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Foreword

Some selected topics and related algorithms I have discussed
in the class are explained briefly in this Lecture Notes. There
are also some other topics I have discussed in the class
but not included in this Lecture Notes. You should see
your class notes and referred books for those. Some typo-
graphical errors and notational discrepancies may be there
in this Lecture Notes. If you find some, please email me at
bhowmick@gmail.com.
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Chapter 1

Search Trees

The figure aside shows a sculpture by Andrew
Rogers in Jerusalem. The sculpture ratio is pro-
portioned according to Fibonacci numbers.
Interestingly, it has a subtle connection with the
golden ratio, which is again connected with
search trees (Sec. 1.2).

1.1 Binary Search Tree (BST)

Definition 1.1 (Binary Tree) A binary tree is a data structure in the form of a rooted
tree in which each node has at most two children. A recursive definition: A binary tree is either
empty or it contains a root node together with two binary trees called the left subtree and the
right subtree of the root.

Definition 1.2 (BST) A BST is either empty or a binary tree with the following properties:

(i) All keys (if any) in the left subtree of the root precede the key in the root.

(ii) The key in the root precedes all keys (if any) in the right subtree of the root.

(iii) The left and the right subtrees of the root are BST.

C declaration of a binary tree or a BST is as follows.

typedef struct tnode {
int x; //info
struct tnode *left, *right;

} node;

1.1.1 Traversal in a Binary Tree

Let u be any node and L and R be its respective left and right subtrees. Then the following
three types of traversals are defined on a binary tree or a BST:
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Inorder traversal: Represented as LuR, the left subtree L is (recursively) visited (and
nodes reported/processed) first, then the node u, and finally the right subtree R.

Preorder traversal: uLR.

Postorder traversal: LRu.

Note that, by inorder traversal of a BST, we always get the sorted sequence of its keys.
C-snippet for inorder traversal is given below. For other two types, it’s obvious.

void in_order(node *u)
{

if (u!=NULL){
in_order(u->left);
visit(u); //ex: print(u)
in_order(u->right);

}
}

1.1.2 Searching in a BST

C-snippet for searching is as follows.

main()
{

node *root;
int k;
...
p = bst_search(root, k);
...

}

node *bst_search(node *p, int k)
{

if (p!=NULL)
if (k < p->x)

p = bst_search(p->left, k);
else if (k > p->x)

p = bst_search(p->right, k);

return p;
}

The pseudo-code to search a key k in a BST is as follows:

Algorithm Search-BST(r, k)
1. if k < key[r]
2. Search-BST(left[r], k)
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Figure 1.1: An extended BST with n = 6 internal nodes and n + 1 = 7 external/dummy nodes.
It has I(n) = 1× 2 + 2× 2 + 3× 1 = 9 and E(n) = 2× 2 + 3× 3 + 4× 2 = 21. Hence, for this
particular BST, we get S(n) = (9 + 6)/6 = 2.50 and U(n) = 21/7 = 3.00.

3. else if k > key[r]
4. Search-BST(right[r], k)
5. return r

Time complexity

Best case:

T (n) = O(n), since the search key k may be the very root key.

Worst case:

T (n) = T (n − 1) + O(1) = O(n), which arises when the BST is fully skewed and the search
terminates at the bottommost leaf node.

Average case:

We define the following terms for a BST having n nodes (see Fig. 1.1):
Internal path length: I(n) = Sum of path lengths of all internal nodes from the root (of BST).
External path length: E(n) = Sum of path lengths of all external (dummy) nodes from the root.
Average number of comparisons for successful search: S(n).
Average number of comparisons for unsuccessful search: U(n).

Observe that

S(n) =
I(n) + n

n
, U(n) =

E(n)
n + 1

. (1.1)

It can be proved by induction that

E(n) = I(n) + 2n. (1.2)

Hence,

U(n) =
I(n) + 2n

n + 1
. (1.3)

Eliminating I(n) from Eqns. 1.1 and 1.3,

nS(n) = (n + 1)U(n)− n,

or, S(n) =
(

1 +
1
n

)
U(n)− 1. (1.4)
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To find the average number of comparisons for successfully searching each of the n keys, we
consider its insertion order. If a key x was inserted as the ith node, namely ui, then the average
number of comparisons for its unsuccessful search in that instance of the tree containing the
preceding (i−1) nodes, is given by Ui−1. Once it’s inserted, we can successfully search for it and
the search terminates at the node ui, which was a dummy node where its unsuccessful search
terminated. Hence, Si = Ui−1 + 1, as one extra comparison is required for the successful search
terminating at ui compared to the unsuccessful search terminating at the dummy node located
at the same position. We estimate the average number of comparisons for all these n nodes
based on their insertion orders. Thus, we get

S(n) =
1
n

n∑

i=1

(Ui−1 + 1), (1.5)

From Eqns. 1.4 and 1.5,

(n + 1)U(n) = 2n + U(0) + U(1) + . . . + U(n− 1).

To solve the above recurrence, we substitute n− 1 for n to get

nU(n− 1) = 2(n− 1) + U(0) + U(1) + . . . + U(n− 2).

Subtracting the latter from the former,

U(n) = U(n− 1) +
2

n + 1
. (1.6)

Since U(0) = 0, we get U(1) = 2
2 , U(2) = 2

2 + 2
3 , U(3) = 2

2 + 2
3 + 2

4 , and so on, resulting to

U(n) = 2
(

1
1

+
1
2

+ . . . +
1

n + 1

)
= 2Hn+1 − 2 ≈ 2lnn = (2ln2) log2 n, (1.7)

where, Hn = 1 + 1
2 + 1

3 + . . . + 1
n is the nth harmonic number, and approximately equals lnn.

Hence, from Eqn. 1.4, we can find S(n), and conclude that S(n) ≈ U(n) ≈ (2ln2) log2 n.

1.1.3 Insertion in a BST

For insertion of a new element, we search for that element in the BST. It’s an unsuccessful
search, terminating at a dummy node. A new node is created at the position of that dummy
node with necessary pointer adjustments. The C-snippet is given below.

main()
{

node *root, *u;
int k;
...
if ((u = (node *) malloc(sizeof(node))) == NULL)

error("Exhausted memory.");
else {

u->x = k;
u->left = u->right = NULL;

}
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u = bst_insert(root, u);
...

}

node *insert(node *r, node *u)
{

if (r == NULL)
r = u;

else if (u->x < r->x)
r->left = bst_insert(r->left, u);

else if (u->x < r->x)
r->right = bst_insert(r->right, u);

else
error("key already exists in BST.");

return r;
}

Time complexity

The best-, worst-, and average-case time complexities for insertion of a node in a BST are
all similar as those for (unsuccessful) searching.

1.1.4 Deletion from a BST

While deleting an element k from a BST, we first search for k in the BST, and then delete
the corresponding node, say u, based on the following possible cases (see Fig. 1.2).

Case 1: If u is a leaf node, then we simply free u and reassign its parent’s child pointer (left
or right, as applicable) to Null.

Case 2: If u has only one subtree, say, the left subtree rooted at v, then we reassign the pointer
from its parent p to v (and free u).

Case 3: If u has both the subtrees, the left (T2) rooted at v and the right (T3) at w, then we
traverse T3 until we reach its leftmost node, say u′, which has no left child. After deletion of u,
the node v should be the inorder predecessor of u′. Hence, the left-child pointer from u′ is set
to v and the pointer from p to u is reset to w (and u is freed).

Time complexity

Pointer adjustments in all three cases need constant time. So, the best-, worst-, and average-
case time complexities for deletion of a node from a BST are all similar as those for (successful)
searching.

1.2 AVL Tree

Definition 1.3 (AVL tree) An AVL tree1 is a self-balancing binary search tree (BST)
in which the heights of the two child subtrees of any node differ by at most one.

1Named after its two inventors, G.M. Adelson-Velskii and E.M. Landis (1962): An algorithm for the organiza-
tion of information, Proceedings of the USSR Academy of Sciences 146: 263–266 (Russian). English translation
by Myron J. Ricci in Soviet Math. Doklady, 3: 1259–1263, 1962.
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Figure 1.2: Deletion from a BST: Case 2 and Case 3.

In an AVL tree having n nodes, searching, insertion, and deletion all take O(log n) time
in both the average and the worst cases. Insertions and deletions may require the tree to be
re-balanced by one or more tree rotations. The balance factor of a node is the height of its
left subtree minus the height of its right subtree (a convention, although the opposite is equally
valid). A node with the balance factor 0 or ±1 is said to be balanced . A node with any other
balance factor is considered unbalanced and requires re-balancing. The balance factor is either
stored directly at each node or computed from the heights of the subtrees (how!?). In short, a
BST is an AVL tree iff each of its nodes is balanced.

AVL trees are often compared with red-black trees because they support the same set of
operations and because red-black trees also take O(log n) time for the basic operations. AVL
trees perform better than red-black trees for lookup-intensive applications.1

1.2.1 Worst-case AVL (Fibonacci) trees

We find the minimum number of nodes, say nh, in an AVL tree of height h. Let h be the
height of an AVL tree. Then, for the minimality of its node count, we have

nh = nh−1 + nh−2 + 1, (1.8)

where n0 = 1 and n1 = 2, since the minimality of node count demands a similar (recursive)
minimality of the subtrees.

By adding 1 to both sides of the above equation, we get the Fibonacci relation

Fk = Fk−1 + Fk−2, where F0 = 0 and F1 = 1, (1.9)

so that Fk = nh + 1, whereby F3(= 2) in starting correspondence with n0 + 1(= 2).
To solve the above recurrence, we use the following generating function with the Fibonacci

numbers as coefficients:

F (x) = F0+ F1x+ F2x
2+ . . . + Fnxn + . . .

xF (x) = F0x+ F1x
2+ . . . + Fn−1x

n + . . .
x2F (x) = F0x

2+ . . . + Fn−2x
n + . . .

1 Ben Pfaff (June 2004). Performance Analysis of BSTs in System Software, Stanford University.
See http://www.stanford.edu/~blp/papers/libavl.pdf.
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or, (1− x− x2)F (x) = F0 + (F1 − F0)x = x,
or,

F (x) =
x

1− x− x2
=

1√
5

(
1

1− φx
− 1

1− ψx

)
, (1.10)

where φ = 1
2(1 +

√
5) and ψ = 1

2(1−√5) are the roots of 1− x− x2 = 0. Hence,

F (x) =
1√
5

(
1 + φx + φ2x2 + . . .− 1− ψx− ψ2x2 − . . .

