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Abstract

This work presents the use of Adaptor Grammar, a non-parametric Bayesian approach1

for learning (Probabilistic) Context Free Grammar productions from data. In Adaptor2

Grammar, we provide the set of non-terminals followed by a skeletal grammar that es-3

tablishes the relations between the non-terminals in the grammar. The productions and4

the associated probability for the productions are automatically learnt by the system5

from the usages of words or sentences, i.e., the dataset. This facilitates the encoding6

of prior linguistic knowledge through the skeletal grammar and yet the tiresome task7

of finding the productions is delegated to the system. As the system completely learns8

the grammar structure by observing the data. We call this approach as the ‘Ekalavya’9

approach. In this work, we discuss the effect of using Adaptor grammars for Sanskrit at10

word-level supervised tasks such as compound type identification and also in identifying11

source and derived words from corpora for derivational nouns. In both of the works, we12

show the use of sub-word patterns learnt using Adaptor grammar as effective features13

for their corresponding supervised tasks. We also present our novel approach of using14

Adaptor Grammars for handling Structured Prediction tasks in Sanskrit. We present the15

preliminary results for word reordering task in Sanskrit. We also outline our plan for the16

use of Adaptor grammars for Dependency Parsing and Poetry to Prose Conversion tasks.17

1 Introduction18

The recent trends in Natural Language Processing (NLP) community suggest an increased ap-19

plication of black-box statistical approaches such as deep learning. In fact, such systems are20

preferred as there has been increase in performance of several NLP tasks such as machine trans-21

lation, sentiment analysis, word sense disambiguation etc. (Manning, 2016). In fact, MIT22

Technology review reported the following regarding Noam Chomsky’s opinion about the ex-23

tensive use of ‘purely statistical methods’ in AI. The report says that “derided researchers in24

machine learning who use purely statistical methods to produce behaviour that mimics some-25

thing in the world, but who don’t try to understand the meaning of that behaviour.” (Cass,26

2011).27

Chomsky quotes, “It’s true there’s been a lot of work on trying to apply statistical models to28

various linguistic problems. I think there have been some successes, but a lot of failures. There29

is a notion of success ... which I think is novel in the history of science. It interprets success as30

approximating un-analysed data.” (Pinker et al., 2011). Norvig (2011), in his reply to Chomsky31

comes in defence of statistical approaches used in the community. Norvig lays emphasis on the32

engineering aspects of the problems that the community deals with and the performance gains33

achieved in using such approaches. He rightly attributes that, while the generative aspects of a34

language can be deterministic, the analysis of a language construct can lead to ambiguity. As35

probabilistic models are tolerant to noise in the data, the use of such approaches is often necessary36

for engineering success. It is often the case that the speakers of a language deviates from the37



laid out linguistic rules in usage. This can be seen as noise in the dataset, and yet the system38

we intend to build should be tolerant to such issues as well. The use of statistical approaches39

provides a convenient means of achieving the same. But, the use of statistical approaches do40

not imply discarding of the linguistic knowledge that we possess. Manning (2016) quotes the41

work of Paul Smolensky, “Work by Paul Smolensky on how basically categorical systems can42

emerge and be represented in a neural substrate (Smolensky and Legendre, 2006). Indeed, Paul43

Smolensky arguably went too far down the rabbit hole, devoting a large part of his career to44

developing a new categorical model of phonology, Optimality Theory (Prince and Smolensky,45

1993).” This is an example where the linguistics and the statistical computational models had46

a successful synergy, fruitful for both the domains.47

The Probabilistic Context Free Grammars (PCFGs) provide a convenient platform for ex-48

pressing linguistic structures with probabilistic prioritisation of the structures they accept. It49

has been shown that PCFGs can be learnt automatically using statistical approaches (Horning,50

1969). In this work, we look into Adaptor grammar (Johnson et al., 2007b), a non-parametric51

Bayesian approach for learning grammars from the observations, say, sentences or word usages52

in the language. When given a skeletal grammar along with the fixed set of non terminals,53

Adaptor grammar learns the right hand side of the productions and the probabilities associated54

with them. The grammar does so just by observing the dataset provided to it, and hence the55

name ‘Ekalavya’ approach.56

The use of Adaptor grammars for linguistic tasks provides the following advantages for a57

learning task.58

1. Adaptor grammars in effect output valid PCFGs, which in turn are context free grammars,59

and thus are valid for linguistic representations.60

2. It helps to encode linguistic information which is already described in various formalisms61

via the skeletal grammars. Thus domain knowledge can effectively be used. The only62

restriction here might be that the expressive power of the grammar is limited to that of a63

Context Free Grammar.64

3. By leveraging the power of statistics, we can obtain the likelihood of various possible parses,65

in case of structural ambiguity during analysis of a sentence.66

4. While the proposed structures might not be as competitive in performance as with the67

black-box statistical approaches such as the deep learning approaches, the interpretability68

of the Adaptor grammar based systems is a big plus. Grammar experts can look into69

the individual production rules learnt by the system. This frees the experts from coming70

up with the rules in the first place. Additionally by looking into the production rules,71

understandable to any domain expert with the knowledge of context free grammars, it can72

be validated whether the system has learnt patterns that are relevant to the task or not.73

In Section 2, we discuss the preliminaries regarding Context Free Grammars, Probabilistic74

CFGs and Adaptor Grammar. In Section 3, we discuss the use of Adaptor grammars in various75

NLP tasks for different languages. We then describe the work performed in Sanskrit with Adap-76

tor grammars in Section 4. We then discussion future directions in Sanskrit tasks, specifically77

for multiple structured prediction tasks.78

2 Preliminaries - CFG and Probabilistic CFG79

Context Free Grammar was proposed by Noam Chomsky who initially termed it as phrase80

structure grammar. Formally, a Context Free Grammar G is a 4-tuple (V,Σ, R, S), where V81

is a set of non-terminals, Σ is a finite set of terminals, R is the set of productions from V to82

