
Algorithms
Selected Lecture Notes

Partha Bhowmick
IIT Kharagpur

Contents
1 Search Trees 1

1.1 Binary Search Tree (BST) . 1
1.1.1 Traversal in a Binary Tree . 1
1.1.2 Searching in a BST . 2
1.1.3 Insertion in a BST . 4
1.1.4 Deletion from a BST . 5

1.2 AVL Tree . 5
1.2.1 Worst-case AVL (Fibonacci) trees . 6
1.2.2 Insertion and Deletion from an AVL Tree 7

2 Sorting 11
2.1 Insertion Sort . 11

2.1.1 Time complexity . 11
2.2 Quicksort . 12

2.2.1 Time complexity . 13
2.3 Heapsort . 14

2.3.1 Time complexity . 15
2.4 Linear-time Sorting . 15

2.4.1 Counting Sort . 16
2.4.2 Bucket sort . 16
2.4.3 Radix sort . 16

Chapter 1

Search Trees

The figure aside shows a sculpture by Andrew
Rogers in Jerusalem. The sculpture ratio is pro-
portioned according to Fibonacci numbers.
Interestingly, it has a subtle connection with the
golden ratio, which is again connected with
search trees (Sec. 1.2).

1.1 Binary Search Tree (BST)

Definition 1.1 (Binary Tree) A binary tree is a data structure in the form of a rooted tree
in which each node has at most two children. A recursive definition: A binary tree is either
empty or it contains a root node together with two binary trees called the left subtree and the
right subtree of the root.

Definition 1.2 (BST) A BST is either empty or a binary tree with the following properties:

(i) All keys (if any) in the left subtree of the root precede the key in the root.

(ii) The key in the root precedes all keys (if any) in the right subtree of the root.

(iii) The left and the right subtrees of the root are BST.

C declaration of a binary tree or a BST is as follows.

typedef struct tnode {
int x; //info
struct tnode *left, *right;

} node;

1.1.1 Traversal in a Binary Tree

Let u be any node and L and R be its respective left and right subtrees. Then the following
three types of traversals are defined on a binary tree or a BST:

2
Chapter 1

Search Trees

Inorder traversal: Represented as LuR, the left subtree L is (recursively) visited (and
nodes reported/processed) first, then the node u, and finally the right subtree R.

Preorder traversal: uLR.

Postorder traversal: LRu.

Note that, by inorder traversal of a BST, we always get the sorted sequence of its keys.
C-snippet for inorder traversal is given below. For other two types, it’s obvious.

void in_order(node *u)
{

if (u!=NULL){
in_order(u->left);
visit(u); //ex: print(u)
in_order(u->right);

}
}

1.1.2 Searching in a BST

C-snippet for searching is as follows.

main()
{

node *root;
int k;
...
p = bst_search(root, k);
...

}

node *bst_search(node *p, int k)
{

if (p!=NULL)
if (k < p->x)

p = bst_search(p->left, k);
else if (k > p->x)

p = bst_search(p->right, k);

return p;
}

The pseudo-code to search a key k in a BST is as follows:

Algorithm Search-BST(r, k)
1. if k < key[r]
2. Search-BST(left[r], k)

1.1 Binary Search Tree (BST) 3

D

F

H

L

Q

S

root

internal node

external node

Figure 1.1: An extended BST with n = 6 internal nodes and n + 1 = 7 external/dummy nodes.
It has I(n) = 1× 2 + 2× 2 + 3× 1 = 9 and E(n) = 2× 2 + 3× 3 + 4× 2 = 21. Hence, for this
particular BST, we get S(n) = (9 + 6)/6 = 2.50 and U(n) = 21/7 = 3.00.

3. else if k > key[r]
4. Search-BST(right[r], k)
5. return r

Time complexity

Best case:

T (n) = O(n), since the search key k may be the very root key.
Worst case:

T (n) = T (n − 1) + O(1) = O(n), which arises when the BST is fully skewed and the search
terminates at the bottommost leaf node.
Average case:

We define the following terms for a BST having n nodes (see Fig. 1.1):
Internal path length: I(n) = Sum of path lengths of all internal nodes from the root (of BST).
External path length: E(n) = Sum of path lengths of all external (dummy) nodes from the root.
Average number of comparisons for successful search: S(n).
Average number of comparisons for unsuccessful search: U(n).