)
. (1.11)

Observe that from the generating function F (x), the coefficient of xn is Fn, which implies

Fn =
1√
5

(φn − ψn) ≈ 1√
5

(1.618n − (−0.618)n) = int

(
φn

√
5

)
. (1.12)

Note: The term φ ≈ 1.6180339887498948482... is called the golden ratio—a figure where mathematics
and arts concur at! Some of the greatest mathematical minds of all ages, from Pythagoras and Euclid
in ancient Greece, through the medieval Italian mathematician Leonardo of Pisa and the Renaissance
astronomer Johannes Kepler, to present-day scientific figures such as Oxford physicist Roger Penrose, have
spent endless hours over this simple ratio and its properties. But the fascination with the Golden Ratio is
not confined just to mathematicians. Biologists, artists, musicians, historians, architects, psychologists,
and even mystics have pondered and debated the basis of its ubiquity and appeal. In fact, it is probably
fair to say that the Golden Ratio has inspired thinkers of all disciplines like no other number in the
history of mathematics.

As a continued fraction: φ = 1+
1

1 + 1

1+
. . .

As a continued square root, or infinite surd: φ =

√

1 +

√
1 +

√
1 +

√
1 + . . .

In simpler terms, two quantities are in the golden ratio if the ratio of the sum of the quantities to the
larger quantity is equal to the ratio of the larger quantity to the smaller one; that is, φ = a

b = a+b
a .

Synonyms used for the golden ratio are the golden section (Latin: sectio aurea), golden mean, extreme
and mean ratio (by Euclid), medial section, divine proportion (Leonardo da Vinci’s illustrations), divine
section, golden proportion, golden cut, golden number, and mean of Phidias1.

One of the many interesting facts about golden ratio: A pyramid in which the apothem (slant height
along the bisector of a face) is equal to φ times the semi-base (half the base width) is called a golden
pyramid. Some Egyptian pyramids are very close in proportion to such mathematical pyramids.

1.2.2 Insertion and Deletion from an AVL Tree

Insertion of a node u in an AVL tree consists of two stages: (i) insertion of u as in the case
of a BST; (ii) applying single (L or R) or double (LR or RL) rotation at a node where the
balance factor is violated (i.e., has become +2 or −2 after inserting u). Rotations are explained
in Fig. 1.3

Interestingly, it can be shown that—by considering case-wise possibilities—at most one (sin-
gle or double) rotation will ever be done. If so, then it’s near the newly inserted node u.

As the height of an AVL tree is O(log n), insertion takes O(log n) time for stage (i) and O(1)
time for stage (ii), making it O(log n) in total.

1For interesting facts and figures, see http://en.wikipedia.org/wiki/Golden_ratio
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Deletion also consists of two stages as in the case of insertion. The first stage is again similar
to that of BST. For the second stage, we have to traverse up to the very root of the BST,
go on updating the balance factors of the predecessors along the path to the root, and apply
rotations as and when required. The total time complexity for the two stages is, therefore,
O(log n) + O(log n) = O(log n).

Suggested Book

R.L. Kruse, B.P. Leung, C.L. Tondo. Data Structures and Program Design in C. PHI, 2000.



1.2 AVL Tree 9

u

v

+2

Right

rotation

+1

unbalanced balanced

v

u

h − 1

T3

h − 1

T3

h

T1
h − 1

T2

h

T1

h − 1

T2

Single right (R) rotation: Applied when the node u has balance factor f = +2 and its
left child v has f = +1. Note that the BST property T1 ≤ v ≤ T2 ≤ u ≤ T3 is preserved
after rotation.

u

v

+2

Right

rotation

−1

unbalanced not balanced!

v

u

h − 1

T3

h − 1

T3

h

T2
h − 1

T1
h − 1

T1

h

T2

−2

A case where single right (R) rotation fails: When the node u has balance factor f = +2
and its left child v has f = −1, although the BST property T1 ≤ v ≤ T2 ≤ u ≤ T3 is
preserved after rotation. Double right (LR) rotation balances it correctly.
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Figure 1.3: Single right (R) and double right (LR) rotations for balancing an AVL tree. The
other two types of rotations, namely single left (L) and double left (RL) rotations, are similar
(to be precise, just vertical reflections of R and LR).





Chapter 2

Sorting

“Just as the young squirrel must learn what is
climbable and foraging during the dependency pe-
riod may provide that experience. Beside the se-
lection of food, other feeding behavior such as
the (sorting and) opening of nuts, improves with
time.”—J.P.Hailman

2.1 Insertion Sort

Principle: Iteratively sorts the first i (2 ≤ i ≤ n) elements in a list L using the results of the
already-sorted first i − 1 elements in the previous iteration. To do so, it simply inserts the ith
element properly among the previously sorted i− 1 elements.

Algorithm Insertion-Sort(L, n)
1. for i ← 2 to n
2. x ← L[i]
3. j ← i− 1
4. while j > 0 ∧ L[j] > x
5. L[j + 1] ← L[j]
6. j ← j − 1
7. L[j + 1] ← x

2.1.1 Time complexity

Best case: Minimum number of comparisons to insert the ith (i > 1) element = 1. Hence,
T (n) = (n− 1) ·O(1) = O(n).

Worst case: Maximum number of comparisons to insert the ith (i > 1) element = i − 1.
Hence,

T (n) =
n∑

i=2

(i− 1) =
n(n− 1)

2
= O(n2).

Average case: The ith element x is equally likely to be placed at any one of the i positions.
So, each position has probability = 1/i.
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Thus, average number of comparisons to
insert x is

i−1∑

j=1

(
1
i
· j

)
+

1
i
(i− 1) =

i + 1
2

− 1
i
.

Note: If x is inserted before or after the
very first element, then we need i−1 com-
parisons (see figure aside).

1 2 i − 1 i

i positions, each with probability = 1/i

x

Considering all n passes,

T (n) =
n∑

i=2

(
1
2(i + 1)− 1

i

)
= n2

4 + 3n
4 − 1−

n∑
2

1
i

= O(n2) + O(n)−O(log n)
(

since
n∑
2

1
i = O(lnn)

)

= O(n2).

2.2 Quicksort

Principle: Based on divide and conquer, in-place1 but not stable2.
Divide The input list L[1..n] is partitioned into two nonempty sublists, L1 := L[1..q] and
L2 := L[q+1..n], such that no element of L1 exceeds any element of L2. The index q is returned
from the Partition procedure.
Conquer and combine L1 and L2 are recursively quicksorted in place so that their final
combination is sorted.34

Algorithm QuickSort(L, p, r)
1. if p < r
2. q ← Partition(L, p, r)
3. QuickSort(L, p, q)
4. QuickSort(L, q + 1, r)

Procedure Partition(L, p, r)
1. x ← L[p]
2. i ← p− 1
3. j ← r + 1
4. while True
5. do j ← j − 1
6. till L[j] > x
7. do i ← i + 1
8. till L[i] < x
9. if i < j
10. Swap(L[i], L[j])
11. else return j

5 3 2 6 4 1 3 7

i j

5 3 2 6 4 1 3 7

3 2 6 4 13 75

3 2 6 4 13 75

3 2 6413 75

3 2 6413 75

i

i

i

i

i

j

j

j

j

j

1An in-place sorting needs no extra array.
2A stable sorting preserves the relative order of records with equal keys.
3 “An Interview with C.A.R. Hoare”. Communications of the ACM, March 2009 (premium content).
4R. Sedgewick, Implementing quicksort programs, Comm. ACM, 21(10):847–857, 1978.
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The correctness of the partition algorithm is based on the following facts: (i) |L1| > 0 and
|L2| > 0; (ii)L1 ∪ L2 = L; (iii)L1 ≤ x ≤ L2;

The correctness of the sorting algorithm follows from inductive reasoning. For one element,
the algorithm leaves the data unchanged; otherwise it produces the concatenation of L1 and L2,
which are themselves recursively sorted by the inductive hypothesis.

2.2.1 Time complexity

Best case: Partition takes Θ(n) time. So, best-case time complexity of quicksort is T (n) =
2T (n/2) + Θ(n), which solves to T (n) = Θ(n log n).
Worst case: Arises when max(|L1|, |L2|) = n − 1 in every step of the recursion, giving
T (n) = T (n− 1) + Θ(n), or, T (n) = Θ(n2).
Average case: Based on the assumption that the pivot x is equally likely to be the ith min
for i = 1, 2, . . . , n. If x is the 1st min, then x is the sole element in L1 so that |L1| > 0 (invariant
of Partition); for all other cases, x ∈ L2. So, |L1| = 1 occurs when x is the 1st or the 2nd min.
Thus, Prob(|L1| = 1) = 2/n, and Prob(|L1| = q) = 1/n for q = 2, . . . , n − 1. Hence, the
worst-case time complexity of quicksort is

T (n) =
1
n


(T (1) + T (n− 1)) +

n−1∑

q=1

(T (q) + T (n− q))


 + Θ(n) (2.1)

≤ 1
n


O(n2) +

n−1∑

q=1

(T (q) + T (n− q))


 + Θ(n)

=
1
n




n−1∑

q=1

(T (q) + T (n− q))


 + Θ(n), as 1

nO(n2) = O(n) and O(n) + Θ(n) = Θ(n)

≤ 2
n

n−1∑

q=1

T (q) + Θ(n) (2.2)

We solve the above equation using the method of substitution (induction), with the hypothesis
that T (q) ≤ aq log q for a suitable constant a > 0 and ∀ q < n. Then,

T (n) ≤ 2
n

n−1∑

q=1

aq log q + Θ(n) =
2a

n

n−1∑

q=1

(q log q) + Θ(n)

=
2a

n



dn/2e−1∑

q=1

(q log q) +
n−1∑

q=dn/2e
(q log q)


 + Θ(n)

≤ 2a

n


log(n/2)

dn/2e−1∑

q=1

q + log n

n−1∑

q=dn/2e
q


 + Θ(n)

=
2a

n


(log n− 1)

dn/2e−1∑

q=1

q + log n
n−1∑

q=dn/2e
q


 + Θ(n)

=
2a

n


log n

n−1∑

q=1

q −
dn/2e−1∑

q=1

q


 + Θ(n)
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or, T (n) ≤ 2a

n

(
1
2
n(n− 1) log n − 1

2

(⌈n

2

⌉
− 1

)⌈n

2

⌉)
+ Θ(n)

≤ 2a

n

(
1
2
n(n− 1) log n − 1

2

(n

2
− 1

) n

2

)
+ Θ(n)

= a(n− 1) log n− a

2

(n

2
− 1

)
+ Θ(n)

= an log n−
(a

2

(n

2
− 1

)
+ a log n−Θ(n)

)
,

which can be made smaller than an log n for a sufficiently large value of a, ∀ n ≥ n0. Thus,
T (n) = O(n log n).