(V ∪ Σ)∗, where ∗ is the ‘Kleene Star’ operation. S is an element of V which is treated as the83

start symbol, which forms the root of the parse trees for every string accepted by the grammar.84



The language that can be generated by the Non-terminal X can be represented as LX . So, the85

language that can be generated by the grammar G is LS .86

Figure 1: An example of a Context Free Grammar

The productions in Context Free Grammars are often handcrafted by linguistic experts. it87

is common to have large CFGs for many of the real life NLP tasks. It is common that a given88

string can have multiple possible parses for the given grammar. This is due to the fact that a89

Context Free Grammar contains all possible choices that can be produced from a given Non-90

terminal (O’Donnell, 2015). The grammar neither provide a deterministic parse nor prioritises91

the parses. This leads to structural ambiguity in the grammar. Probabilistic Context Free92

Grammars (PCFGs) have been introduced to weigh the probable trees when the ambiguity arises,93

and thus provide a means for prioritising the desired rules. A PCFG is a 5-tuple (V,Σ, R, S, θ),94

where θ, denotes a vector of real numbers in the range of [0, 1] indexed by productions of R,95

subject to96 ∑
X→β∈RX

θX→β = 1

Figure 2: Example of a Probabilistic Context Free Grammar corresponding to CFG shown in
Figure 1

The probabilities associated with all the productions of a given non terminal should add upto97

1. The probability of a given tree is nothing but the product of the rules which are used to98

construct the tree. A given vector θX denotes the parameters of a multinomial distribution that99

have the non terminal X on their left hand side (LHS) (O’Donnell, 2015) .100

Note that PCFGs make two strong conditional independence assumptions (O’Donnell, 2015):101

1. The decision about expanding a non-terminal depends only on the non-terminal and the102

given distribution for that non-terminal. No other assumptions can be made.103

2. Following from the first assumption, a generated expression is independent of other expres-104

sions.105

There are numerous techniques suggested for estimation of weights for the productions in106

PCFG. The Inside Outside algorithm is a maximum likelihood estimation approach based on107

the unsupervised Expectation maximisation parameter estimation method. Summarily, the108

algorithm starts by initialising the parameters with a random set of values and then iteratively109



modifies the parameter values such that the likelihood of the training corpus is increased. The110

process continues until the parameter values converge, i.e., no more improvement of the likelihood111

over the corpus is possible.112

Another way of estimating parameters is through Bayesian Inference approach (Johnson et113

al., 2007a). Given a corpus of strings s = s1, s2.....sn, we assume a CFG G generates all the114

strings in the corpus. We take the dataset s and infer the parameters θ using Bayes’ theorem115

P (θ|s) ∝ PG(s|θ)P (θ)

where,

PG(s|θ) =
n∏

i=1

PG(si|θ)

Now, the joint posterior distribution for the set of possible trees t and the parameters θ can116

be obtained by117

P (t, θ|s) ∝ P (s|t)P (t|θ)P (θ) = (
n∏

i=1

P (si|ti)P (ti|θ))P (θ)

To calculate the posterior distribution, we assume that the parameters in θ are drawn from118

a known distribution termed as the prior. We assume that each non terminal in the grammar119

has a given distribution which need not be same for all. For a non terminal, the multinomial120

distribution is indexed by the respective productions and since we use Dirichlet prior over here,121

each production probability θX→β has a corresponding Dirichlet parameter αX→β. Now, either122

through Markov Chain Monte Carlo Sampling approaches (Johnson et al., 2007a) or through123

variational inference or a hybrid approach, the parameters are learnt (Zhai et al., 2014).124

However, this approach as well does not deal with the real bottleneck, which is to come up125

with relevant rules which can solve a task for a given corpus. For large datasets, the CFGs126

should have large set of rules and it is often cumbersome to come up with rules by experts alone.127

Non-Parametric Bayesian Approaches has been proposed as modifications for PCFGs. Roughly,128

the Non-parametric Bayesian approaches can be seen as learning a single model that can adapt129

its complexity to the data (Gershman and Blei, 2012). The term non-parametric does not imply130

that there are no parameters associated with the learning algorithm, but rather it implies that131

the number of parameters is not fixed, and increases with increase in data or observations.132

The most general version of learning PCFGs goes by the name of Infinite HMM or Infinite133

PCFG (Johnson, 2010). In infinite PCFG, say for the model described in Liang et al. (2007),134

we are provided with a set of atomic categories and a combination of these categories as rules.135

Now, depending on the data, the learning algorithm learns the productions and the number136

of possible non-terminals along with the probabilities associated with them (Johnson, 2010).137

Another variation that is popular with the Non-Parametric Grammar induction models is the138

Adaptor grammar (Johnson et al., 2007b). Here, the number of non-terminals remains fixed and139

is set manually. But, the production rules and their corresponding probabilities are obtained by140

inference. The productions are obtained for a subset of non-terminals which are ‘adapted’, and141

it uses a skeletal grammar to obtain the linguistic structures.142

An Adaptor Grammar is a 7-tuple G = (V,Σ, R, S, θ, A,C). Here A ⊆ V denotes non-terminals143

which are adapted, i.e., productions for the non terminals in A will automatically be learnt from144

data. C is the Adaptor set, where CX is a function that maps a distribution over trees TX to a145

distribution over distributions over TX (Johnson, 2010).146

The independence assumptions that exist for PCFGs are not anymore valid in the case of
Adaptor Grammars (Zhai et al., 2014). Here the non-terminal X is defined in terms of an-
other distribution HX . Now the adaptors for each of the non-terminal X, CX , can be based
on Dirichlet Process or a generalisation of the same, termed as Pitman-Yor Process. Here