Observe that

S(n) =
I(n) + n

n
, U(n) =

E(n)
n + 1

. (1.1)

It can be proved by induction that

E(n) = I(n) + 2n. (1.2)

Hence,

U(n) =
I(n) + 2n

n + 1
. (1.3)

Eliminating I(n) from Eqns. 1.1 and 1.3,

nS(n) = (n + 1)U(n)− n,

or, S(n) =
(

1 +
1
n

)
U(n)− 1. (1.4)

4
Chapter 1

Search Trees

To find the average number of comparisons for successfully searching each of the n keys, we
consider its insertion order. If a key x was inserted as the ith node, namely ui, then the average
number of comparisons for its unsuccessful search in that instance of the tree containing the
preceding (i−1) nodes, is given by Ui−1. Once it’s inserted, we can successfully search for it and
the search terminates at the node ui, which was a dummy node where its unsuccessful search
terminated. Hence, Si = Ui−1 + 1, as one extra comparison is required for the successful search
terminating at ui compared to the unsuccessful search terminating at the dummy node located
at the same position. We estimate the average number of comparisons for all these n nodes
based on their insertion orders. Thus, we get

S(n) =
1
n

n∑

i=1

(Ui−1 + 1), (1.5)

From Eqns. 1.4 and 1.5,

(n + 1)U(n) = 2n + U(0) + U(1) + . . . + U(n− 1).

To solve the above recurrence, we substitute n− 1 for n to get

nU(n− 1) = 2(n− 1) + U(0) + U(1) + . . . + U(n− 2).

Subtracting the latter from the former,

U(n) = U(n− 1) +
2

n + 1
. (1.6)

Since U(0) = 0, we get U(1) = 2
2 , U(2) = 2

2 + 2
3 , U(3) = 2

2 + 2
3 + 2

4 , and so on, resulting to

U(n) = 2
(

1
1

+
1
2

+ . . . +
1

n + 1

)
= 2Hn+1 − 2 ≈ 2lnn = (2ln2) log2 n, (1.7)

where, Hn = 1 + 1
2 + 1

3 + . . . + 1
n is the nth harmonic number, and approximately equals lnn.

Hence, from Eqn. 1.4, we can find S(n), and conclude that S(n) ≈ U(n) ≈ (2ln2) log2 n.

1.1.3 Insertion in a BST

For insertion of a new element, we search for that element in the BST. It’s an unsuccessful
search, terminating at a dummy node. A new node is created at the position of that dummy
node with necessary pointer adjustments. The C-snippet is given below.

main()
{

node *root, *u;
int k;
...
if ((u = (node *) malloc(sizeof(node))) == NULL)

error("Exhausted memory.");
else {

u->x = k;
u->left = u->right = NULL;

}

1.2 AVL Tree 5

u = bst_insert(root, u);
...

}

node *insert(node *r, node *u)
{

if (r == NULL)
r = u;

else if (u->x < r->x)
r->left = bst_insert(r->left, u);

else if (u->x < r->x)
r->right = bst_insert(r->right, u);

else
error("key already exists in BST.");

return r;
}

Time complexity

The best-, worst-, and average-case time complexities for insertion of a node in a BST are
all similar as those for (unsuccessful) searching.

1.1.4 Deletion from a BST

While deleting an element k from a BST, we first search for k in the BST, and then delete
the corresponding node, say u, based on the following possible cases (see Fig. 1.2).

Case 1: If u is a leaf node, then we simply free u and reassign its parent’s child pointer (left
or right, as applicable) to Null.

Case 2: If u has only one subtree, say, the left subtree rooted at v, then we reassign the pointer
from its parent p to v (and free u).

Case 3: If u has both the subtrees, the left (T2) rooted at v and the right (T3) at w, then we
traverse T3 until we reach its leftmost node, say u′, which has no left child. After deletion of u,
the node v should be the inorder predecessor of u′. Hence, the left-child pointer from u′ is set
to v and the pointer from p to u is reset to w (and u is freed).

Time complexity

Pointer adjustments in all three cases need constant time. So, the best-, worst-, and average-
case time complexities for deletion of a node from a BST are all similar as those for (successful)
searching.