2.3 Heapsort

A (binary max) heap is a complete binary tree, i.e., its levels are completely filled except
possibly the lowest, which is filled from left to right (shape property of heap). Further, (the
key at) each of its nodes is greater than or equal to each of its children (heap property). It is
represented as 1-D array, A, for a simple-yet-efficient implementation as follows (see Fig. 2.1):

Root of the heap = A[1]; for each node corresponding to A[i], the parent is A[bi/2c], left
child is A[2i], and right child is A[2i + 1]. Thus, for a heap having n nodes, A[bi/2c] ≥ A[i] for
2 ≤ i ≤ n, by heap property; and A[1] contains the largest element. Heapsort uses the heap and
its properties most efficiently for sorting1.

Principle: Based on selection principle, and so in-place but not stable (as quicksort). It first
constructs the heap from A[1..n] using the procedure BuildHeap (Step 1). It uses two variables:
length[A] = n (remains unchanged) and heapsize[A], the latter being decremented as the heap
is iteratively reduced in size (Step 2) while swapping the root of (reducing) heap with its last
node (Step 3), and then cutting off the last node (current max; Step 4) so as to grow the sorted
sublist at the rear end of A. The procedure Heapify is used to rebuild the heap (Step 5), which
has lost its heap property due to the aforesaid swapping.

1 J. W. J. Williams. Algorithm 232 – Heapsort, 1964, Communications of the ACM 7(6): 347–348.

2 4 1

8 7 9 3

14 10

16

1

2 3

4 5 6 7

8 9 10

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Figure 2.1: Top: A heap as a complete binary tree. Bottom: The corresponding array A.
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Algorithm HeapSort(A)
1. BuildHeap(A)
2. for i ← length[A] downto 2
3. Swap(A[1], A[i])
4. heapsize[A] ← heapsize[A]− 1
5. Heapify(A, 1)

Procedure BuildHeap(A)
1. heapsize[A] ← length[A]
2. for i ← blength[A]/2c downto 1
3. Heapify(A, i)

Procedure Heapify(A, i)
1. l ← Left[i],

r ← Right[i]
2. if l ≤ heapsize[A] ∧A[l] > A[i]
3. largest ← l
4. else largest ← i
5. if r ≤ heapsize[A] ∧A[r] > A[largest]
6. largest ← r
7. if largest 6= i
8. Swap(A[i], A[largest])
9. Heapify(A, largest)

2.3.1 Time complexity

The height h of a node in the heap is measured from the bottommost level (height 0) of
the heap. Hence, the time required to Heapify a node at height h is O(h), since it involves
exchanges between at most h nodes and their left or right children. Now, in a heap having n
nodes, there are at most

⌈
n/2h+1

⌉
nodes of height h. Hence, the time complexity of BuildHeap

is
dlog ne∑

h=0

⌈ n

2h+1

⌉
O(h) = O


n

dlog ne∑

h=0

h

2h


 . (2.3)

Now, for |x| < 1, we have

1 + x + x2 + . . . + xh + . . . =
1

1− x
.

Differentiating and then multiplying both sides by x,

x + 2x2 + 3x3 + . . . + hxh + . . . =
x

(1− x)2
,

or,
∞∑

h=0

hxh =
x

(1− x)2
,

or,
∞∑

h=0

h

2h
=

1/2
(1− 1/2)2

= 2 [putting x = 1/2],

or, O


n

dlog ne∑

h=0

h

2h


 = O(n). (2.4)

Hence, HeapSort takes O(n log n) times, since BuildHeap takes O(n) time and each of
the (n− 1) = O(n) Heapify(A, 1) calls (Step 5 of HeapSort) takes O(log n) time.

2.4 Linear-time Sorting

All the algorithms discussed in the preceding sections are known as comparison sorts,
since they are based on comparison among the input elements. Any comparison sort needs
Ω(n log n) time in the worst case, as explained next.
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A comparison sort can be represented by a (binary) decision tree in which each non-
leaf node corresponds to a comparison between two elements, and each leaf corresponds to a
permutation of n input elements. Thus, there are n! leaf nodes, out of which exactly one contains
the sorted list. Execution of the sorting algorithm corresponds to tracing a path from the root
of the decision tree to this node. If the height of the decision tree is h, then it can contain
at most 2h leaves. So,

n! ≤ 2h

or, h ≥ log(n!) > log
(

n
e

)n by Stirling’s approximation: n! =
√

2πn
(

n
e

)n (
1 + Θ

(
1
n

))
or, h ≥ n log n− n log e = Ω(n log n).

2.4.1 Counting Sort

Applicable when the input elements belong to a set of size k. It creates an integer array A
of size k to count the occurrence of A[i] in the input, and then loops through A to arrange the
input elements in order. For k = O(n), the algorithm runs in O(n) time. Counting sort cannot
often be used because A needs to be reasonably small for it to be efficient; but the algorithm is
extremely fast and demonstrates great asymptotic behavior as n increases. It can also be used
to provide stable behavior.

2.4.2 Bucket sort

A divide-and-conquer sorting algorithm that generalizes counting sort by partitioning an
array into a finite number of buckets. Each bucket is then sorted individually, either using a
different sorting algorithm (e.g., insertion sort), or by recursively applying the bucket sort. It is
most effective and runs in linear time on data with limited values (e.g., to sort a million integers
ranging from 1 to 1000).

2.4.3 Radix sort

Sorts numbers by processing individual digits. It either processes digits of each number
starting from the least significant digit (LSD) or from the most significant digit (MSD). The
former, for example, first sorts the numbers by their LSD while preserving their relative order
using a stable sort; then it sorts them by the next digit, and so on up to their MSD, ending up
with the sorted list. Thus, n numbers consisting of k digits can be sorted in O(nk) time, which
reduces to O(n) time for a fixed k. While the LSD radix sort requires the use of a stable sort,
the MSD radix sort algorithm does not (unless stable sorting is desired). In-place MSD radix
sort is not stable.
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The story begun in the 18th century, in the quaint
town of Königsberg, Prussia, on the banks of the
Pregel River. The healthy economy allowed the cit-
izens to build seven bridges across the river. While
walking, they created a game for themselves—to walk
around the city, crossing each of the seven bridges
only once. Even though none of them could invent
a route that would allow them to cross each of the
bridges only once, still they could not prove that it
was impossible. Lucky for them, Königsberg was not
too far from St. Petersburg, home of the famous math-
ematician Leonard Euler.

— History of Mathematics: On
Leonhard Euler (1707-1783),
ScienceWeek (2003).

3.1 Representation of Graphs

Let V be the set of vertices and E be the set of edges. Then the graph G := (V,E) can be
represented in either of the following forms.
Adjacency Matrix A two-dimensional array/matrix ((aij))|V |×|V |, where
aij = 1 if (i, j) ∈ E;

= 0 otherwise.
Here memory requirement is O(V 2).
Adjacency List An one-dimensional array Adj of size |V |, one for each vertex in V . For each
u ∈ V , Adj[u] points to each of its adjacent vertices (i.e., {v ∈ V : (u, v) ∈ E}) in linked list
implementation. Hence, space complexity is O(V + E).

a
b
c
d
e
f

c b
c
d c
b
b d
b a

/

/
/

/

/
f /

a b c

ef d

Figure 3.1: Adjacency list (left) of a directed graph (right).
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3.2 Breadth First Search (BFS)

Principle: All vertices at distance k from the start vertex s will be discovered before discov-
ering any vertex at distance k + 1 (or higher) from s.

input: (i) Graph G = (V,E), directed or undirected.
(ii) Start vertex, s ∈ V [G].

output: BFS Predecessor Subgraph (also called BFS tree), Gπ = (Vπ, Eπ),
where Eπ = {(v[π], v) : v ∈ V [G] & v[π] 6= NIL}.

params: (i) color of u = c[u] ∈ {white, gray, black}.
(ii) parent of u = π[u].
(iii) distance of u from s = d[u].
(iv) queue = Q.

Algorithm BFS(G, s)
1. for each u ∈ V [G]
2. c[u] ← white, π[u] ← NIL, d[u] ←∞
3. c[s] ← gray, d[s] ← 0
4. Q ← {s}
5. while Q 6= ∅
6. u ← Dequeue(Q, v)
7. for each v ∈ Adj[u]
8. if c[v] = white
9. c[v] ← gray, π[v] ← u, d[v] ← d[u] + 1
10. Enqueue(Q, v)
11. c[u] ← black

Time complexity:
Steps 1–4: Θ(V ) for initialization. Steps 5–11:

∑
u∈V [G]

|Adj(u)| = Θ(E).

So, total time = Θ(V + E).

Exercise 3.1 The diameter of an undirected graph, G, is defined as the maximum of the shortest path lengths

over all vertex pairs of G. Suggest an algorithm and explain its time complexity to find the diameter of G.

a b c

d e f

a b c

e fd

Reported output:
v a b c d e f

π[v] nil a a nil b c

d[v] 0 1 1 ∞ 2 2

Figure 3.2: Left: A directed graph, G. Right: DFS Tree with start vertex a; tree vertices and
edges are shown in black; the vertex d and the other edges of G which are not in DFS tree, are
shown in gray.
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3.3 Depth First Search (DFS)

Principle: Traverse as much deep as possible.

input: (i) Graph G = (V,E), directed or undirected.
output: DFS Predecessor Subgraph, Gπ = (V, Eπ),

where, Eπ = {(v[π], v) : v ∈ V [G] & v[π] 6= NIL}.
params: (i) color of u = c[u] ∈ {white, gray, black}.

(ii) parent of u = π[u].
(iii) discovery time of u = d[u].
(iv) finishing time of u = f [u].

Algorithm DFS(G)
1. for each u ∈ V [G]
2. c[u] ← white, π[u] ← NIL, t ← 0
3. for each u ∈ V [G]
4. if c[u] = white
5. DFS Visit(u,G)
Algorithm DFS Visit(u,G)
1. c[u] ← gray
2. t ← t + 1
3. d[u] ← t
4. for each v ∈ Adj[u]
5. if c[v] = white
6. π[v] ← u
7. DFS Visit(v, G)
8. t ← t + 1
9. f [u] ← t
10. c[u] ← black

Time complexity: Initialization (Steps 1–3) takes Θ(V ) time.
All vertices are visited. That is, finally all vertices are blackened.
Hence, each edge (u, v) is either traversed (i.e. becomes a tree edge T , which occurs if v is
white at time d[u]) or not traversed (i.e. becomes a non-tree edge F/B/C, which occurs if v is
not white at time d[u]).
Observe that the processing of vertex v for each edge (u, v) takes Θ(1) time. Further, each edge
(u, v) is checked exactly once (at time d[u]).
Hence, summing up the processing time for v over all (u, v) in E[G], we get Θ(E).
So, total time = Θ(V ) + Θ(E) = Θ(V + E).

