Algorithms I (CS21003) Autumn 2010

Assignment 4

A4. (September 7, 2010)

(a) Prepare a random binary matrix A of size $n \times n$, which represents the adjacency matrix of an *undirected graph* G(V, E) having n nodes. It should be as follows.

To assign each element A[i][j] with $i \leq j$, generate a random number r_{ij} in the interval [0, 1]. If $r_{ij} > \rho$, assign 1; otherwise assign 0. Next, assign A[i][j] with i > j from A[i][j] with $i \leq j$. Note: $\rho \in [0, 1]$ is a user-defined parameter for A.

[User input: n, ρ]

Output: File "roll number_a4.txt" that contains

- n (Line 1)
- ρ (Line 2)
- A (Lines 3, 4, ..., n + 2)

All the diagonal elements of A must be 0, as G is undirected and hence no vertex has any self-loop.

(b) Construct the adjacency list A_L from A.

Using A_L , verify whether G is connected. If not, (iteratively) insist the user to re-enter (preferably a smaller value of) ρ until G is connected.

Append A_L in "roll number_a4.txt". (Lines $n + 3, \ldots, 2n + 2$)

(c) Find the diameter of G, which is defined as the maximum of the shortest path lengths over all node pairs of G. Let p_d = ⟨v_i,...,v_j⟩ be the path representing such a diameter, d, such that v_i < v_j.

Append the following in "roll number_a4.txt":

- d (Line 2n + 3)
- count of paths of length d (Line 2n + 4)
- each diametric path, p_d (in subsequent lines—one for each path)
- (d) Let the path length of a vertex $v_k \in V$ from p_d be

$$\delta_{\min}(v_k, p_d) = \min_{v \in p_d} \delta(v_k, v)$$

where $\delta(u, v)$ denotes the shortest path length from u to v. Report the diametric path(s) whose $\max_{v_k \in V} {\{\delta_{\min}(v_k, p_d)\}}$ are minimal in length.

Append the following in "roll number_a4.txt":

- count of minimal- δ diametric paths (new line)
- each diametric path with the smaller vertex first in the sequence (in subsequent lines—one for each path)