Figure 3: Example of an Adaptor Grammar. The non-terminals marked with an ‘@’ show that
they are adapted. The productions will be learnt from data, where each production is a variable
length permutation of subset of the elements in the alphabet set

TDX(GY1 , GY2 ....., GYm) is a distribution over all the trees rooted in the non-terminal X

HX =
∑

X→Y1...Ym∈RX

θX→Y1...YmTDX(GY1 , GY2 ....., GYm)

GX ∼ CX(HX)

3 Adaptor Grammar in Computational Linguistics147

Adaptor Grammar has been widely used in multiple morphological and syntactic tasks for various148

languages. Adaptor Grammar has been initially shown for word segmentation task in English149

(Johnson et al., 2007b). A sentence with no explicit word boundaries were given as observations150

and the task was to predict the actual words in the sentence. The task is similar to tasks for151

variable length motif identification.152

Adaptor Grammars has been introduced by Johnson et al. (2007b) as a non-parametric153

Bayesian framework for performing inference of syntactic grammar of a language over parse154

trees. A PCFG (Probabilistic Context Free Grammar) and an adaptor function jointly defines155

an Adaptor grammar. The PCFG learns the grammar rules behind the data generation process156

and the adaptor function maps the probabilities of the generated parse trees to substantially157

larger values than of the same under the conditionally independent PCFG model158

Adaptor grammars have been very effectively used in numerous NLP related tasks. Johnson159

(2010) has drawn connections between topic models and PCFGs and then proposed a model160

with combined insights from adaptor grammars and topic models. While LDA defines topics161

projecting documents to lower dimensional space, Adaptor grammar defines the distribution over162

trees. The author also projects a hybrid model to identify topical collocations using the power163

of PCFG encoded topic models. Adaptor grammars are also used in named entity structure164

learning. Zhai et al. (2016) has used adaptor grammars for identifying entities from shopping165

related queries in an unsupervised manner.166

The word segmentation task is essentially identifying the individual words from a continuous167

sequence of characters. This is seen as a challenging task in computational cognitive science as168

well. Johnson (2008a) used Adaptor Grammar for word segmentation on the Bantu Language,169

‘Sesotho’. Author specifically showed how the grammar with additional syllable structure yields170

better F-score for word segmentation task than the usual collocation grammar. Similar study has171

been carried out by Kumar et al. (2015). The authors present the mechanism to learn complex172

agglutinative morphology with specific examples of three of four Dravidian languages, Tamil,173

Malayalam and Kannada. Furthermore, authors specifically have stressed upon the task of174

dealing with sandhi using finite state transducers after producing morphological segment gener-175

ation using Adaptor grammars. Adaptor grammar succeeds in leveraging the knowledge about176

the agglutinative nature of the Dravidian language, but refrains from modelling the specific177

morphotactic regularities of the particular language. Johnson also demonstrates the effect of178

syllabification on word segmentation task using PCFGs (Johnson, 2008b). Johnson further mo-179

tivates the usability of the aforementioned unsupervised approaches for word segmentation and180



grammar induction tasks by extracting the collocational dependencies between words (Johnson181

and Demuth, 2010).182

Due to its nature of generalizability, Adaptor grammar has been used for a variety of tasks.183

Hardisty et al. (2010) achieves state-of-the-art accuracy in perspective classification using adap-184

tive Naïve Bayes model – the adaptor grammar based non-parametric Bayesian model. Besides185

this, adaptor grammar has been proven to be effective in grammar induction (Cohen et al.,186

2010). Grammar induction is an unsupervised syntax learning task. Authors achieved consid-187

erable results along with the finding that the variational inference algorithm (Blei et al., 2017)188

can be extended to the logistic normal prior instead of the Dirichlet prior. Neubig et al. (2011)189

proposed an unsupervised model for phrase alignment and extraction where they claimed that190

their method can be thought of as an adaptor grammar over two languages. Zhai et al. (2016)191

has presented a work, where the authors attempted to identify relevant suggestive keywords to a192

typed query so as to improve the results for search in an e-commerce site. The authors previously193

presented a new variational inference approach through a hybrid of Markov chain Monte Carlo194

and variational inference. It has been reported that the hybrid scheme has improved scalability195

without compromising the performance on typical common tasks of grammar induction.196

Botha and Blunsom (2013) presented a new probabilistic model which extends Adaptor gram-197

mar to make it learn word segmentation and morpheme lexicons in an unsupervised manner.198

Stem derivation in Semitic languages such as Arabic achieves better performance using this199

mildly context-sensitive grammar formalism. Again, Eskander et al. (2016) recently investigated200

with Adaptor Grammars for unsupervised morphological segmentation to establish a claim of201

language-independence. Keeping aside other baselines such as morphological knowledge input202

from external sources and other cascaded architectures, adaptor grammar proved to be outper-203

forming in majority of the cases.204

Another use of Adaptor grammar has been seen in identification of native language (Wong205

et al., 2012). Authors used adaptor grammar in identifying n-gram collocations of arbitrary206

length over a mix of Parts of Speech tags and words to feed them as feature in the classifier. By207

modelling the task with syntactic language models, authors showed that extracted collocations208

efficiently represent the native language. Besides grammar induction, Huang et al. (2011) fur-209

ther uses Adaptor grammar for machine transliteration. The PCFG framework helps to learn210

syllable equivalent in both languages and hence aids to the automatic phonetic translation. Fur-211

thermore, Feldman et al. (2013) recently explored a Bayesian model to understand how feedback212

from segmented words can alter the phonetic category learning of infants due to access of the213

knowledge of joint occurrence of word-pairs.214

As an extension to the standard Adaptor Grammar, O’Donnell (2015) presented Fragment215