Theorem 3.1 [Parenthesis Theorem] In DFS(G), exactly one of the following three condi-
tions always holds for any pair of vertices u and v.
(i) the intervals [d[u], f [u]] and [d[v], f [v]] are entirely disjoint;
(ii) the interval [d[u], f [u]] is contained entirely within the interval [d[v], f [v]], and u is a descen-
dant of v in the DFS tree;
(iii) the interval [d[v], f [v]] is contained entirely within the interval [d[u], f [u]], and v is a de-
scendant of u in the DFS tree.
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Proof: Follows from different cases and subcases.
Case d[u] < d[v]: subcase d[v] < f [u]: v was discovered while u was gray, which implies that

v is a descendant of u, and therefore, v is finished
before u. So [d[v], f [v]] is contained entirely within
[d[u], f [u]]. (condition (iii))

subcase f [u] < d[v]: Here [d[v], f [v]] and [d[u], f [u]] are entirely disjoint.
(condition (i))

Case d[v] < d[u]: roles of u and v are just reversed.

Theorem 3.2 [White Path Theorem] In DFS(G), v is a descendant of u if and only if at
time d[u], there exists a path from u to v consisting of white vertices only.

3.3.1 Edge Classification

1. Tree edge: (u, v) becomes a tree edge iff v was discovered from u by exploring (u, v), i.e.,
π[v] = u.

2. Back edge: (u, v) is a back edge iff v is an ancestor of u; i.e., v is gray at time d[u].

3. Forward edge: (u, v) is a forward edge iff v is a descendant of u; i.e., d[u] < d[v] < f [v] <
f [u] but π[v] 6= u.

4. Cross edge: (u, v) is a cross edge iff d[v] < f [v] < d[u] < f [u].

3.4 Topological Sort

A topological sort of a directed acyclic graph (“dag” in short) G = (V, E) is a linear ordering
of all its vertices such that if G contains an edge (u, v), then u appears before v in that ordering.
That is, if we redraw G with the topologically sorted vertices on a horizontal line, then each
edge is directed from left to right.

Note that, if a directed graph G contains any cycle, then topological sorting of G is not
possible.

Algorithm Topological-Sort(G)
1. DFS(G)
2. insert each vertex v ∈ V [G] onto the front of a linked list L when it is finished at time f [v]
3. return L

Time complexity: Since DFS takes Θ(V + E) time, and insertion of each vertex onto the
front of L takes Θ(1) time, the total time complexity for topological sort is Θ(V +E)+ |V |Θ(1)
= Θ(V + E) + Θ(V ) = Θ(V + E).

Lemma 3.1 A directed graph G is acyclic if and only if DFS(G) yields no back edges.

Proof: if part: Let (u, v) be a back edge in G. Then, v is an ancestor of u in DFS(G). Thus
there is a path v Ã u, which in combination with (u, v) forms a cycle in G.

only if part: Let c be a cycle is G and v be the first vertex discovered in c. Let (u, v) be the
preceding edge in c. Since v is discovered in c before u, there exists a white path v Ã u at time
d[v], and so by white-path theorem, u is a descendant of v. Hence, (u, v) becomes a back edge.
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Theorem 3.3 Topological-Sort(G) produces topological sort of a dag G.

Proof: Using lemma 3.1.

Exercise 3.2 Find the ordering of vertices produced by topological sorting on the dag G whose adjacency list is
as follows.

a → c, d; b → d; c → d, g; d → ∅; e → ∅; f → g, h; g → i; h → i; i → ∅.

Exercise 3.3 Explain whether DFS(G) on an undirected graph G = (V, E) can determine the presence or absence

of cycles in G in O(V ) time.

Exercise 3.4 Prove or disprove: Topological sort of a dag G may produce more than one ordering of vertices in

G.

3.5 Strongly Connected Components

A strongly connected component (“SCC” in short) of a dag G = (V, E) is a maximal set of
vertices V ′ ⊆ V such that for every pair of vertices u and v in V ′, there exist a path from u to
v (i.e., u Ã v) and a path from v to u (i.e., v Ã u).

Algorithm SCC(G)
1. DFS(G)
2. find GT = (V,ET ) where ET = {(v, u) : (u, v) ∈ E}
3. rearrange the vertices of GT to get GT = (V T , ET ) such that the vertices

in GT are in decreasing order of their finishing times obtained in step 1
4. DFS(GT )
5. output the vertices of each DFS tree produced by step 4 as an SCC

Time complexity: Each of step 1 and step 2 takes Θ(V + E) time. Step 3 needs Θ(V ) time
when each vertex is relocated when its DFS finishes in step 1. Step 4 again takes Θ(V + E)
time, thereby giving total time complexity as Θ(V + E).

Lemma 3.2 If two vertices are in an SCC, then no path between them ever leaves the SCC.

Proof: Let u and v belong to the same SCC. Let w be an arbitrary vertex in the path
u Ã w Ã v. Since there is a path v Ã u, we have the path v Ã u Ã w, which implies there are
paths w Ã v and v Ã w. Hence w is in the SCC of v (and of u, there of).

Theorem 3.4 In any DFS, all vertices in the same SCC are placed in the same DFS tree.

a b c

d e f

a b c

d e f

a b c

d e f

G DFS(G) DFS(GT )

Figure 3.3: The entire directed graph is an SCC.
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Figure 3.4: Prim’s algorithm with r = a (crossing edges as solid lines and light edges
highlighted in gray.) (a) Input graph with edges as dashed lines. (b) After r = a is extracted
from Q. (c) After the vertex b is dequeued, since (a, b) is the light edge. (d) Final output with
edges of MST highlighted in gray.

Proof: Follows from the white-path theorem. Let r be the vertex that is first discovered
(at time d[r]) in a strongly connected component GS = (VS, ES). So at time d[r], each vertex
u ∈ VS r {r} is white. Further, there exists a path r Ã u for each u ∈ VS r {r}, and all vertices
on r Ã u are white (from Lemma 3.2). Hence, by the white-path theorem, each u ∈ VS r {r}
becomes a descendant of r in the DFS tree rooted at r.

3.6 Minimum Spanning Tree (MST)

A spanning tree of any connected, undirected graph G(V, E) is any tree T (V, E′) such that
E′ ⊆ E (Fig. 3.6.1). An MST is defined for a connected, undirected, weighted graph G(V, E,w).
In a weighted graph , each edge (u, v) ∈ E has a weight w(u, v), which is any (positive or
negative) number. An MST of G is such a spanning tree of G for which the sum of weights of
its edges is minimal. There are several greedy algorithms to find an MST of a graph G. A
few are explained next.

3.6.1 MST by Kruskal’s Algorithm

Principle: It uses the following greedy idea. At a certain iteration when the algorithm is
in action, if there are k trees, T1, T2, . . . , Tk, such that V [T1] ∪ V [T2] ∪ . . . ∪ V [Tk] = V , and
each Ti (local optimum) is a sub-tree of the MST (global optimum) [that’s greedy!], then in
the next iteration we choose the light edge whose two nodes belong to two different sub-trees,
say Ti and Tj (1 ≤ i, j ≤ k), and whose weight is minimal in E r (E[T1] ∪ E[T2] ∪ . . . ∪ E[Tk]).
Hence, in the next iteration, Ti and Tj form a larger sub-tree (a larger local optimum, thereof)
of MST. The algorithm thus goes edge by edge, in non-decreasing weights of their edges, and ac-
cepts an edge (a light edge) only if its weight is the current minimum and it does not form a cycle.

Time Complexity: Preprocessing needs sorting the edge weights, requiring O(E log E) time.
Whether an edge (u, v) having the current minimal weight in each iteration uses Find-Set
operation on u and v, requiring α(E, V ) = O(log E) time per edge, i.e., E·O(log E) = O(E log E)
in total. Hence, total time complexity of Kruskal’s MST algorithm is O(E log E).

3.6.2 MST by Prim’s Algorithm

Principle: It uses a single local optimum (sub-solution), and grows it “greedily” by including
one light edge in each iteration, until the global optimum (MST) is obtained. Trivially, the local
sub-solution is initialized by an arbitrary vertex, r.
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Algorithm MST-Prim(G, r)
1. Q ← V . Q is a min-heap based on key
2. for each u ∈ Q
3. key[u] ←∞
4. key[r] ← 0, π[r] ← nil
5. while Q 6= ∅
6. u ← Extract-Min(Q) . and re-heapify Q ⇒ V ·O(log V ) = O(V log V )
7. for each v ∈ Adj[u]
8. if v ∈ Q and w(u, v) < key[v]
9. key[v] ← w(u, v), π[v] ← u ⇒ E ·O(log V ) = O(E log V )

Implementation: For each vertex u ∈ V , keep a boolean flag that indicates whether or not
u is in Q (for Step 8). Also maintain another variable to know the index of u in Q, which is
required to update its key and π whenever Step 9 is executed.
Time Complexity: Initialization (Steps 1–4) takes O(V ) time. In Step 6, Extract-Min(Q)
needs O(log V ) time each time until Q is empty after V iterations, thus requiring O(V log V ) time
in total. Checking for Step 8 is called exactly E times; each check requiring O(1) time with
the aforesaid implementation. If the if condition is true, then the update is done by Step 8 in
O(log V ) time, as Q is a heap. Step 8 is called O(E) times and Step 9 at most O(E) times,
hence giving a total time complexity of O(E log V ). The resultant time complexity of the entire
algorithm is, therefore, O(V ) + O(V log V ) + O(E log V ) = O(E log V ).

3.6.3 Elements of Greedy Algorithms

Greedy choice: A globally optimal solution can be obtained by making a locally optimal
(greedy) choice.
Example: In Kruskal’s and Prim’s algorithms, the choice of light edge.
Optimal substructure: An optimal solution to the problem contains optimal solutions to
subproblems.
Example: Let’s choose any subgraph G′(V ′, E′) ⊂ G(V, E) such that (u, v) ∈ E′ if and only if
u ∈ V ′, v ∈ V ′, and (u, v) ∈ E. Then the MST of G′ is a sub-tree of some MST of G.
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Dynamic Programming

If you optimize everything, you will
always be unhappy.

— Donald Knuth

4.1 Elements of Dynamic Programming

Optimal substructure: An optimal solution to the problem contains optimal solutions to
subproblems (as in greedy algorithms).
Overlapping subproblems: A sub-subproblem P ′ has to be solved repeatedly to solve two
or more subproblems whose intersection is P ′. Hence, the problem contains a recursive nature,
which often creates an illusion of exponential possibilities.
Example problems: Matrix-chain multiplication; Longest common subsequence; 0-1 Knap-
sack problem; Optimal triangulation of a convex polygon (each triangle has some weight, e.g.,
w(a, b, c) = |ab|+ |bc|+ |ca|); Denomination problem.