1.2 AVL Tree

Definition 1.3 (AVL tree) An AVL tree1 is a self-balancing binary search tree (BST) in
which the heights of the two child subtrees of any node differ by at most one.

1Named after its two inventors, G.M. Adelson-Velskii and E.M. Landis (1962): An algorithm for the organiza-
tion of information, Proceedings of the USSR Academy of Sciences 146: 263–266 (Russian). English translation
by Myron J. Ricci in Soviet Math. Doklady, 3: 1259–1263, 1962.

6
Chapter 1

Search Trees

v

p

Delete u

u

v

pT1

T2

T2

T1

w

p

Delete u

u

v

p

w

u′

u′

v

T1

T2 T3

T3

T2

T1

Case 2: T1 < p < T2 < u Case 3: T1 < p < T2 < u < T3

Figure 1.2: Deletion from a BST: Case 2 and Case 3.

In an AVL tree having n nodes, searching, insertion, and deletion all take O(log n) time
in both the average and the worst cases. Insertions and deletions may require the tree to be
re-balanced by one or more tree rotations. The balance factor of a node is the height of its
left subtree minus the height of its right subtree (a convention, although the opposite is equally
valid). A node with the balance factor 0 or ±1 is said to be balanced . A node with any other
balance factor is considered unbalanced and requires re-balancing. The balance factor is either
stored directly at each node or computed from the heights of the subtrees (how!?). In short, a
BST is an AVL tree iff each of its nodes is balanced.

AVL trees are often compared with red-black trees because they support the same set of
operations and because red-black trees also take O(log n) time for the basic operations. AVL
trees perform better than red-black trees for lookup-intensive applications.1

1.2.1 Worst-case AVL (Fibonacci) trees

We find the minimum number of nodes, say nh, in an AVL tree of height h. Let h be the
height of an AVL tree. Then, for the minimality of its node count, we have

nh = nh−1 + nh−2 + 1, (1.8)

where n0 = 1 and n1 = 2, since the minimality of node count demands a similar (recursive)
minimality of the subtrees.

By adding 1 to both sides of the above equation, we get the Fibonacci relation

Fk = Fk−1 + Fk−2, where F0 = 0 and F1 = 1, (1.9)

so that Fk = nh + 1, whereby F3(= 2) in starting correspondence with n0 + 1(= 2).
To solve the above recurrence, we use the following generating function with the Fibonacci

numbers as coefficients:

F (x) = F0+ F1x+ F2x
2+ . . . + Fnxn + . . .

xF (x) = F0x+ F1x
2+ . . . + Fn−1x

n + . . .
x2F (x) = F0x

2+ . . . + Fn−2x
n + . . .

1 Ben Pfaff (June 2004). Performance Analysis of BSTs in System Software, Stanford University.
See http://www.stanford.edu/~blp/papers/libavl.pdf.

1.2 AVL Tree 7

or, (1− x− x2)F (x) = F0 + (F1 − F0)x = x,
or,

F (x) =
x

1− x− x2
=

1√
5

(
1

1− φx
− 1

1− ψx

)
, (1.10)

where φ = 1
2(1 +

√
5) and ψ = 1

2(1−√5) are the roots of 1− x− x2 = 0. Hence,

F (x) =
1√
5

(
1 + φx + φ2x2 + . . .− 1− ψx− ψ2x2 − . . .

)
. (1.11)

Observe that from the generating function F (x), the coefficient of xn is Fn, which implies

Fn =
1√
5

(φn − ψn) ≈ 1√
5

(1.618n − (−0.618)n) = int

(
φn

√
5

)
. (1.12)

Note: The term φ ≈ 1.6180339887498948482... is called the golden ratio—a figure where mathematics
and arts concur at! Some of the greatest mathematical minds of all ages, from Pythagoras and Euclid
in ancient Greece, through the medieval Italian mathematician Leonardo of Pisa and the Renaissance
astronomer Johannes Kepler, to present-day scientific figures such as Oxford physicist Roger Penrose, have
spent endless hours over this simple ratio and its properties. But the fascination with the Golden Ratio is
not confined just to mathematicians. Biologists, artists, musicians, historians, architects, psychologists,
and even mystics have pondered and debated the basis of its ubiquity and appeal. In fact, it is probably
fair to say that the Golden Ratio has inspired thinkers of all disciplines like no other number in the
history of mathematics.

