
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 4, DECEMBER 2018 1083

Harnessing Twitter for Answering Opinion
List Queries

Ankan Mullick , Pawan Goyal, Niloy Ganguly, and Manish Gupta

Abstract— Opinion list (OL) queries like “valentines day gift
ideas” and “best anniversary messages for your parents” are
quite popular on web search engines. Users expect instant
answers comprising of a list of relevant items (OL) for such
a query. Surprisingly, current search engines do not provide any
crisp instant answers for queries in this critical query segment.
To the best of our knowledge, we present the first system that
tackles such queries. Although such social factors are heavily
discussed on online social networks like Twitter, extracting such
lists from tweets is quite challenging. The challenges lie in
discovering such lists from tweets, rank the discovered list items
as well as handle lists with very low cardinality (tail OLs).
We present an end-to-end system that: 1) identifies these “OLs”
from a large number of Twitter hashtags using a classifier trained
using novel task-specific features; 2) extracts suitable list answers
from relevant tweets using carefully designed regex patterns;
3) uses the learning to rank framework to present a ranked list
of these items; and 4) handles tail lists using a novel algorithm
to borrow list items from similar lists. Crowd-sourced evaluation
shows that the proposed system can extract OLs with a good
accuracy.

Index Terms— List item extraction, opinion lists (OLs), opinion
mining, opinion queries, opinion ranking, opinion search.

I. INTRODUCTION

WEB content and web search have matured significantly
over the past two decades. Beyond the 10 blue links

interface, search engines have now become entity aware, show
instant answers, show multimodal heterogeneous answers, and
so on. In the past few years, searching one particular type
of queries that has increased significantly is the segment of
opinionated queries. Opinionated queries seek a list of items
as an answer and are often related to social topics. A few
examples include “innovative marketing ideas for managers,”
“how to wish good night,” “fun events in Miami,” and so on.
Users put up such queries in the hope of obtaining innovative,
witty, popular, and informative answers from opinions and
experiences expressed on matching webpages. While some of
these queries seek information about social events (e.g., “ways

Manuscript received April 8, 2018; revised September 8, 2018; accepted
November 4, 2018. Date of current version December 3, 2018. (Corresponding
author: Ankan Mullick.)

A. Mullick is with Microsoft, Hyderabad 500032, India, and also with the
Department of Computer Science and Engineering, IIT Kharagpur, Kharagpur
721302, India (e-mail: ankan.mullick@microsoft.com).

P. Goyal and N. Ganguly are with the Department of Computer
Science and Engineering, IIT Kharagpur, Kharagpur 721302, India (e-mail:
pawang@cse.iitkgp.ernet.in; niloy@cse.iitkgp.ernet.in).

M. Gupta is with Microsoft, Hyderabad 500032, India (e-mail: gmanish@
microsoft.com).

Digital Object Identifier 10.1109/TCSS.2018.2881186

Fig. 1. Yearwise percentages of OL queries.

to do wedding decorations” and “how to organize a concert”),
many others are related to social situations and moods (e.g.,
“late night conversations,” “tricks to feed your baby,” and
“common lies people say”). Fig. 1 shows percentage of
“opinion list (OL) queries” on Bing since 2011. It shows a
significant increase of 36.7% and 25.9% in 2015 and 2016,
respectively1 making it almost 2% of entire Bing query.

Search engines are very effective at displaying instant
answers for factoid queries like “weather New York” or
“temperature Singapore.” However, they hardly support instant
answers for such OL queries. In Fig. 2, we show top Google
results for the opinion query “8th grade memories.”2 We find
that Google does not provide instant answers. Fig. 3 shows
a snapshot from the first Google result, which is a Prezi
presentation.

It requires significant efforts to extract useful list answers
from the first Google result page: “chromebooks,” “first day
at school,” and so on from the flash presentation. Similarly,
the next result provides some list items but in the form of a
flash video. For a large number of other such queries, no good
list item can be obtained even after browsing through the top
few results.

One of the primary reasons behind the explosion of such
queries is proliferation of such content in social media such as
Twitter. Twitter is, by its nature, a social platform for people
to express their opinions, choices, and suggestions through
tweets and hashtags [1]. Consequently, Twitter hashtags can
be clearly exploited toward shortlisting items for such OL
queries. A few tweets for “8th grade memories” are shown

1To calculate these numbers, we took the Bing query log for the first day of
December of every year. We filtered this list using patterns for list type queries.
Then, we randomly selected 200 queries out of this filtered set. We manually
labeled the queries in this sample were as “OL queries” or not. The graph
shows the fraction of queries meeting the filter criteria among all the queries
multiplied by the fraction of queries which were labeled as “OL queries” in
our random sample.