Grammars which was built as a generalization of Adaptor Grammars. They generalise Adaptor216

Grammars by scoping the productivity and abstraction to occur at any points within individual217

stored structures. The specific model has adopted ‘stochastic memoization’ as an efficient sub-218

structure storing mechanism from the Adaptor grammar framework. It further memoizes partial219

internal computations via lazy evaluation version of the original storage mechanism given by220

Adaptor Grammar.221

4 Adaptor Grammar for Sanskrit222

Adaptor Grammar have also been used for Sanskrit as well, mainly as a means of obtaining223

variable length character n-grams to be used as features for classification tasks. Below, we224

describe two different applications, compound type identification, as well as identifying the225

Taddhita suffix for derivational nouns.226



4.1 Variable Length Character n-grams for compound type identification1227

Krishna et al. (2016) used adaptor grammars for identifying patterns present in different types228

of compound words. The underlying task was, given a compound word in Sanskrit, identify229

the type of the compound. The problem was a multi-class classification problem. The classifier230

needed to classify a given compound into one of the four broad classes, namely, Avyayībhāva,231

Dvandva, Bahuvrīhi, Tatpuruṣa.232

The system is developed as an ensemble based supervised classifier. We used Random Forests233

classifier with easy ensemble approach to handle the class imbalance problem persisting in the234

data. The classifier had majority of its labels in Tatpuruṣa. The presence of Avyayībhāva was235

the least. The classifier incorporated rich features from multiple sources. The rules from Aṣṭād-236

hyāyī pertaining to compounds which are of conditional nature i.e. contains those containing237

selectional constraints were encoded as a feature. This was encoded by applying those selec-238

tional restrictions over the input compounds. Variable length character n-grams for each class of239

compounds were obtained from adaptor grammar. Each filtered production from the compound240

class specific grammar was used as a feature. We also incorporated noun pairs that follows the241

knoweldge structure in Amarakośa as mentioned in Nair and Kulkarni (2010). We used selected242

subset of relations from Nair and Kulkarni (2010).243

We capture semantic class specific linguistic regularities present in our dataset using variable244

length character n-grams and character n-gram collocations shared between compounds using245

adaptor grammars.246

We learn 3 separate grammars namely, G1, G2 and G3, with the same skeletal structure in247

Figure 4a, but with different data samples belonging to Tatpuruṣa, Bahuvrīhi and Dvandva re-248

spectively. We did not learn a grammar for Avyayībhāva, due to insufficient data samples for249

learning the patterns. We use a ‘$’ marker to indicate the word boundary between the com-250

ponents, where the components were in sandhi split form. A ‘#’ symbol was added to mark251

the beginning and ending of the first and the final components, respectively. We also learn a252

grammar G4, where the entire dataset is taken together along with additional 4000 random pair253

of words from the Digital Corpus of Sanskrit, where none of the words appeared as a compound254

component in the corpus. The co-occurrence or the absence of it was taken as the proxy for255

compatibility between the components. The skeletal grammar in Figure 4b has two adapted256

non-terminals, both marked by ‘@’. Also, the adapted non-terminal ‘Word’ is a non-terminal257

appearing as a production to the adapted non-terminal ‘Collocation’. The ‘+’ symbol indicates258

the notion of one one or more occurrence of ‘Word’, as used in regular expressions. This is259

not standard to use the notation in productions as per context free grammar. This is ideally260

achieved using recursive grammars in CFGs with additional non-terminals. But, in order to261

present a simpler representation of skeletal grammar we followed this scheme. In subsequent262

representations we will be using recursiveness instead of the ‘+’ notation.263

Figure 4: a) Skeletal grammar for the adaptor grammar b) Derivation tree for an instance of a
production ‘#sa$ śa’ for the non-terminal @Collocation

1The work has been done as part of the compound type identification work published in Krishna et al. (2016).
Please refer to the aforementioned work for a detailed explanation of the concepts described here.



Every production in the learned grammars has a probability to be invoked, where likelihood264

of all the productions of a non-terminal sums to one. To obtain discriminative productions from265

G1, G2 and G3, we find conditional entropy of the productions with that of G4 and filter only266

those productions above a threshold. We also consider all the unique productions in each of267

the Grammars in G1 to G3. We further restrict the productions based on the frequency of the268

production in the data and the length of the sub-string produced by the production, both of269

them were kept at the value of three.270

We show an instance of one such production for a variable length character n-gram collocation.271

Here, for the adapted non-terminal @Collocation, we find that one of the production finally272

derives ‘#sa$ śa’, which actually is derived as two @Word derivations as shown in the Figure273

4b. We use this as a regular expression, which captures some properties that need to satisfied274

by the concatenated components. The particular production mandates that the first component275

must be exactly sa, as it is sandwiched between the symbols # and $. Now, since śa occurs after276

the previous substring which contains $ the boundary for both the components, śa should belong277

to the second component. Now, since as per the grammar both the substrings are independent278

@word productions, we relax the constraint that both the substrings should occur immediately279

one after the other. We treat the same as a regular expression, such that śa should occur after280

sa, and any number of characters can come in between both the substrings. For this particular281

pattern, we had 22 compounds, all of those belonging to Bahuvrīhi, which satisfied the criteria.282