As a continued fraction: φ = 1+
1

1 + 1

1+
. . .

As a continued square root, or infinite surd: φ =

√

1 +

√
1 +

√
1 +

√
1 + . . .

In simpler terms, two quantities are in the golden ratio if the ratio of the sum of the quantities to the
larger quantity is equal to the ratio of the larger quantity to the smaller one; that is, φ = a

b = a+b
a .

Synonyms used for the golden ratio are the golden section (Latin: sectio aurea), golden mean, extreme
and mean ratio (by Euclid), medial section, divine proportion (Leonardo da Vinci’s illustrations), divine
section, golden proportion, golden cut, golden number, and mean of Phidias1.

One of the many interesting facts about golden ratio: A pyramid in which the apothem (slant height
along the bisector of a face) is equal to φ times the semi-base (half the base width) is called a golden
pyramid. Some Egyptian pyramids are very close in proportion to such mathematical pyramids.

1.2.2 Insertion and Deletion from an AVL Tree

Insertion of a node u in an AVL tree consists of two stages: (i) insertion of u as in the case
of a BST; (ii) applying single (L or R) or double (LR or RL) rotation at a node where the
balance factor is violated (i.e., has become +2 or −2 after inserting u). Rotations are explained
in Fig. 1.3

Interestingly, it can be shown that—by considering case-wise possibilities—at most one (sin-
gle or double) rotation will ever be done. If so, then it’s near the newly inserted node u.

As the height of an AVL tree is O(log n), insertion takes O(log n) time for stage (i) and O(1)
time for stage (ii), making it O(log n) in total.

1For interesting facts and figures, see http://en.wikipedia.org/wiki/Golden_ratio

8
Chapter 1

Search Trees

Deletion also consists of two stages as in the case of insertion. The first stage is again similar
to that of BST. For the second stage, we have to traverse up to the very root of the BST,
go on updating the balance factors of the predecessors along the path to the root, and apply
rotations as and when required. The total time complexity for the two stages is, therefore,
O(log n) + O(log n) = O(log n).

Suggested Book

R.L. Kruse, B.P. Leung, C.L. Tondo. Data Structures and Program Design in C. PHI, 2000.

1.2 AVL Tree 9

u

v

+2

Right

rotation

+1

unbalanced balanced

v

u

h − 1

T3

h − 1

T3

h

T1
h − 1

T2

h

T1

h − 1

T2

Single right (R) rotation: Applied when the node u has balance factor f = +2 and its
left child v has f = +1. Note that the BST property T1 ≤ v ≤ T2 ≤ u ≤ T3 is preserved
after rotation.

u

v

+2

Right

rotation

−1

unbalanced not balanced!

v

u

h − 1

T3

h − 1

T3

h

T2
h − 1

T1
h − 1

T1

h

T2

−2

A case where single right (R) rotation fails: When the node u has balance factor f = +2
and its left child v has f = −1, although the BST property T1 ≤ v ≤ T2 ≤ u ≤ T3 is
preserved after rotation. Double right (LR) rotation balances it correctly.

unbalanced

u

v

+2

−1

h − 1

T3

w

h − 1

T1

h − 1

T
′

2

h − 1

T
′′

2

Left

rotation

h − 1

T3

v

h − 1

T1

w

h − 1

T
′

2

h − 1

T
′′

2

u

rotation

Right

balanced!

w

u

h − 1

T3

v

h − 1

T1

h − 1

T
′′

2

h − 1

T
′

2

Double right (LR) rotation: Applied when the node u has balance factor f = +2 and
its left child v has f = −1. Note that the BST property T1 ≤ v ≤ T ′2 ≤ w ≤ T ′′2 ≤ u ≤ T3

is preserved after rotation.

Figure 1.3: Single right (R) and double right (LR) rotations for balancing an AVL tree. The
other two types of rotations, namely single left (L) and double left (RL) rotations, are similar
(to be precise, just vertical reflections of R and LR).