2Bing also displays similar results

2329-924X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0721-1359

1084 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 4, DECEMBER 2018

Fig. 2. Top google results for “8th grade memories,” retrieved on
March 4, 2018.

Fig. 3. Snapshot from the Prezi presentation corresponding to the first google
result for “8th grade memories.”

in Fig. 4. As is evident, very interesting list items can be
quickly extracted from such tweets: “singing the theme song
to old TV shows,” “watching some movie/listening to some
song,” “scoring for the other team in a tournament,” and so
on. Subsequently, these results can be presented in a list form
as search output. The aim of this paper is to retrieve structured
information from those discussions and produce a list of items
corresponding to each OL. We implement the methodology on
Twitter data.

On Twitter, among different types of conversational tweets,
a specific category of tweets discusses “social topics”—we
refer to the hashtags that anchor them as OL-hashtags. Exam-
ples of OL-hashtags include #tipsforinteriordesign, #10things-
peoplelovetodo, #adviceforjunorstudents, and so on. Formally,
we define OL-hashtags as a particular category of hashtags,
where users talk about: 1) a list of things, specific to the
corresponding social topic or a list of list of things men-
tioned in tweets and 2) among a random sample of some
tweets containing this hashtag, a good fraction contain the
list items specific to this opinionated hashtag. OL-hashtags
can be broadly classified into two categories: 1) objective—
that contains factual objects as list items, e.g., names of
places in #thingstoseeinbarcelona or movie names in #3movi-
esthatmakeyoucry and 2) subjective—that contain list items
conveying people’s views on a topic, e.g., #schoolmemories
expresses subjective list items conveying school life memories.

Fig. 4. Some tweets for “8th grade memories.”

OL-hashtags are not similar to traditional lists3 or Twitter
idioms.4

However, we need to overcome many difficulties to build a
system as follows.
OL-hashtags

1) constitute a very small percentage of all hashtags, hence,
detecting these sparse identities is challenging.

2) Tweets are unstructured and noisy, so extraction of
valid list items from the unstructured texts and URLs
(contained within tweets) is not trivial.

3) The derived valid list items may not be relevant. For
example, corresponding to “late night party ideas” query,
the derived item We need #latenightpartyplans provides
no relevant lists, hence, deriving relevant items from the
valid list is challenging.

4) Finally, many OL-hashtags occur only in few tweets
leading to retrieval of only a small number of relevant
list items.

It is challenging to populate such sparse tail lists with relevant
list items from other similar hashtags.

Toward overcoming the above-mentioned challenges,
we make the following contributions.

1) We designed a classifier to extract OL-hashtags from
Twitter using the very specific hashtag and tweet-level
features. Our recall optimized classifier provides a pre-
cision of 75.5% at a recall of 95.3% (Section IV).

2) We extract list items from the tweets containing the
OL-hashtags using regular expressions with an accuracy
@10 of 66.12% (Section V).

3Traditional list items are mostly factual, not related to people’s opinion or
experiences. For example, “Oscar winners 2017.”

4Idioms are defined as tags representing a conversational theme on Twitter,
consisting of a concatenation of at least two common words, while the
concatenation does not include names of people or places and the full
phrase cannot be a proper noun itself. We observe that while all the OLs
qualify this definition, all idioms are not query type hashtags where the
user expects a list of answers. OL-hashtags are a subset of idiom set; for
instance, from the idiom list of five—#africanproblems, #aboutmenight, #awk-
wardcompanynames, #musicmonday, and #childhoodfeels and only three—
#africanproblems, #awkwardcompanynames, and #childhoodfeels qualify as
opinion list hashtags.

MULLICK et al.: HARNESSING TWITTER FOR ANSWERING OL QUERIES 1085

Fig. 5. Overall framework.

3) Furthermore, using a learning-to-rank approach, we pro-
mote the relevant settings to a higher rank. This provides
a Precision@10 of 91.31% and Precision@20 of 90.72%
(Section VI).

4) We also designed mechanisms to handle tail OLs
(Section VII).

The overall framework of these steps is illustrated in Fig. 5.
To enrich the data set (Section III), we manually annotated
1001 OL-hashtags, along with manually evaluated list items.