Now, compounds where first component is ‘sa’ are mostly Bahuvrīhi compounds, and this283

is obvious to Sanskrit linguists. But here, the system was not provided with any such prior284

information or possible patterns. The system learnt the pattern from the data. Incidentally, our285

dataset consisted of a few compound samples belonging to different classes as well where the286

first component was ‘sa’.287

4.1.1 Experiments288

Dataset - We obtained a labelled dataset of compounds and the decomposed pairs of compo-289

nents from the Sanskrit studies department, UoHyd2. The dataset contains more than 32000290

unique compounds. The compounds were obtained from ancient digitised texts including Śrī-291

mad Bhagavat Gīta, Caraka saṃhitā among others. The dataset contains the sandhi split292

components along with the compounds. With more than 75 % of the dataset containing Tat-293

puruṣa compounds, we down-sample the Tatpuruṣa compounds to a count of 4000, to match294

with the second highest class, Bahuvrīhi. We find that the Avyayībhāva compounds are severely295

under-represented in the data-set, with about 5 % of the Bahuvrīhi class. From the dataset, we296

filtered 9952 different data-points split into 7957 data points for training and the remaining as297

held-out dataset.298

Result - To measure the impact of different types of features we incorporated, we train the299

classifier incrementally with different feature types. We report the results over the held-out300

data. At first we train the system with only Aṣṭādhyāyī rules and some additional hand-crafted301

rules. We find that the overall accuracy of the system is about 59.34%. Then we augmented302

the classifier by adding features from Amarakoṣa. We find that the overall accuracy of the303

system has increased to 63.81%. We then finally add the adaptor grammar based features which304

has increased the performance of the system to an accuracy of 74.98 %. The effect of adding305

adaptor grammar features were more visible for the improvement in performance of Dvandva306

and Bahuvrīhi. Notably, the precision for Dvandva and Bahuvrīhi increased by absolute values307

0.15 and 0.06 respectively, when compared to the results before adding adaptor grammar based308

features. Table 1 presents the result of the system with the entire feature set per Compound class.309

The addition of adaptor grammar feature has resulted in an overall increase of the performance310

of the system from 63.81 % to 74.91 %. The patterns for adaptor grammar were learnt only311

using the data from training set and the heldout data was not used. This was done so as to312

2http://sanskrit.uohyd.ac.in/scl/



Class P R F
A 0.92 0.43 0.58
B 0.85 0.74 0.79
D 0.69 0.39 0.49
T 0.68 0.88 0.77

Table 1: Classwise performance of the Random Forests Classifier.

ensure no over-fitting of data takes place. Also, we filtered the productions which are less than313

a length of 3 and does not occur many times in the grammar.314

4.2 Distinctive Patterns in Derivational Nouns in Taddhita3315

Derivational nouns are a means of vocabulary expansion in a language. A new word is created316

in a language where an existing word is modified by an affix. Taddhita is a category of such317

derivational affixes which are used to derive a prātipadika from another prātipadika. The chal-318

lenge here is to identify Taddhita prātipadikas from corpora in Sanskrit and also to identify319

their source words.320

Pattern based approaches often result in false positives. The edit distance, a popular distance321

metric to compare the characterise similarity of two given strings, between the source and derived322

words due to the patterns tends to vary from 1 to 6. For example, consider the word ‘rāvaṇi’323

derived from ‘rāvaṇa’, where the edit distance between the words is just 1. But, ‘Āśvalāyana’324

derived from ‘aśvala’ has an edit distance of 6. Also, the word ‘kālaśa’ is derived from the word325

‘kalaśa’, but ‘kāraṇa’ is not derived from ‘karaṇa’. Similarly ‘stutya’ is derived from ‘stu’ but326

using a kṛt affix. But, dakṣiṇā (South direction) is used to derive dākṣhiṇātya (Southern) with327

a taddhita affix. If we have to use vṛddhi as an indicator, which is the only difference between328

both the examples, then there are cases such as kāraka derived from kṛ for kṛt and aṣvaka329

is derived from aṣva using taddhita. All these instances show the level of ambiguity that can330

arise in deciding the pairs of source and derived words using taddhita. All the aforementioned331

examples show the need for knowledge of Aṣṭādhyāyī (or the knowledge of affixes), semantic332

relation between the word pairs or a combination of these to resolve the right set of word pairs.333

The approach proposed in Krishna et al. (2017) first identifies a high recall low precision334

set of word pairs from multiple Sanskrit Corpora based on pattern similarities as exhibited by335

the 137 affixes in Taddhita. Once the patterns are obtained, we look for various similarities336

between the word pairs to group them together. We use rules from Aṣṭādhyāyī especially from337

Taddhita section. But since we could not incorporate rules of semantic and pragmatic nature, to338

compensate for the missing rules, we tried to identify patterns from the word pairs, specifically339

the source words, to be used. We use Adaptor Grammar for the purpose.340

Currently, we do not identify the exact affix that leads to the derivation of the word. Also,341

since the affixes are distinguished not just by the visible pattern, but also by the ‘it’ markers,342

it is challenging to identify the exact affix. So, we group all those affixes that result in similar343

patterns into a single group. All the word pairs that follow the same pattern belongs to one344

group. To further increase the group size, we group all those entries that differ by vṛddhi and345

guṇa also into the same group. Such distinctions are not considered while forming a group.346

Effectively we only look into the pattern at the end of the ‘derived word’. We call all such347

collection of groups based on the patterns as our ‘candidate set’.348

For every distinct pattern in our candidate set, we first identify the word pairs and then create349

a graph with the given word pairs. A word pair is a node and edges are formed between nodes350

where they match different set of similarities. The first set of similarities are based on rules351

directly from Aṣṭādhyāyī, while the second set of node similarities were using character n-grams352

3The work has been done as part of the Derivational noun word pair identification work published in Krishna
et al. (2017). Please refer to the aforementioned work for a detailed explanation of the concepts described here.



using Adaptor grammars. Once the similarities were found, we apply the Modified Adsorption353

approach (Talukdar and Crammer, 2009) on the graph. The modified adsorption is a semi354

supervised label prorogation approach where labels are provided to a subset of nodes and then355

propagated to the remaining nodes based on the similarity it shares with other nodes.356