Chapter 2

Sorting

“Just as the young squirrel must learn what is
climbable and foraging during the dependency pe-
riod may provide that experience. Beside the se-
lection of food, other feeding behavior such as
the (sorting and) opening of nuts, improves with
time.”—J.P.Hailman

2.1 Insertion Sort

I Principle: Iteratively sorts the first i (2 ≤ i ≤ n) elements in a list L using the results of the
already-sorted first i − 1 elements in the previous iteration. To do so, it simply inserts the ith
element properly among the previously sorted i− 1 elements.

Algorithm Insertion-Sort(L, n)
1. for i ← 2 to n
2. x ← L[i]
3. j ← i− 1
4. while j > 0 ∧ L[j] > x
5. L[j + 1] ← L[j]
6. j ← j − 1
7. L[j + 1] ← x

2.1.1 Time complexity

I Best case: Minimum number of comparisons to insert the ith (i > 1) element = i−1. Hence,
T (n) = (n− 1) ·O(1) = O(n).
I Worst case: Maximum number of comparisons to insert the ith (i > 1) element = i − 1.
Hence,

T (n) =
n∑

i=2

(i− 1) =
n(n− 1)

2
= O(n2).

I Average case: The ith element x is equally likely to be placed at any one of the i positions.
So, each position has probability = 1/i.

12
Chapter 2

Sorting

Thus, average number of comparisons to
insert x is

i−1∑

j=1

(
1
i
· j

)
+

1
i
(i− 1) =

i + 1
2

− 1
i
.

Note: If x is inserted before or after the
very first element, then we need i−1 com-
parisons (see figure aside).

1 2 i − 1 i

i positions, each with probability = 1/i

x

Considering all n passes,

T (n) =
n∑

i=2

(
1
2(i + 1)− 1

i

)
= n2

4 + 3n
4 − 1−

n∑
2

1
i

= O(n2) + O(n)−O(log n)
(

since
n∑
2

1
i = O(lnn)

)

= O(n2).

2.2 Quicksort

I Principle: Based on divide and conquer, in-place1 but not stable2.
Divide: The input list L[1..n] is partitioned into two nonempty sublists, L1 := L[1..q] and
L2 := L[q+1..n], such that no element of L1 exceeds any element of L2. The index q is returned
from the Partition procedure.
Conquer and combine: L1 and L2 are recursively quicksorted in place so that their final
combination is sorted.34

Algorithm QuickSort(L, p, r)
1. if p < r
2. q ← Partition(L, p, r)
3. QuickSort(L, p, q)
4. QuickSort(L, q + 1, r)

Procedure Partition(L, p, r)
1. x ← L[p]
2. i ← p− 1
3. j ← r + 1
4. while True
5. do j ← j − 1
6. till L[j] > x
7. do i ← i + 1
8. till L[i] < x
9. if i < j
10. Swap(L[i], L[j])
11. else return j

5 3 2 6 4 1 3 7

i j

5 3 2 6 4 1 3 7

3 2 6 4 13 75

3 2 6 4 13 75

3 2 6413 75

3 2 6413 75

i

i

i

i

i

j

j

j

j

j

1An in-place sorting needs no extra array.
2A stable sorting preserves the relative order of records with equal keys.
3 “An Interview with C.A.R. Hoare”. Communications of the ACM, March 2009 (premium content).
4R. Sedgewick, Implementing quicksort programs, Comm. ACM, 21(10):847–857, 1978.

2.2 Quicksort 13

The correctness of the partition algorithm is based on the following facts: (i) |L1| > 0 and
|L2| > 0; (ii)L1 ∪ L2 = L; (iii)L1 ≤ x ≤ L2;

The correctness of the sorting algorithm follows from inductive reasoning. For one element,
the algorithm leaves the data unchanged; otherwise it produces the concatenation of L1 and L2,
which are themselves recursively sorted by the inductive hypothesis.