Note that our classifier to extract OL-hashtags from Twitter
was first proposed in a prior study [2]. This paper extends our
prior work as follows. First, we extract the list items from
the tweets containing these OL-hashtags and use a learning-
to-rank approach to promote the relevant settings to a higher
rank. Second, we also design mechanisms to handle the tail
opinion lists.

II. RELATED WORK

We review related work on the categorization of Twitter
hashtags, opinion mining, and structured data extraction.

A. Categorization of Twitter Hashtags

Romero et al. [3] worked on the problem of categorizing
Twitter hashtags into various categories such as celebrity,
sports, idioms (conversational theme marker hashtags), and
so on. They also discussed as to how hashtags of different
types and topics exhibit the different mechanism of spreading.
Lee et al. [4] classified Twitter trending topics/hashtags across
multiple categories in real time.

Naaman et al. [5] characterized and categorized Twitter
trend variations across different geographical areas.
Bhattacharya et al. [6] identified various topical groups in
Twitter and analyzed their characteristics. Zubiaga et al. [7]
explored various hypotheses for trending hashtags toward
early detection of trending topics and also developed a
real-time classifier to classify Twitter trending topics into
different categories. Tsur and Rappoport [8] explored how
Twitter hashtags cause information diffusion considering each
tweet as an idea and predicted characteristics of spreading
in the community. Maity et al. [9] built a classifier with

86.9% accuracy, decent precision, and recall to detect idiom
hashtags. Their proposed two-stage framework also predicts
the popularity of Twitter idiom hashtags in the different
time frame after the birth of the hashtags. Rudra et al. [10]
filtered the hashtag idioms based on community detection
on Twitter. They also showed how users oriented to Twitter
idiom are clustered into one community while topical users
get clustered into another. They also discussed the trending
dynamics of idiom users. None of these works, however, have
focused on OL-hashtags. We present an approach to identify
OL-hashtags with high accuracy.

B. Opinion Mining

Opinion mining is a major field of study for the last
two decades. Researchers have explored opinions in various
dimensions. Kim and Hovy [11] presented the methodology
to detect an opinion with its holder and topic given a sen-
tence in online news media texts. Qadir [12] worked on
opinion mining in customer reviews and product features.
Scholz and Conrad [13] explored the field of opinion tonality
identification. Yu and Hatzivassiloglou [14] developed a model
to identify opinions and classify positive and negative opin-
ions in a question answering system. Wiebe and Riloff [15]
distinguished subjective and objective sentences using sen-
tence level features. Asher et al. [16] detected categorical
and subcategorical opinions. Rajkumar et al. [17] identified
opinions and facts from news articles using hyperlink-induced
topic search (HITS) algorithm in a graphical frame-
work. Mullick et al. [18] extended this HITS framework
to detect diverse opinions and then built classifiers to
detect opinion subcategories by designing Opinion Diver-
sity Algorithm (OP-D). Mullick et al. [19] developed an
opinion-fact classifier to detect opinionatedness in online
social media. Mullick et al. [20] identify opinion and fact
subcategories from social web. However, none of the previous
work focused on exploring opinionated queries to find list
items as possible answers, or even extracting opinions from
Twitter and putting these as lists.

C. Extraction of Structured Content From Web
and Social Media

Extraction of structured content from the web is a
well-studied problem. Liu et al. [21] developed a novel and
effective technique on mining contiguous and noncontiguous
data record on the web based on string matching algo-
rithm. Gatterbauer et al. [22] approached the problem of
domain-independent information extraction from web tables
by shifting our attention from the tree-based representation of
web pages to a variation of the 2-D visual box model used
by web browsers to display the information on the screen.
Cafarella et al. [23] attempted to build a comprehensive Web
database by running multiple domain-independent extractors
in parallel over a Web crawl, then combining their outputs
into a single large entity-relationship database.

Miao et al. [24] presented a novel approach to extract data
records from Web pages. Their method first detects the visually
repeating information on a Web page and then extracts the

1086 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 4, DECEMBER 2018

Fig. 6. Distribution of tweets and URLs for our data set.

data records. Hybrid approaches for generalized list extrac-
tion have also been proposed by Fumarola et al. [25], [26].
Finding high-quality content in social media has also been
well studied by Agichtein et al. [27]. Rafiei and Li [28] and
Wang et al. [29] worked on extracting information from the
web using the wildcard and other queries.