Figure 5 shows a sample construction of the graph for the word pairs, where words differ by a357

pattern ‘ya’. Here every pair obtained by pattern matching is a node. Now, Modified Adsorption358

is a semi supervised approach. So, we need limited number of labelled nodes. The nodes marked359

in grey are labelled nodes. They are called as seed nodes. The label here is just binary, i.e.360

a word pair can either be a true Taddhita pair or not. Now, edges are formed between the361

word pairs. Modified Adsorption provides a mean of designing the graph explicitly, while many362

of its predecessors relied more on nearest neighbour based approaches (Zhu and Ghahramani,363

2002). Also, the edges can be weighted based on the closeness between different nodes. Once364

the graph structure is defined, we perform the modified adsorption. in this approach, the labels365

from the seed nodes are propagated through the edges, such that the labels from seed nodes are366

propagated to other unlabelled nodes as well. The highly similar nodes should be given similar367

labels or else the optimisation function penalises any other label assignments. We use three368

different means of obtaining similarities between the nodes. The first such set of similarity is369

the rules in Aṣṭādhyāyī that the pair of nodes have a match with. The second set of similarity370

is the sum of probabilities of productions from adaptor grammar, which are matched for a pair371

of nodes. The third is the word vector similarity between the source words in the node pairs.372

For a detailed working of system and a detailed explanation of each set of features please refer373

to Krishna et al. (2017). Here, we republish the working of the second set of features obtained374

using Adaptor grammar and the results of the model thereafter.375

Figure 5: Graph structure for the group of words where derived words end in ‘ya’. Nodes in
grey denote seed nodes, where they are marked with their class label. The Nodes in white are
unlabelled nodes.

Character n-grams similarity by Adaptor Grammar - Pāṇini had an obligation to376

maintain brevity, as his grammar treatise was supposed to be memorised and recited orally by377

humans (Kiparsky, 1994). In Aṣṭādhyāyī, Pāṇini uses character sub-strings of varying lengths378



as conditional rules for checking the suitability of application of an affix. We examine if there379

are more such regularities in the form of variable length character n-grams that can be observed380

from the data, as brevity is not a concern for us. Also, we assume this would compensate for381

the loss of some of the information which Pāṇini originally encoded using pragmatic rules. In382

order to identify the regularities in pattern in the words, we use Adaptor grammar.383

In Listing 1, ‘Word’ and ‘Stem’ are non-terminals, which are adapted. The non-terminal384

‘Suffix‘ consists of the set of various end-patterns. In this formalism, the grammar can only385

capture sequential aspects in the words and hence attributes like vṛddhi that happen at the386

internal of the word, non-sequential to rest of the modified pattern, need not be effectively387

captured in the system.388

Word → Stem Suffix389

Word → Stem390

Stem → Chars391

Suffix → a|ya|.....|Ayana392

Listing 1: Skeletal CFG for the Adaptor grammar393

The set A2 captures all the variable length character n-grams learnt as the productions by394

the grammar along with the probability score associated with the production. We form an edge395

between two nodes in Gi2, if there exists an entry in A2, which are present in both the nodes.396

We sum the probability value associated with all such character n-grams common to the pair397

of nodes vj , vk ∈ Vi, and calculate the edge score τj,k. If the edge score is greater than zero, we398

find the sigmoid of the value so obtained to assign the weight to the edge. The expression for399

calculating τj,k in the equation given below uses the Iverson bracket (Knuth, 1992) to show the400

conditional sum operation. The equation essentially makes sure that the probabilities associated401

with only those character n-grams gets summed, which are present in both the nodes. We define402

the edge score τj,k, weight set Wi2 and Edge set Ei2 as follows.403

τj,k =

|A2|∑
l=1

ak2,l[ak2,l = aj2,l]

E
vk,vj
i2 =

{
1 τj,k > 0
0 τj,k = 0

W
vk,vj
i2 =

{
σ(τj,k) τj,k > 0
0 τj,k = 0

As mentioned, we use the label distribution per node obtained from phase 1 as the seed labels404

in this setting.405

4.2.1 Experiments406

As we mentioned, we use three different set of similarity sets for weighting the edges. But,407

in Modified Adsorption (MAD) we cannot provide different set of similarity functions together.408

While a weighted average of the similarities is an option, we chose to go with a different approach409

altogether. We will apply the similarity weights sequentially on the graph. Here, we gain a410

comparative advantage for this approach and is explained in the following lines. In Modified411

Adsorption, we need to provide seed labels, which are labels for some of the nodes. In reality,412

the seed nodes do not have a binary assignment of the labels, rather a distribution of the413

labels (Talukdar and Crammer, 2009). So after the run of each similarity set, we get a label414

distribution for each of the node in the graph. This label distribution is used as a seed nodes415

in the subsequent run of the modified adsorption. The seed nodes also gets modified during the416

run of the algorithm.417



Dataset - We use multiple lexicons and corpora to obtain our vocabulary C. We use In-418

doWordNet (Kulkarni et al., 2010), the Digital Corpus of Sanskrit4, a digitised version of the419

Monier Williams5 Sanskrit-English dictionary, a digitised version of the Apte Sanskrit-Sanskrit420

Dictionary (Goyal et al., 2012) and we also utilise the lexicon employed in the Sanskrit Heritage421

Engine (Goyal and Huet, 2016). We obtained close to 170,000 unique word lemmas from the422

combined resources.423

Results - In Krishna et al. (2017), we report results from 11 of the patterns from a total424

of more than 80 patterns we initially obtained. Due to lack of enough evidence in the form425

of data-points we did not attempt the procedure for others. here, we only show results for 5426

of the patterns, which were selected based on the size of evidence from the corpora we obtain.427

Since we use each of the similarity set sequentially, we have outputs at each of the phase of428

the sequences. The result of the system after incorporating Aṣṭādhyāyī rules is MADB1, while429

that after incorporating Adaptor grammar ngrams is MADB2 and the final result after the430

word vector similarity is MAD. Now, since we have 5 different patterns, we have an index i431

sub-scripted to the systems to denote the corresponding patterns. We additionally use a baseline432

called as Label Propagation (LP), based on the algorithm by Zhu and Ghahramani (2002). We433

can find that the systems which incorporates adaptor grammar are the MAD and MADB2.434

Both the systems are the best and second best performing systems respectively.