4.2 Matrix-chain Multiplication

Given a chain of matrices A1A2 · · ·An, the problem is to obtain its fully parenthesized
form such that the number of scalar multiplications is minimized. Apparently, the problem
seems to be have exponential complexity as it relates to Catalan number , as follows.
Number of parenthesizations:

P (n) =





1 if n = 1
n−1∑
k=1

P (k)P (n− k) if n ≥ 2 = Catalan number C(n− 1)

where C(n) =
1

n + 1

(
n

2n

)
= Ω

(
4n

n3/2

)
. (4.1)

Using DP, we can solve it in low-order polynomial time. The DP-based algorithm is built
on the following observation, which explains the two elements of DP.
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Optimal substructure & overlapping subproblems: Parenthesization of A1A2 · · ·Ak

(k < n) within the optimal parenthesization of A1A2 · · ·An must be an optimal parenthesization
of A1A2 · · ·Ak; and similar for Ak+1 · · ·An.

Thus, the minimum number of scalar multiplications for AiAi+1 . . . Aj is

m[i, j] =

{
0 if i = j,
min

i≤k<j
(m[i, k] + m[k + 1, j] + pi−1pkpj) if i < j;

where each Ai has pi−1 rows and pi columns.

Example: Minimize the number of scalar multiplications to compute A1A2 · · ·A6 for:
matrix dimension

A1 20× 30
A2 30× 15
A3 15× 5
A4 5× 10
A5 10× 20
A6 20× 25

In the given problem, j − i = 1, 2, . . . , 5.
We start with j − i = 1 and finally end at j − i = 5 to reach the final solution, i.e., m[1, 6].

1. j = 1:

(a) m[1, 2] = p0p1p2 = 20× 30× 15 = 9000

(b) m[2, 3] = p1p2p3 = 30× 15× 5 = 2250

(c) m[3, 4] = p2p3p4 = 15× 5× 10 = 750

(d) m[4, 5] = p3p4p5 = 5× 10× 20 = 1000

(e) m[5, 6] = p4p5p6 = 10× 20× 25 = 5000

2. j = 2:

(a) m[1, 3] = min


m[1, 2] + p0p2p3 = 9000 + 1500 = 10500
m[2, 3] + p0p1p3 = 2250 + 3000 = 5250

ff
= 5250(k = 1)

(b) m[2, 4] = min


m[2, 3] + p1p3p4 = 2250 + 1500 = 3750
m[3, 4] + p1p2p4 = 750 + 4500 = 5250

ff
= 3750(k = 3)

(c) m[3, 5] = min


m[3, 4] + p2p4p5 = 750 + 3000 = 3750
m[4, 5] + p2p3p5 = 1000 + 1500 = 2500

ff
= 2500(k = 3)

(d) m[4, 6] = min


m[4, 5] + p3p5p6 = 1000 + 2500 = 3500
m[5, 6] + p3p4p6 = 5000 + 1250 = 6250

ff
= 3500(k = 5)

3. j = 3:

(a) m[1, 4] = min

8
<
:

m[1, 3] + p0p3p4 = 5250 + 1000 = 6250
m[2, 4] + p0p1p4 = 3750 + 6000 = 9750
m[1, 2] + m[3, 4] + p0p2p4 = 9000 + 750 + 3000 = 12750

9
=
; = 6250(k = 3)

(b) m[2, 5] = min

8
<
:

m[2, 4] + p1p4p5 = 3750 + 6000 = 9750
m[3, 5] + p1p2p5 = 2500 + 9000 = 11500
m[2, 3] + m[4, 5] + p1p3p5 = 2250 + 1000 + 3000 = 6250

9
=
; = 6250(k = 3)

(c) m[3, 6] = min

8
<
:

m[3, 5] + p2p5p6 = 2500 + 7500 = 10000
m[4, 6] + p2p3p6 = 3500 + 1875 = 5375
m[3, 4] + m[5, 6] + p2p4p6 = 750 + 5000 +× = ×

9
=
; = 5375(k = 3)
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4. j = 4:

(a) m[1, 5] = min

8
>><
>>:

m[1, 4] + p0p4p5 = 6250 + 4000 = 10250
m[2, 5] + p0p1p5 = 6250 + 12000 = 18250
m[1, 3] + m[4, 5] + p0p3p5 = 5250 + 1000 + 2000 = 8250
m[1, 2] + m[3, 5] + p0p2p5 = 9000 + 2500 + 6000 = 17500

9
>>=
>>;

= 8250(k = 3)

(b) m[2, 6] = min

8
>><
>>:

m[2, 5] + p1p5p6 = 6250 + 15000 = 21250
m[3, 6] + p1p2p6 = 5375 + 11250 = 16625
m[2, 3] + m[4, 6] + p1p3p6 = 2250 + 3750 + 3500 = 9500
m[2, 4] + m[5, 6] + p1p4p6 = 3750 + 5000 + 7500 = 16250

9
>>=
>>;

= 9500(k = 3)

5. j = 5:

(a) m[1, 6] = min

8
>>>><
>>>>:

m[1, 5] + p0p5p6 = 8250 + 10000 = 18250
m[2, 6] + p0p1p6 = 9500 + 15000 = 24500
m[1, 2] + m[3, 6] + p0p2p6 = 9000 + 5375 + 7500 = 21875
m[1, 3] + m[4, 6] + p0p3p6 = 5250 + 3500 + 2500 = 11250
m[1, 4] + m[5, 6] + p0p4p6 = 6250 + 5000 + 5000 = 16250

9
>>>>=
>>>>;

= 11250(k = 3)

Table (value of k is shown parenthesized with the corresponding m):
1 2 3 4 5 6

1 0 9000 (1) 5250 (1) 6250 (3) 8250 (3) 11250 (3)

2 0 2250 (2) 3750 (3) 6250 (3) 9500 (3)

3 0 750 (3) 2500 (3) 5375 (3)

4 0 1000 (4) 3500 (5)

5 0 5000 (5)

6 0

Since k[1, 6] = 3, we have the parenthesization as follows: (A1A2A3)(A4A5A6)

= (A1(A2A3))((A4A5)A6), since k[1, 3] = 1 and k[4, 6] = 5.

4.3 Longest common subsequence (LCS)

Given two sequences, A = 〈ai : i = 1, . . . , m〉 and 〈bj : j = 1, . . . , n〉, find the longest
sequence C = 〈ck : k = 1, . . . , p〉 such that

(i) each ck matches with some a ∈ A and with some b ∈ B;

(ii) all the characters (if any) of C preceding ck match with some k−1 characters of A preceding
a and with some k − 1 characters of B preceding b.

Ck = LCS(Am, Bn) (or, simply C = LCS(A,B)) is called the longest common subsequence
of A and B.

Example: A = 〈algorithms〉, B = 〈allgorhythm〉: C = 〈algorthm〉.
Optimal substructure: The observation is as follows.

(i) if am = bn, then ck = am = bn and Ck−1 = LCS(Am−1, Bn−1).

(ii) if am 6= bn, then zk 6= xm implies Ck = LCS(Am−1, Bn); else zk 6= yn implying Ck =
LCS(Am, Bn−1).

Overlapping subproblems: Let |LCS(Ai, Bj)| be the length of LCS(Ai, Bj). Then we
have

|LCS(Ai, Bj)| =




0 if i = 0 ∨ j = 0
|LCS(Ai−1, Bj−1)|+ 1 if i > 0 ∧ j > 0 ∧ xi = yj

max (|LCS(Ai, Bj−1)|, |LCS(Ai−1, Bj)|) if i > 0 ∧ j > 0 ∧ xi 6= yj

(4.2)
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0 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 2 2 2 2 2 2

0

0

0 1 1 2 2 2 2 2 2

1 1 1 2 2 2 2 2 2

1 22 2 2 2 2 2 2

1 22 2 2 3 3 3 3

1 22 2 2 3 3 3 3

1 22 2 2 3 3 3 4

Figure 4.1: Approximate string matching between two strings, ‘algorithm’ and ‘globalism’.

4.4 0-1 (Binary) Knapsack Problem

Given a set A = {ai : i = 1, 2, . . . , n} where each ai has benefit bi and (a positive integer)
weight wi. Given a knapsack whose weight carrying capacity is wmax. The problem is to put
some or all items from A into the knapsack without exceeding its capacity such that the total
benefit is maximized.

Let Ai = {a1, a2, . . . , ai}, 1 ≤ i ≤ n.
Let B[i, w] = maximum total benefit over all possible subsets A′i ⊆ Ai such that

∑
aj∈A′i

wj = w.

Observation: If wi > w, then ai can never be in the maximum-benefit solution A′i corre-
sponding to B[i, w]. Otherwise, there may arise two cases: In case ai ∈ A′i, we have B[i, w] =
B[i− 1, w − wi] + bi; and in case ai 6∈ A′i, we have B[i, w] = B[i− 1, w]. Thus,

B[i, w] =





0 if i = 0 or w = 0
B[i− 1, w] if wi > w
max{B[i− 1, w], B[i− 1, w − wi] + bi} if wi ≤ w.

(4.3)

The elements of DP are evident from Eqn. 4.3. In the resultant algorithm, B[w] contains
the maximum benefit of items with total weight at most w for the current value of i.

Algorithm 0-1-KnapSack
01. for w ← 0 to wmax

02. B[w] ← 0
03. for i ← 1 to n
04. for w ← wmax downto wi . note the loop order
05. if B[w] < B[w − wi] + bi

06. B[w] ← B[w − wi] + bi

07. return B[wmax]
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Time complexity: Steps 3–6 dominate over other steps in runtime. The inner for loop
(Steps 4–6) takes O(wmax) time and the outer for loop (Step 3) iterates for n times. Hence, the
overall time complexity is O(n)×O(wmax) = O(nwmax).1

Example: Let n = 4, wmax = 6.
i 1 2 3 4
bi 7 9 6 8
wi 2 4 7 3

Iterations:
w 0 1 2 3 4 5 6

initial 0 0 0 0 0 0 0
i = 1 0 0 7 7 7 7 7

B[w] i = 2 0 0 7 7 9 9 16
i = 3 0 0 7 7 9 9 16
i = 4 0 0 0 8 9 15 16 ⇒ max benefit = 16.

4.5 Fractional Knapsack Problem

If we are allowed to take a fraction of any item ai ∈ A while maximizing the total benefit
without exceeding the knapsack capacity, then it’s fractional knapsack problem. Such a problem
is solvable by greedy approach as follows. Compute unit-benefit ci = bi/wi for each ai, and
arrange ai’s in decreasing/non-increasing order of ci’s. Now, select the items starting from the
first item of the sorted list, ending with a fraction fj of some item, aj , such that all other items
selected so far (possibly excepting aj , if fj < 1) are fully selected. Due to sorting, its time
complexity = O(n log n).