2.2.1 Time complexity

I Best case: Partition takes Θ(n) time. So, best-case time complexity of quicksort is T (n) =
2T (n/2) + Θ(n), which solves to T (n) = Θ(n log n).
I Worst case: Arises when max(|L1|, |L2|) = n − 1 in every step of the recursion, giving
T (n) = T (n− 1) + Θ(n), or, T (n) = Θ(n2).
I Average case: Based on the assumption that the pivot x is equally likely to be the ith min
for i = 1, 2, . . . , n. If x is the 1st min, then x is the sole element in L1 so that |L1| > 0 (invariant
of Partition); for all other cases, x ∈ L2. So, |L1| = 1 occurs when x is the 1st or the 2nd min.
Thus, Prob(|L1| = 1) = 2/n, and Prob(|L1| = q) = 1/n for q = 2, . . . , n − 1. Hence, the
worst-case time complexity of quicksort is

T (n) =
1
n

(T (1) + T (n− 1)) +

n−1∑

q=1

(T (q) + T (n− q))

 + Θ(n) (2.1)

≤ 1
n

O(n2) +

n−1∑

q=1

(T (q) + T (n− q))

 + Θ(n)

=
1
n

n−1∑

q=1

(T (q) + T (n− q))

 + Θ(n), as 1

nO(n2) = O(n) and O(n) + Θ(n) = Θ(n)

≤ 2
n

n−1∑

q=1

T (q) + Θ(n) (2.2)

We solve the above equation using the method of substitution (induction), with the hypoth-
esis that T (q) ≤ aq log q for a suitable constant a > 0 and ∀ q < n. Then,

T (n) ≤ 2
n

n−1∑

q=1

aq log q + Θ(n) =
2a

n

n−1∑

q=1

(q log q) + Θ(n)

=
2a

n

dn/2e−1∑

q=1

(q log q) +
n−1∑

q=dn/2e
(q log q)

 + Θ(n)

≤ 2a

n

log(n/2)

dn/2e−1∑

q=1

q + log n

n−1∑

q=dn/2e
q

 + Θ(n)

=
2a

n

(log n− 1)

dn/2e−1∑

q=1

q + log n
n−1∑

q=dn/2e
q

 + Θ(n)

=
2a

n

log n

n−1∑

q=1

q −
dn/2e−1∑

q=1

q

 + Θ(n)

14
Chapter 2

Sorting

2 4 1

8 7 9 3

14 10

16

1

2 3

4 5 6 7

8 9 10

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Figure 2.1: Top: A heap as a complete binary tree. Bottom: The corresponding array A.

=
2a

n

(
1
2
n(n− 1) log n − 1

2

(⌈n

2

⌉
− 1

) ⌈n

2

⌉)
+ Θ(n)

≤ 2a

n

(
1
2
n(n− 1) log n − 1

2

(n

2
− 1

) n

2

)
+ Θ(n)

= a(n− 1) log n− a

2

(n

2
− 1

)
+ Θ(n)

= an log n−
(a

2

(n

2
− 1

)
+ a log n−Θ(n)

)
,

which can be made smaller than an log n for a sufficiently large value of a, ∀ n ≥ n0. Thus,
T (n) = O(n log n).

2.3 Heapsort

A (binary max) heap is a complete binary tree, i.e., its levels are completely filled except
possibly the lowest, which is filled from left to right (shape property of heap). Further, (the
key at) each of its nodes is greater than or equal to each of its children (heap property). It is
represented as 1-D array, A, for a simple-yet-efficient implementation as follows (see Fig. 2.1):

Root of the heap = A[1]; for each node corresponding to A[i], the parent is A[bi/2c], left
child is A[2i], and right child is A[2i + 1]. Thus, for a heap having n nodes, A[bi/2c] ≥ A[i] for
2 ≤ i ≤ n, by heap property; and A[1] contains the largest element. Heapsort uses the heap and
its properties most efficiently for sorting1.

I Principle: Based on selection principle, and so in-place but not stable (as quicksort). It first
constructs the heap from A[1..n] using the procedure BuildHeap (Step 1). It uses two variables:
length[A] = n (remains unchanged) and heapsize[A], the latter being decremented as the heap
is iteratively reduced in size (Step 2) while swapping the root of (reducing) heap with its last
node (Step 3), and then cutting off the last node (current max; Step 4) so as to grow the sorted
sublist at the rear end of A. The procedure Heapify is used to rebuild the heap (Step 5), which
has lost its heap property due to the aforesaid swapping.

