grid points visited: O(n/g)

= Visiting all vertices: O(n/g) - O(g) = O(n) time.
@ Removal of a concavity (applying Rule): O(1) time.

@ Maximum #reductions: O(n/g) — 4.
= Total #operations: (O(n/g) —4)-O(1) = O(n/g).



Time Complexity

Let n = #points on object border, g = grid size.

@ Checking object containment in a cell: O(g) time.
@ #grid points visited: O(n/g)

= Visiting all vertices: O(n/g) - O(g) = O(n) time.
@ Removal of a concavity (applying Rule): O(1) time.
@ Maximum #reductions: O(n/g) — 4.

= Total #operations: (O(n/g) —4)-O(1) = O(n/g).
@ Total time complexity: O(n) + O(n/g) = O(n).
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digital object = 10541 points




GEOMETRY|

P Bhowmick

Result

Isothetic cover
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Orthogonal hull




Result

#vertices = 18,16, 16



Result

#vertices = 120, 60, 32



Result
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#vertices = 88,44, 32

Feature analysis
o Concavity strength and concavity relation

o Narrow mouthed concavity

e Concavity complexity



References

CIRIORIIITER @ A. Biswas, P. Bhowmick, M. Sarkar, B. B. Bhattacharya, A
P Bhowmick linear-time combinatorial algorithm to find the orthogonal hull of
an object on the digital plane, Information Sciences, 216,

pp. 176-195, 2012.

@ A. Biswas, P. Bhowmick, B. B. Bhattacharya, Construction of
isothetic covers of a digital object: A combinatorial approach,
Journal of Visual Communication and Image Representation, 21,
pp. 295-310, 2010.

Thank you



	Main Talk
	Convex hull
	Algorithm

	Convex hull of a polygon
	Orthogonal hull
	Observations
	Algorithm
	Result