Clearly, fractional knapsack problem is much easier than 0-1 knapsack.

Example: Let n = 4, wmax = 6. We arrange the items in decreasing order of ci’s as follows.
i 1 2 3 4
bi 12 12 6 7
wi 2 3 2 7
ci 6 4 3 1

Output: f1 = 1, f2 = 1, f3 = 1/2, f4 = 0, and total benefit = 12 + 12 + 3 = 27.

1Such an algorithm is called a pseudo-polynomial algorithm , since its polynomial time complexity is not
only dependent on the input size, i.e., n, but also on wmax, which is just an input value. In fact, 0-1 knapsack
problem is considered as an NP-complete problem .
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4.6 Exercise Problems

4.6.1 Maximum-Value Contiguous Subsequence

Given a sequence of n (positive or negative) real numbers A[1..n], determine a contiguous
subsequence A[i..j] for which the sum of elements in the subsequence is maximized.

4.6.2 Making Change

Given n types of coin denominations of values 1 = v1 < v2 < . . . < vn, give an algorithm
which makes change for an amount of money x with as few coins as possible.

4.6.3 Longest Increasing Subsequence

Given a sequence of n real numbers A[1..n], determine a strictly increasing subsequence (not
necessarily contiguous) of maximal length.

4.6.4 Building Bridges

A country has a straight horizontal river passing through it. There are n cities on one bank
with same y-coordinates and x-coordinates as a1 < a2 < . . . < an, and n cities on the other
bank with same y-coordinates and x-coordinates as b1 < b2 < . . . < bn. Connect as many pairs
of cities (each pair with two cities from two banks) as possible with bridges such that no two
bridges cross. Report the number of bridges.

4.6.5 Sum-based Balanced Partition

Given a set S = {s1, . . . , sn} of n integers (need not be distinct), each in the range [0, k].
Partition S into two subsets S1 and S2 such that the difference between the sum of elements of
S1 and the sum of elements of S2 is minimized.

4.6.6 Optimal Game Strategy

Consider a row of n coins of values v1, . . . , vn, where n is even. We play a game against an
opponent by alternating turns. In each turn, a player picks either the first or the last coin from
the row. Determine the maximum possible amount of money we can definitely win if we move
first.

4.6.7 Two-Person City Traversal

Given an ordered sequence of n cities and all the
(
n
2

)
distances for all pairs of cities. Partition

the sequence of cities into two subsequences (not necessarily contiguous) such that if Person A
visits all cities in the first subsequence (in order) and Person B visits all cities in the second
subsequence (in order), then the sum of the total distances traveled by A and B is minimized.
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4.7 Matrix Multiplication

Let A and B be two n × n square matrices, where n is an exact power of 2. The problem
is to obtain C = AB with minimum/reduced computation1. The steps of Strassen’s Algorithm
are as follows:

1. Decompose A,B, C, each in the form of four n
2 × n

2 matrices, as follows.
[

r s
t u

]
=

[
a b
c d

] [
e g
f h

]
, (4.4)

where
r = ae + bf, s = ag + bh, t = ce + df, u = cg + dh. (4.5)

2. Compute the following seven matrices, each of size n
2 × n

2 [Additions2 = 5
(

n
2

)2]:

A1 = a, A2 = a + b, A3 = c + d, A4 = d, A5 = a + d, A6 = b− d, A7 = a− c. (4.6)

3. Compute the following seven matrices, each of size n
2 × n

2 [Additions = 5
(

n
2

)2]:

B1 = g − h, B2 = h, B3 = e, B4 = f − e, B5 = e + h, B6 = f + h, B7 = e + g. (4.7)

4. Recursively compute Pi = AiBi for i = 1, . . . , 7. [Time = 7T (n
2 )]:

5. Compute r, s, t, u (Strassen’s intuition!) from Pis as follows [Additions = 8
(

n
2

)2]:

r = −P2 + P4 + P5 + P6

= −(a + b)h + d(f − e) + (a + d)(e + h) + (b− d)(f + h) = ae + bf,

s = P1 + P2 = a(g − h) + (a + b)h = ag + bh,

t = P3 + P4 = (c + d)e + d(f − e) = ce + df,

u= P1 − P3 + P5 − P7

= a(g − h)− (c + d)e + (a + d)(e + h)− (a− c)(e + g) = cg + dh

(4.8)

Time complexity: Number of scalar additions (Steps 2,3,5) = (5 + 5 + 8)
(

n
2

)2 = 18
(

n
2

)2 =
O(n2). Step 4 needs 7T (n

2 ) time to compute P1, . . . , P7. Hence,

T (n) = 7T
(n

2

)
+ O(n2)

= O(nlog2 7) [by Master Method]
= O(n2.81).

1 Although this problem does not require DP, it is put in this chapter, as matrix-chain multiplication is
discussed in Sec. 4.2.

2(Scalar) addition and subtraction are equivalent operations.
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Geometric Algorithms

We could present spatially an atomic fact which contra-
dicted the laws of physics, but not one which contradicted
the laws of geometry.

— Ludwig Wittgenstein
Tractatus Logico Philosophicus,
New York (1922).

5.1 Closest Pair

Given a set of points P = {p1, . . . , pn}, the problem is to find the minimum distance δmin

between two points of P . The naive algorithm is to consider all
(
n
2

)
point-pairs of P , compute

their distances, and find the minimum of these
(
n
2

)
= O(n2) distances, which needs O(n2) time.

An efficient algorithm based on divide-and-conquer approach [M.I. Shamos and D. Hoey. Closest-
point problems. Proc. FOCS, pp. 151–162, 1975.] is given below, which needs O(n log n) time.

5.1.1 Divide-and-Conquer Algorithm

1. Sort the points of P to Px and to Py using x- and y-coordinates, respectively.
(This step is out of recursion.)

2. Partition P into PL and PR by the vertical median-line lµ : x = xµ, using Px.

3. Recursively compute the minimum distances δL and δR for PL and PR, respectively.

4. δ′ ← δ ← min(δL, δR).

5. Traverse Py and append a point (x, y) ∈ Py to Qy (initialized as empty) if x ∈ [xµ−δ, xµ+δ].
If x ∈ [xµ − δ, xµ], then mark it as gray; otherwise white (Fig. 5.1b).

Result: Qy(= QL ∪QR) is y-sorted.

6. Traverse Qy in order from first to last, and for each gray point pL ∈ Qy,

(a) compute the distances of four black points following pL and four black points
preceding pL in Qy;

(b) find the minimum δ′′ of the above eight distances;

(c) δ′ ← min(δ′, δ′′).

7. return min(δ, δ′).
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4
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(a) (b)

Figure 5.1: Demonstration on a small point set P having 17 points. (a) Strips QL ⊆ PL and
QR ⊆ PR. (b) Points and their indices in Qy = QL ∪QR, sorted on y-coordinates. Points from
QL are stored as gray points and those from QR as black points, in Qy.

Time complexity

Step 1: O(n log n), Step 2: O(1), Step 3: 2× T (n/2), Step 4: O(1), Step 5: O(n).

Step 6(a): The four black points following pL in Qy would lie in the δ×δ square box, namely
R′′, or/and above. (In Fig. 5.1b, there is one black point in R′′

4 corresponding to Point 4.)
Also, there can be at most three other gray points in the δ × δ square box L′′ containing pL.
(In Fig. 5.1b, there is no other gray point in L′′4.)

In effect, there can be at most seven other (three gray and four black) points in R′′ ∪ L′′.
Hence, we have to see at most seven points following pL to compute the distances of four black
points following pL in Qy.

Similar arguments apply also for computing the distances of four black points preceding
pL in Qy.

So, Step 6(a) (and hence Steps 6(b) and 6(c)) needs O(1) time for each gray point pL ∈ Qy,
thereby requiring O(n) time for all gray points of Qy.

Hence, for Steps 2–7, the time complexity is T ′(n) = 2T ′(n/2) + O(n) = O(n log n), which,
when added with the time complexity of sorting (Step 1), gives the overall time complexity as
T (n) = T ′(n) + O(n log n) = O(n log n) .
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(a) convex set (b) non−convex set (c) convex hull (d) convex hull of a point set

p

q

Figure 5.2: Set shown in (a) is a convex set as the line segment joining any two points of the
set lies entirely inside the set. In (b), a part of the line segment pq lies outside the set, and so
the set is not convex. Shown in (c) is the convex hull of the set in (b). In (d), a point set and
its convex hull have been shown.

5.2 Convex Hull

Definition 5.1 (convex set) A set S is convex if and only if for any pair of points p, q ∈ S,
the line segment pq is completely contained in S.

Examples of convex sets: circles; ellipses; triangles; squares; rectangles; trapeziums, a polygon
having each internal angle < 1800.
Examples of non-convex sets: a polygon having some internal angle(s) > 1800; dumbbells; star-
shaped figures; (2D projections of) most of the real-world objects like chairs, tables, tee-shirts,
human body, etc.

Definition 5.2 (convex polygon) A polygon P whose any diagonal lies entirely inside P
is a convex polygon. To elaborate, a polygon P is convex if and only if the line segment pq
connecting any two points p and q lying on the boundary of P , lies entirely inside P .

Definition 5.3 (convex hull) The smallest convex set C(A) that contains a set A is called
the convex hull of A.

Observation 5.1 C(A) is the intersection of all convex sets that contain A.

Observation 5.2 The convex hull C(P ) of an arbitrary polygon P is given by the convex hull
of the vertices of P .

5.2.1 Convex hull of a point set

Let P = {p1, p2, . . . , pn} be a point set in 2D plane. Then, we have the following observations
on C(P ).

Observation 5.3 C(P ) is a convex polygon and each vertex of C(P ) is a point in P (i.e.,
C(P ) ⊆ P ).

Observation 5.4 During clockwise traversal of C(P ), if a vertex p ∈ C(P ) is immediately
followed by the vertex q ∈ C(P ), then each point of P r {p, q} lies either on the right side of or
on the line segment pq.
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5.2.2 Naive algorithm of convex hull

Based on Observation 5.4, the naive algorithm for finding C(P ) of a given point set P is
developed. Here, E denotes the set of edges of C(P ).