Pattern System P R A

a
MAD 0.72 0.77 73.86
MADB2 0.68 0.68 68.18
MADB1 0.49 0.52 48.86
LP 0.55 0.59 55.68

aka
MAD 0.77 0.67 73.33
MADB2 0.71 0.67 70
MADB1 0.43 0.4 43.33
LP 0.75 0.6 70

in
MAD 0.74 0.82 76.47
MADB2 0.67 0.70 67.65
MADB1 0.51 0.56 51.47
LP 0.63 0.65 63.23

ya
MAD 0.7 0.72 70.31
MADB2 0.61 0.62 60.94
MADB1 0.53 0.59 53.12
LP 0.56 0.63 56.25

i
MAD 0.55 0.52 54.76
MADB2 0.44 0.38 45.24
MADB1 0.3 0.29 30.95
LP 0.37 0.33 38.09

Table 2: Comparative performance of the four competing models.
435

Table 2 shows the results for our system. We compare the performance of 5 different patterns,436

selected based on the number of candidate word pairs available for the pattern. The system437

proposed in the work MADi performs the best for all the 5 patterns. Interestingly, MADB2i438

is the second best-performing system in all the cases. The system uses 3 kind of similarity439

measures in a sequential pipeline of which adaptor grammar comes as the second feature set. To440

understand the impact of adding adaptor grammar based features, we can compare the results441

with that of MADB1i. The system shows the result for each of the pattern before using adaptor442

grammar based features.443

A baseline using the label propagation algorithm was also used. The motive behind the444

label propagation baseline was to measure the effect of Modified adsorption on the task.445

In Label Propagation, we experimented with the parameter K with different values, K ∈446

{10, 20, 30, 40, 50, 60}, and found that K = 40, provides the best results for 3 of the 5 end-447

patterns. The values for K are set by empirical observations. We find that for those 3 patterns448

4http://kjc-sv013.kjc.uni-heidelberg.de/dcs/
5http://www.sanskrit-lexicon.uni-koeln.de/monier/



(‘a’,‘in’,‘i’), the entire vertex set has vṛddhi attribute set to the same value. For the other two449

(‘ya’,‘aka’), K = 50 gave the best results. Here, the vertex set has nodes where the vṛddhi450

attribute is set to either of the values. For a better insight towards this finding, the notion of451

the pattern that we use in the design of the system needs be elaborated. A pattern is effectively452

the substrings that remain in both the source word and derived word after removing the portions453

which are common in both. This pattern is the visible change that happens in the derivation454

of a word. To reduce the number of distinct patterns we did not consider the pattern changes455

that occur due to vṛddhi and guṇa as distinct patterns, rather we abstracted them out. Now,456

multiple affixes may lead to generation of the same set of patterns. In the case of pattern, rather457

end-pattern, (Krishna et al., 2017), ‘a’, the effect may be the result of application of one of the458

following affixes such as aṇ añ etc. Here, all the affixes of pattern ‘a’ leads to vṛddhi. But for459

the pattern ‘ya’, the affixes may or may not lead to a vṛddhi. We report the best result for each460

of the system in Table 2.461

5 Inference of Syntactic Structure in Sanskrit462

In this section, we are reporting an ongoing work, where we investigate the effectiveness of using463

Adaptor grammar for inference of syntactic structures in Sanskrit. We experiment the effect of464

Adaptor Grammar in capturing the ‘natural order’ or the word order followed in prose. For this465

task, we use a dataset of Sanskrit sentences which are in prose order. The dataset consists of466

2000 sentences from Pañcākhyānaka and more than 600 sentences from Mahābhārata . For this467

experiment, we only consider the morphological classes of the words involved in the sentences.468

Currently we use the morphological tags as used in the Sanskrit Library6. We keep 500 of the469

sentences for testing and the remaining 2000 are used for identifying the patterns. Some of the470

constructs had one or two words, which we ignore for the experiment.471

We learn the necessary productions in a grammar and then evaluate the grammar on the472

500 test sentences. We calculate the likelihood of generating each of the sentence. In order473

to test the likelihood of the correct sentence, we also generate all possible permutations of the474

morphological tags in each of the test sentences. For sentences of length > 5, we break them475

into sub-sequences of 5 and find the permutations of the sub-sequences and concatenate them476

again. This is used as a means of sampling the possible combinations as the explicit enumeration477

of all the permutations are computationally costly. From the generated candidate set we find478

the likelihood of the ground truth sentence and rank them. We report our results based on two479

measures.480

1. Edit Distance (ED) - The edit distance of the top ranked sentence among the candidate481

set for a given sentence with that of the ground truth. Edit distance is roughly described482

as the minimum number of operations required to convert one string to another based on483

a fixed set of operations with predefined costs. We use the standard Levenshtein distance484