1 J. W. J. Williams. Algorithm 232 – Heapsort, 1964, Communications of the ACM 7(6): 347–348.

2.4 Linear-time Sorting 15

Algorithm HeapSort(A)
1. BuildHeap(A)
2. for i ← length[A] downto 2
3. Swap(A[1], A[i])
4. heapsize[A] ← heapsize[A]− 1
5. Heapify(A, 1)

Procedure BuildHeap(A)
1. heapsize[A] ← length[A]
2. for i ← blength[A]/2c downto 1
3. Heapify(A, i)

Procedure Heapify(A, i)
1. l ← Left[i],

r ← Right[i]
2. if l ≤ heapsize[A] ∧A[l] > A[i]
3. largest ← l
4. else largest ← i
5. if r ≤ heapsize[A] ∧A[r] > A[largest]
6. largest ← r
7. if largest 6= i
8. Swap(A[i], A[largest])
9. Heapify(A, largest)

2.3.1 Time complexity

The height h of a node in the heap is measured from the bottommost level (height 0) of
the heap. Hence, the time required to Heapify a node at height h is O(h), since it involves
exchanges between at most h nodes and their left or right children. Now, in a heap having n
nodes, there are at most

⌈
n/2h+1

⌉
nodes of height h. Hence, the time complexity of BuildHeap

is
dlog ne∑

h=0

⌈ n

2h+1

⌉
O(h) = O

n

dlog ne∑

h=0

h

2h

 . (2.3)

Now, for |x| < 1, we have

1 + x + x2 + . . . + xh + . . . =
1

1− x
.

Differentiating and then multiplying both sides by x,

x + 2x2 + 3x3 + . . . + hxh + . . . =
x

(1− x)2
,

or,
∞∑

h=0

hxh =
x

(1− x)2
,

or,
∞∑

h=0

h

2h
=

1/2
(1− 1/2)2

= 2 [putting x = 1/2],

or, O

n

dlog ne∑

h=0

h

2h

 = O(n). (2.4)

Hence, HeapSort takes O(n log n) times, since BuildHeap takes O(n) time and each of
the (n− 1) = O(n) Heapify(A, 1) calls (Step 5 of HeapSort) takes O(log n) time.

2.4 Linear-time Sorting

All the algorithms discussed in the preceding sections are known as comparison sorts,
since they are based on comparison among the input elements. Any comparison sort needs
Ω(n log n) time in the worst case, as explained next.

16
Chapter 2

Sorting

A comparison sort can be represented by a (binary) decision tree in which each non-
leaf node corresponds to a comparison between two elements, and each leaf corresponds to a
permutation of n input elements. Thus, there are n! leaf nodes, out of which exactly one contains
the sorted list. Execution of the sorting algorithm corresponds to tracing a path from the root
of the decision tree to this node. If the height of the decision tree is h, then it can contain
at most 2h leaves. So,

n! ≤ 2h

or, h ≥ log(n!) > log
(

n
e

)n by Stirling’s approximation: n! =
√

2πn
(

n
e

)n (
1 + Θ

(
1
n

))
or, h ≥ n log n− n log e = Ω(n log n).

2.4.1 Counting Sort

Applicable when the input elements belong to a set of size k. It creates an integer array A
of size k to count the occurrence of A[i] in the input, and then loops through A to arrange the
input elements in order. For k = O(n), the algorithm runs in O(n) time. Counting sort cannot
often be used because A needs to be reasonably small for it to be efficient; but the algorithm is
extremely fast and demonstrates great asymptotic behavior as n increases. It can also be used
to provide stable behavior.

2.4.2 Bucket sort

A divide-and-conquer sorting algorithm that generalizes counting sort by partitioning an
array into a finite number of buckets. Each bucket is then sorted individually, either using a
different sorting algorithm (e.g., insertion sort), or by recursively applying the bucket sort. It is
most effective and runs in linear time on data with limited values (e.g., to sort a million integers
ranging from 1 to 1000).

2.4.3 Radix sort

Sorts numbers by processing individual digits. It either processes digits of each number
starting from the least significant digit (LSD) or from the most significant digit (MSD). The
former, for example, first sorts the numbers by their LSD while preserving their relative order
using a stable sort; then it sorts them by the next digit, and so on up to their MSD, ending up
with the sorted list. Thus, n numbers consisting of k digits can be sorted in O(nk) time, which
reduces to O(n) time for a fixed k. While the LSD radix sort requires the use of a stable sort,
the MSD radix sort algorithm does not (unless stable sorting is desired). In-place MSD radix
sort is not stable.