Algorithm 5.1 Convex-Hull-Naive(P )

01. E ← ∅
02. for each p ∈ P

03. for each q ∈ P r {p}
04. flag ← true

05. for each r ∈ P r {p, q}
06. if D(p, q, r) > 0 . (p, q, r) is a left turn

07. flag ← false

08. break
09. if flag = true

10. E ← E ∪ (p, q)
11. break
12. process E to obtain the vertices of C(P ) in clockwise order

Computation of D(p, q, r) in step 6: Let p = (xp, yp), q = (xq, yq), and r = (xr, yr). Then
the vector from p to q is given by (xq − xp)̂i + (yq − yp)ĵ, where î and ĵ represent the respective
unit vectors along x-axis and y-axis; and similarly, −→qr = (xr − xq )̂i + (yr − yq)ĵ. Thus,

−→pq ×−→qr =
(
(xq − xp)̂i + (yq − yp)ĵ

)× (
(xr − xq )̂i + (yr − yq)ĵ

)

=
(
(xq − xp)(yr − yq)− (yq − yp)(xr − xq)

)
k̂, since î× ĵ = k̂, ĵ × î = −k̂

=
(
xqyr − xqyq − xpyr + xpyq − yqxr + yqxq + ypxr − ypxq

)
k̂

=
(
xqyr − xpyr + xpyq − yqxr + ypxr − ypxq

)
k̂

=
(
xp(yq − yr) + xq(yr − yp) + xr(yp − yq)

)
k̂

= Dk̂,

where D =
(
xp(yq − yr) + xq(yr − yp) + xr(yp − yq)

)
. Hence, if D > 0, then the vector Dk̂ is

directed towards the positive z-axis (i.e., outward from the plane of paper as shown in Fig. 5.3),
and indicates a left turn; whereas, D = 0 indicates no turn, and D < 0 indicates a right turn at
q w.r.t. p as its previous point and q as its next point.

rθ=0

p
q

q

θ=180

p
r

r

q
p

θ<180

p
q

r

θ>180

(a) D = 0 (r lies on −→pq
and in front of q).

(b) D = 0 (r lies on −→pq
and to the back of q).

(c) D > 0 (r lies left of−→pq).
(d) D < 0 (r lies right of−→pq).

Figure 5.3: Determining the position of the point r w.r.t. the vector directed from p to q.
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Time complexity: Step 1 executes for n times; for each iteration of step 1, step 2 loops at
most n− 1 times; and for each iteration of step 2, step 3 loops at most n− 2 times. So the total
time complexity from step 1 to step 11 is bounded by O(n3).

While processing E, we remove the first edge, say (q1, q2), from E, and include q1 (as first
vertex) and q2 (as second vertex) in (the vertex set of) C(P ). Next, we search in E for the edge
with q2 as its first vertex; let the corresponding edge in E be (q2, q3). We remove (q2, q3) from
E and include q3 (i.e., append as third vertex) in C(P ). We continue this process in step 12
until E is empty. If h be the number of vertices of C(P ), then there would be h(≤ n) edges in
E. Hence time complexity of step 12 is dominated by the search operations in E, which would
be at most (h− 1) + (h− 2) + . . . + 1 = O(h2), which is O(n2) in the worst case.

So, the worst case total time complexity of the algorithm Convex-Hull-Naive(P ) is O(n3).

5.2.3 An incremental algorithm (Graham scan)

Based on the following observation:

Observation 5.5 If p′1 and p′n be the leftmost vertex and the rightmost vertex of P , then p′1
and p′n must be the (leftmost and rightmost) vertices of C(P ). [If there are multiple leftmost ver-
tices (each with minimum x-coordinate), then we consider the one with minimum y-coordinate
as the actual leftmost vertex. Similarly, in case of multiple rightmost vertices, we consider the
vertex with (maximum x and) maximum y as the actual rightmost vertex.]

In Graham scan algorithm, we compute the upper hull chain starting from p′1 and ending
at p′n considering the vertices one by one according to their non-decreasing x-coordinates, and
store the upper hull vertices in an ordered list, U . The lower hull chain is derived and stored in
the list L in a similar fashion starting from p′n and ending at p′1 considering the non-increasing x-
coordinates of the points of P . Since there may be two or more vertices with same x-coordinate,
the vertices are lexicographically sorted considering x-coordinate as the primary value and y-
coordinate as the secondary value. In the sorted list, namely P ′ = {p′1, p′2, . . . , p′n−1, p

′
n}, for

each vertex p′i := (x′i, y
′
i) and its following vertex p′i+1, we have

either x′i < x′i+1

or x′i = x′i+1 and y′i < y′i+1.

Time complexity: The operations on U in step 4 and step 6 are analogous to push and pop
operations respectively that are defined on a stack. For each iteration of the for loop in step 3,
a vertex p′i is pushed to U exactly once. Consideration of the initial two pushes (vertices p′1
and p′2) in step 2, therefore, gives the total number of push operations as n = O(n). Maximum
number of pops is n− 2; since total number of pops never exceeds total number of pushes in a
stack, and no pop in step 6 is performed if there are 2 vertices in U (step 5). Note that, if any
pop is performed in step 6 (once the two conditions in step 5 are satisfied), the program flow
moves back to step 5. The two tests in step 5 are performed at least once for each iteration
of the for loop, and in addition, they are performed once after each pop operation in step 6.
Effectively, in total, the tests in step 5 are performed for at most 2(n− 2) = O(n) times. Hence
the time complexity for finding the upper hull vertices needs O(n) time.

A similar explanation gives O(n) time for computing the lower hull. Thus, the total time
complexity, considering that the lexicographic sorting in step 1 needs O(n log n) time, of Graham
scan algorithm is given by O(n log n).
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(a) U = {p1, p4} (b)U = {p1, p4, p8} (c)U = {p1, p4, p8, p10},
L = {p10, p2, p1}

Figure 5.4: Demonstration of Graham scan algorithm on a small point set, the points being
labeled by their indices for simplicity.

Algorithm 5.2 Convex-Hull-Graham-Scan(P )

01. lexicographically sort (x, y) of the points in P to get P ′

02. U ← {p′1, p′2}
03. for i ← 3 to n

04. U ← {p′i}
05. while U contains at least 3 vertices and the last three vertices in U do not make a right turn

06. remove the last but one vertex from U

07. L ← {p′n, p′n−1}
08. for i ← n− 2 to 1

09. U ← {p′i}
10. while L contains at least 3 vertices and the last three vertices in L do not make a right turn

11. remove the last but one vertex from L

12. remove pn and p1 from L and append L with U to get C(P )

Demonstration: Demonstration of Graham scan algorithm is shown in Fig. 5.4 for a small
point set. Note that the points are labeled in lexicographically ascending order of their coor-
dinates (with horizontal x-axis and vertical y-axis). In (a), the point p4 is the current (last)
vertex in U . Before processing p4, the current upper hull chain (for p1, p2, p3) was U = {p1, p3}.
When p4 is encountered, it is added to U to get U = {p1, p3, p4} (see step 4 of Convex-Hull-
Graham-Scan algorithm). Since the turn at p3 — considering the triplet (p1, p3, p4) — is not
a right turn, p3 is removed from U .

The case shown in (b) is a typical and interesting instance of Graham scan algorithm. Just
before processing p8, the vertices of the upper hull chain up to p7 were U = {p1, p4, p5, p6, p7}.
When p8 is considered, the turn at vertex p7 with p6 as the preceding vertex and p8 as the
following vertex fails to be a right turn, whereby p7 is removed from U ; After removal of p7 from
U , (p5, p6, p8) becomes the current triplet of vertices which again fails as a right turn, whereby
p6 is removed. The next check is for (p4, p5, p8) which is again not a right turn and so p5 is
removed; and finally, due to right turn for (p1, p4, p8), only these three vertices (in order) remain
in U .



5.2 Convex Hull 39

5.2.4 A gift-wrapping algorithm (Jarvis march)

This algorithm is based on observation 5.5. But here, the approach is analogous to wrapping
a flexible (and sufficiently long) thread around a set of pins (the gift) fitted on a wooden board
(the point set, P ). If we fix one end of the thread on the leftmost pin (the point, p′1), hold
it vertically up (along (+)y-axis), and go on wrapping the thread over the pins in clockwise
direction, the thread will hit (and turn around) only those pins that represent the vertices of
the convex hull of P .

To start with, therefore, we find the point p′1 with minimum x-coordinate in P (in case of
multiple minima, we consider p′1 as the point with minimum x and minimum y), and initialize
the vertex set of C(P ) with p′1. We compute the angle θ (w.r.t. (+)y-axis) and the Euclidean
distance d for each other point of P . The next hull vertex would be the point with minimum
θ, and in case of multiple points with minimum θ, we consider among them the point with
maximum d. We repeat this process for the latest hull vertex obtained so far, until we get
the vertex, say p′n, with maximum x-coordinate at which the angle θ of each other point of P
exceeds 1800. The vertex p′n is the rightmost point (the bottommost among the rightmost points,
if there are multiple points in P with maximum x-coordinate) in P , and hence the rightmost
vertex (the second rightmost vertex between the two vertices, if there are multiple points in P
with maximum x-coordinate) of C(P ). Thus we get the upper hull chain,

We repeat the above process from p′n onwards to find the subsequent lower hull vertices with
θ measured in clockwise direction w.r.t. (−)y-axis, and finally we reach the start vertex p′1 to
obtain the entire C(P ).

Algorithm 5.3 Convex-Hull-Jarvis-March(P )

01. find the point p′1 ∈ P with minimum x-coordinate (or the bottommost such point in case of a tie)

02. find the point p′n ∈ P with maximum x-coordinate (or the topmost such point in case of a tie)

03. C(P ) ← p′1
04. p ← p′1
05. while p 6= p′n . upper hull chain

06. find the point q that has the smallest polar angle (θ)

with respect to p measured w.r.t. +y-axis as shown in Fig. 5.5

(or the furthest such point to p in case of a tie)

07. C(P ) ← C(P ) ∪ {q}
08. p ← q

09. while p 6= p′1 . lower hull chain

10. find the point q that has the smallest polar angle (θ)

with respect to p measured w.r.t. −y-axis as shown in Fig. 5.5

(or the furthest such point to p in case of a tie)

11. C(P ) ← C(P ) ∪ {q}
12. p ← q

Time complexity: Finding out the minimum x-coordinate needs O(n) time. Computing θ

and d of the other points of P w.r.t. the current hull vertex needs O(n) time. So, if there are h
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Figure 5.5: Demonstration of Jarvis march algorithm on a small point set, the points being
labeled by their indices for simplicity. The encircled point in (c) represent the vertices of
C(P ). Note that, here the points are not lexicographically sorted as in Graham scan algorithm
(Fig. 5.4); only the point with minimum x-coordinate and that with maximum x-coordinate have
been labeled by 1 and (n =)10 respectively, and the other points are just arbitrarily labeled.

hull vertices in the output, then the total time complexity is given by O(nh), which is attractive
when the convex hull has a relatively very small complexity (i.e., C(P ) contains a very small
number of vertices) compared to the number of points in P . Note: Such an algorithm whose
time complexity depends not only on the input size (n) but also on the output size (h) is said
to be an output-sensitive algorithm .