(Levenshtein, 1966), where the three operations are ‘insert’, ‘delete’ and ‘substitution’. All485

the 3 operations have a cost of 1. We compare the ground truth sentence with the predicted486

sentence that has the highest likelihood to obtain the measure. The lesser the edit distance487

is better the result.488

2. Mean Reciprocal Rank (MRR) - Mean Reciprocal rank is the average of reciprocal489

ranks for each of the queries. Here a test sentence is treated as a query. The different490

permutations are the retrieved results for the query. So from the ranked retrieved list, we491

find the inverse of the rank of the gold standard sentence. The better the MRR Score,492

better the result.493

1

|Q|

|Q|∑
i=1

reli
ranki

6http://sanskritlibrary.org/helpmorphids.html



We first attempt the same skeletal grammars as proposed by Johnson et al. (2007b) for494

capturing the syntactic regularities. We used both the ‘unigram’ and ‘collocation’ grammar as495

mentioned in the work. Figures 6 and 7 show the first two grammars that we have used for the496

task.497

Figure 6: Unigram grammar as used in Johnson et al. (2007b)

Figure 7: Collocation grammar as used in Johnson et al. (2007b)

With these grammars, we experimented with various hyper-parameter settings. Since both498

the grammars are right recursive grammars, the length of the productions so learnt from the499

grammar varied greatly. Though this is beneficial for identifying the word lengths, the associa-500

tion with the morphological tags cannot be much longer. Secondly, the number of productions501

to be learnt is a user defined hyper-parameter. We find that due to the possible varying length502

size of strings and less number of observations, main morphological patterns that were learnt as503

the productions were not repeated enough in the observations to be statistically significant.504

Figure 8: Modified grammar by eliminating the recursiveness in the Adapted nonterminal
‘@Word’.

We modified both the grammars to restrict the length of the productions to a maximum of505



4 and limited the number of productions to be learnt. We show the modification done to the506

adapted non-terminal ‘word’ in both the grammars. This restricts the number of productions507

that ‘word’ can learn. The modified portion can be seen in Figure 8.508

Grammar MRR ED
Unigram 0.2923 4.87
Collocation 0.3016 4.66
Modified Unigram 0.4025 3.21
Modified Collocation 0.5671 2.20

Table 3: Results for the word reordering task.

The results for all the four grammars are shown in Table 3. It can be seen that there is509

considerable improvement in the Mean reciprocal rank and the edit distance measures for the510

task with the restricted grammars. On our manual inspection of the patterns learnt from all the511

grammars, it was observed that the initial skeletal grammars were essentially over-fitting the512

training instances due to longer lengths. The modified grammars could reduce the Edit distance513

to almost half and double the Mean Reciprocal Rank for the task.514

For example, consider the sentence ‘tatra budhaḥ vrata caryā samāptau āgacchat (ā agacchat)’515

from Mahābhārata. Consider the corresponding sequence of morphological tags as shown, ‘i516

m1s iic f3s f7s i ipf[1]_a3s’.7 We filter out the ‘iic’ tags as the ‘iic’ tag stands for compound517

component. It can be seen as part of the immediate next noun tag following it. We do not filter518

out the ‘i’ tags as of now, where ‘i’, stands for the indeclinable. So in effect the tag sequence is519

‘i m1s f3s f7s i ipf[1]_a3s’. The ‘Collocation’ Grammar had the following sequence as the most520

likely output ‘i f7s i m1s f3s ipf[1]_a3s’ with an edit distance of 4. In the ‘Modified Collocation’521

Grammar the predicted sequence is ‘i m1s f3s i f7s ipf[1]_a3s’. The edit distance of the sentence522

is 2. Here, it can be seen that just 2 tags have swapped their position. The tags ‘i’ and ‘f7s’523

have changed their positions, but are still at adjacent positions to each other. The fourth and524

fifth words in the original sentence have changed to become the fifth and fourth words in the525

predicted sentence.526

The results shown here are preliminary in nature. What excites us the most is the provision527

this framework provides to incorporate the syntactic knowledge which is explicitly defined in our528

grammar formalisms. With this work, we plan to extend the work to two immediate tasks. First,529

we plan to extend the word-reordering task to the poetry to prose conversion task. Currently, the530

task is to convert a bag of words into its corresponding prose or the ‘natural order’. But we will531

investigate the regularities involved in poetry apart from the aspects of meter and incorporate532

the regularities to guide the grammar in picking up those patterns. We can also attempt to533

learn the conditional probabilities for the syntactic patterns in both poetry and prose. Second,534

we will be performing the Dependency parse analysis of given sentences at a morphological535

level. A dependency analysis of a sentence using Context free grammar, i.e., phrase structured536

grammars are not straightforward. Goyal and Kulkarni (2014) presents a scheme for converting537

Sanskrit constructs in constituency parse structure to Dependency parse structure. Headden III538

et al. (2009) provide some insights into use of PCFGs and lexical evidence for unsupervised539

dependency parsing. Currently we will be working only on the projective dependency parsing.540

We will be relying on the Dependency Model with Valence to define our PCFG formalism for541

dependency parsing.542

6 Conclusion543

The primary goal of this work was to look into the applicability of the Adaptor Grammars, a544

non-parametric Bayesian approach for learning syntactic structures from observations. In this545

work, we introduced the basic concepts of the Adaptor grammars, various applications in which546

7We follow the notations from Sanskrit Library - http://sanskritlibrary.org/helpmorphids.html



the grammar is used in NLP tasks. We provide detailed descriptions of how adaptor grammar is547

used in word level vocabulary expansion tasks in Sanskrit. The adaptor grammars were used as548

effective sub-word n-gram features for both Compound type identification and Derivational noun549

pair identification. We further showed the feasibility of using adaptor grammar for syntactic550

level analysis of sentences in Sanskrit. We plan to investigate the feasibility of using the Adaptor551

grammars for dependency parsing and poetry to prose conversion tasks at sentence level.552
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