Algorithms I (CS21003) Autumn 2010

Assignment 2

A2. (August 3, 2010)

- (a) Dynamically allocate a list L of n integers and randomly assign the elements in L such that each elements lies in the closed interval [a, b]. Print the input list L.
 [User input: n, a, b]
- (b) Find 2k + 1 median elements from L by (recursively) partitioning L. Report the number of comparisons versus n and k.

[User input: $k \geq 0$]

Definition: $L_{\mu} \subset L$ is the sublist of 2k + 1 median elements if and only if there exist two sublists, L_1 and L_2 , such that

i.
$$L_1 \cup L_\mu \cup L_2 = L$$

ii. $|L_1| = \left\lfloor \frac{n - (2k+1)}{2} \right\rfloor, |L_2| = \left\lceil \frac{n - (2k+1)}{2} \right\rceil$
iii. $x_1 \le x_\mu \le x_2 \ \forall x_1 \in L_1, x_\mu \in L_\mu, x_2 \in L_2$

Output: File "roll number_a20.txt" (Ex: 09CS1001_a20.txt)

File format: In the order mentioned below, each in a new line. DON'T print anything extra.

value of n

randomly generated list (tab-delemited) in a single line value of knumber of (element-to-element) comparisons made throughout the algorithm L_1 (tab-delemited) in a single line L_μ (tab-delemited) in a single line L_2 (tab-delemited) in a single line

Example:

n = 10, a = 1, b = 6 $L = \{4, 2, 3, 6, 1, 3, 2, 4, 5, 4\}$ $k = 1 \Rightarrow |L_1| = 3, |L_{\mu}| = 3, |L_{\mu} = 4|.$

L_1		L_{μ}			L_2			
2	1	2	3	3 4	1	4	6 4	5
Outp	out fil	le "ro	ll n	umbe	er_a2	0.t>	kt":	
10								
4	2	3	6	1	3	2	4	5
1								
?								
2	1	2						
3	3	4						
4	6	4	5					

(c) Use *partitioning by grouping* to solve the above problem.

Report the output in file "roll number_a21.txt", having format as in (b).