5.2.5 A Divide-and-Conquer Algorithm

1. If |P | ≤ 3, then compute C(P ) in O(1) time and return.

2. Partition P into PL and PR using the median of x-coordinates of points in P .

3. Recursively compute C(PL) and C(PR) for PL and PR respectively.

4. Merge C(PL) and C(PR) to get C(P ) by computing their lower and upper tangents and
deleting all the vertices of C(PL) and C(PR) (except the vertex points of tangency) lying
between these two tangents1(Fig. 5.6).

1 A lower (upper) tangent is the straight line that touches the two hulls such that all the vertices of the
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Finding the lower tangent Finding the upper tangent

C(PL)

C(PR)

lower tangent

upper tangent

C(P )

The lower and the upper tangents After merging C(PL) and C(PR)

Figure 5.6: Divide-and-conquer approach to find the convex hull C(P ) of P : Recursively finding
C(P ) using the convex hulls C(PL) and C(PR) corresponding to PL and PR, and their lower and
upper tangents.

Finding the Lower Tangent:
Let a be the rightmost vertex of C(PL) and b be the leftmost vertex of C(PR).

(a) while ab is not a lower tangent for C(PL) and C(PR)

i. while ab is not a lower tangent1 to C(PL)
a ← a + 1 (move a clockwise)

ii. while ab is not a lower tangent to C(PR)
b ← b− 1 (move b counterclockwise)

(b) return ab

The upper tangent can be obtained in a similar manner.

Time complexity: While finding a tangent, each vertex on each hull will be checked at most
once (e.g., a + 1 will be checked only once—whether it lies to the left of the directed ray

−→
ba).

Hence, the runtime to find the two tangents is O(|C(PL)|+ |C(PR)|) = O(n).

two hulls lie above (below) the tangent.
1ab is not a lower tangent if the vertex a+1 of C(PL), lying next to a, lies to the left of the ray/vector directed

from b to a.
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Hence, Step 4 (merging) of the algorithm needs O(n) time. Step 1 needs O(1) time and
Step 2 needs O(n) time for median-based partitioning. Step 3 is recursive. Thus, T (n) =
2T (n/2) + O(n), which solves to O(n log n).
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Hashing

Anyone who considers arithmetic methods of
producing random digits is, of course, in a
state of sin.

— John Von Neumann
Comic Sections
Quoted by D. MacHale (1993).

Hashing involves some simple-yet-efficient data structures designed specifically with the ob-
jective of providing efficient insertion and find operations. In order to meet the design objective,
certain concessions are made. We do not require that there be any specific ordering of the items
in the data structure (container). In addition, while we still require the ability to remove items
from the container, it is not our primary objective to make removal as efficient as the insertion
and the find operations.

Ideally, we would like to build a data structure for which both the insertion and the find
operations are O(1) in the worst case. However, this kind of performance can only be achieved
with complete a priori knowledge. We need to know beforehand specifically which items are to
be inserted into the container. Unfortunately, we do not have this information in the general
case. If we cannot guarantee O(1) performance in the worst case, then we make it our design
objective to achieve O(1) performance in the average case.

The constant-time performance objective immediately leads us to the following conclusion:
Our implementation must be based in some way on an array rather than a linked list. This is
because we can access the element of an array in constant time, whereas the same operation in
a linked list with k nodes takes O(k) time.

6.1 Hash function

The objective is to design a container called the hash table , T , which will be used to hold
some items of a given set K so that searching time for any key x in T is pseudo- or near-constant.
In general, we expect the number of keys, |K|, to be relatively large or even unbounded. For
example, if the keys are 32-bit integers, then |K| = 232.
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We also expect that the actual number of items stored in T to be significantly less than |K|.
That is, if n is the number of items actually stored in T , then n ¿ m. Therefore, it seems
prudent to use an array of size m as the hash table, where m is at least as great as n.

Consequently, what we need is a function h : K 7→ {0, 1, . . . , m−1}. This function maps the
set of values to be stored in T to its indices/positions. This function is called a hash function .

In general, since |K| À m, the mapping defined by hash function will be a many-to-one
mapping. That is, there will exist many pairs of distinct keys x and y for which h(x) = h(y).
This situation is called a collision . Several approaches for dealing with collisions are explored
in the following sections.

6.1.1 Characteristics of a good hash function

Collision-free: Ideally, given a set of n ≤ m
distinct keys, {k1, k2, . . . , kn}, the set of hash val-
ues {h(k1), h(k2), . . . , h(kn)} contains no duplicates.
In practice, unless we know something about the keys
chosen, we cannot guarantee that there will not be
collisions. However, in certain applications we have
some specific knowledge about the keys that we can
exploit to reduce the likelihood of a collision. For
example, if the keys in our application are telephone
numbers, and we know that the telephone numbers
are all likely to be from the same geographic area,
then it makes little sense to consider the area codes
in the hash function.

Keys uniformly spread in T : Let pi be the probability that h(x) = i for any key x ∈ K.
For a hash function that spreads keys evenly over T , pi = 1/m. Unfortunately, in order to
say something about the distribution of the hash values, we need to know something about the
distribution of the keys.

Let Ki = {x ∈ K : h(x) = i}. In the absence of any information, we assume that the keys
are equiprobable; hence, |Ki| = |K|/m for i ∈ [0,m− 1], i.e., an equal number of keys (from K)
should map into each array position of T .

Easy to compute: It may not be easy to compute the hash function, but the runtime of the
hash function should be O(1).

6.2 Hashing Methods

Assume that we are dealing with integer-valued keys, i.e., K ⊂ Z, and that the value of the
hash function lies between 0 and m− 1.

6.2.1 Division Method

Perhaps the simplest of all the methods of hashing an integer x is to divide x by m and then
to use the remainder modulo m; i.e.,

h(x) = |x| mod m.

This approach is quite good in general for just about any value of m. However, in certain
situations some extra care is needed in the selection of a suitable value for m.
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Drawback:

• If m is even, then h(x) is even or odd when x is even or odd. If all possible keys are
equiprobable, then this is not a problem. However, if even keys are more likely than odd
keys, the function will not spread the keys evenly.

• For m = 2k, h(x) = x mod 2k simply extracts the bottom k bits of the binary represen-
tation of x. While such a hash function is easy to compute, it is not a desirable function
because it does not depend on all the bits in the binary representation of x.

For these reasons m is often chosen to be a prime number. For example, suppose there is
a bias in the way the keys are created that makes it more likely for a key to be a multiple
of some small constant, say 2 or 3. Then making m a prime increases the likelihood that
those keys are spread out evenly. Also, the division of x by that prime number depends
on all the bits of x, not just the bottom k bits.

• The property that consecutive keys map to consecutive hash values:

h(i) = i
h(i + 1) = i + 1 (mod m)
h(i + 2) = i + 2 (mod m)

...

ensures that consecutive keys do not collide; however, it also means that consecutive array
locations will be occupied, which in certain implementations can lead to degradation in
performance (in case of resolving collisions, discussed later).

6.2.2 Middle Square Method

It is to avoid the use of division, since integer division is usually slower than integer mul-
tiplication.1 First, we assume that m = 2k for some k ≥ 1. Then, to hash an integer x, the
following hash function is used:

h(x) =
⌊m

w
(x2 mod w)

⌋
=

⌊
x2 mod 2s

2s−k

⌋
.

In effect, it right-shifts (x2 mod 2s) by s− k bits.
Pros and cons: It does a pretty good job when the integer-valued keys are equiprobable. It
also has the characteristic that it scatters consecutive keys nicely. However, since the middle-
square method only considers a subset of the bits in the middle of x2, keys which have a large
number of leading zeroes will collide. For example, {x : |x| <

√
w/m} has each key x with

|x| < 2(w−k)/2 or h(x) = 0.

6.2.3 Multiplication Method

A very simple variation on the middle-square method that alleviates its deficiencies is multi-
plication hashing. Instead of multiplying the key x by itself, we multiply the key by a carefully
chosen constant a, and then extract the middle k bits from the result. In this case, the hashing
function is

h(x) =
⌊m

w
(ax mod w)

⌋
.

1 Division is avoided by making use of the fact that a computer does finite-precision integer arithmetic. For
example, all arithmetic is done modulo w = 2s, where s is the word size of the computer.
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Choice of a: To avoid the problems that the middle-square method encounters with keys having
a large number of leading or trailing zeroes, choose an a that has neither leading nor trailing
zeroes. If we choose an a that is relatively prime to w, then there exists another number a′

such that aa′ = 1 mod w. a′ is the inverse of a modulo w, since the product of a and its
inverse a′ is unity. Such a number has the nice property that if we take a key x, and multiply
it by a to get ax, we can recover the original key by multiplying the product again by a′, since
axa′ = aa′x = 1x.

There are many possible constants with this desired property. One possibility which is
suited for 32-bit arithmetic (i.e., w = 232) is a = 2654 435 769. The binary representation of
a is 10011110 00110111 01111001 10111001, which has neither many leading nor many trailing
zeroes. Also, this value of a and w = 232 are relatively prime and the inverse of a modulo w is
a′ = 340 573 321.

6.2.4 Fibonacci Hashing

Fibonacci hashing is exactly the multiplication hash-
ing method using a very special value for a. The value
we choose is closely related to the number called the
golden ratio defined as follows: Given two positive
numbers x and y, the ratio φ = x/y is the golden
ratio1 if

x
y = x+y

x

⇒ x2 − xy − y2 = 0
⇒ φ2 − φ− 1 = 0
⇒ φ = 1+

√
5

2 .

The Fibonacci hashing method is essentially the mul-
tiplication hashing method in which the constant a
is chosen as the integer that is relatively prime to
w and closest to w/φ. The table aside gives suitable
values of a for various word sizes. Why is w/φ so spe-
cial? It has to do with what happens to consecutive
keys when they are hashed using the multiplicative
method.

w a ≈ w/φ
216 40503
232 2654435769
264 11400714819323198485

As shown in the plot above, consecutive keys are spread out quite nicely. In fact, when we
use a ≈ w/φ to hash consecutive keys, the hash value for each subsequent key falls in between
the two widely spaced hash values already computed. Furthermore, it is a property of the golden
ratio that each subsequent hash value divides the interval into which it falls according to the
golden ratio!

6.3 Resolving Collisions

Linear probing, Quadratic probing, Double hashing, Chaining — follow class notes and
Cormen et al.’s Text book.

Suggested Books

1. Introduction to Algorithms. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein.
Prentice Hall of India.
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2. Data Structures and Algorithms with Object-Oriented Design Patterns in Java: Bruno R.
Preiss, P. Eng.