Zhang et al. [30] worked on extraction of top-k lists from
some specific types of webpages. However, this approach
assumes a given structure of the webpages and is not applica-
ble, in general, on noisy social media data. We study the
problem of collecting list items from the noisy tweet data and
providing top-ranked list items.

III. DATA SET

To prepare our data set, we collected ∼4M Twitter hashtags
each with a minimum frequency of 20 from January 2015 to
June 2015 using the Twitter Streaming application program-
ming interface (API).5 Recall that the set of OL-hashtags is a
subset of idioms. Hence, we first removed nonidioms from this
set. The state-of-the-art idiom detection algorithm [9] resulted
in identification of ∼67K idioms from the ∼4M hashtags.
Furthermore, these idioms were manually annotated to identify
1001 OL-hashtags. The annotation guidelines were to select
only those hashtags as OL-hashtags, which can lead to list
type answers. While selecting the OL-hashtags, the annotators
also labeled these as “subjective” or “objective.” 589 OL-
hashtags were labeled as subjective, while 412 were labeled as
objective. To be able to train a classifier to detect OL-hashtags
from idioms, we also annotated another 1001 hashtags which
are not OL-hashtags to obtain a balanced data set of total
2002 hashtags.

English tweets corresponding to all 2002 hashtags were also
collected. Often times, such tweets contain relevant URLs. The
data set contains ∼204.43 million tweets and ∼85.07 million
URLs, respectively. Fig. 6 shows detailed statistics of the
tweets and URLs distribution for the OL-hashtags. In the
figure, the x-axis represents various ranges of tweets and URLs
for any OL-hashtag, and the y-axis represents the percentage
of total hashtags, which have tweets/URLs in this range. For
example, only 13.1% of total hashtags contain tweets within
range (1–100) while 19.3% of total hashtags contain URLs in
range (1–100).

IV. OL-HASHTAG DETECTION

In this section, we discuss the design of a classifier that
can identify OL-hashtags from the rest. We first perform the
following preprocessing steps.

5https://dev.twitter.com/streaming/firehose

1) Segmentation: Not all hashtags are in CamelCase style
(e.g., #BeTheHope) so it is not trivial to identify con-
stituent words from a hashtag. We segment each hashtag
using a modified version of the Viterbi Algorithm [31]
and the Google n-gram corpus.6

2) Part of Speech (POS) Tagging: We use Carneigie Mellon
University (CMU) part of speech (POS) tagger for
tweets [32] to identify different POS tags, @-mentions,
URLs, and so on.

The data preprocessing step is followed by extracting the
following hashtag and tweet features.

A. Features

All features can be categorized into three broad feature
subsets—language features, search features, and Tweet fea-
tures.

Language Features
a) Hashtag Length: Number of characters in the hashtag.
b) Number of Words: After segmenting the hashtag,

we count the number of words.
c) Presence of Days: This is a binary feature that captures

the presence of names of days of the week (e.g., Sunday,
Monday, and so on).

d)–i) Presence and Count of POS Tags: After doing Part
of Speech Tagger (POS) tagging by CMU POC tagger [32],
the presence of some POS tags is considered as binary
features: preposition (d), interjection (e), whereas some are
considered as numeric features: the count of nouns (f), pro-
nouns (g), adjectives (h), and verbs (i).

j) POS Tag Entropy: Entropy of the hashtag denotes POS
tag diversity. After POS tagging the hashtag with the CMU
POS tagger, we take 14 POS tags (noun, pronoun, verb, and
so on) to calculate the entropy using the standard definition
as follows:

Entropy(i) = −
14∑

j=1

pi j × log(pi j) (1)

where i denotes the respective hashtag and j denotes the
14 POS tags.

k) Vocabulary Ratio: Ratio of the count of vocabulary words
to out-of-vocabulary words.

l) Presence of Numbers: This is a binary feature based on
the presence of numbers in the hashtag.

m) Presence of Plurals: If the noun in the segmented
hashtag is plural then this feature is set to 1 otherwise 0. For
example in #vdaygiftideas, “ideas” is the plural form of “idea.”
Similarly, in #fishingtips, “tips” is the plural form of “tip.”

n) Presence of Category Match: We find that many of
the opinion lists follow some specific patterns. It is a binary
feature that captures the presence of any such patterns as
follows: 1) wh word-*-verb: #howtolearnfromyourmistakes,
#whatdreamsaremadeof, #10peoplewhomeanalottome; 2) **-
in-〈num〉-words: #senioryear in4words, #lovestoryin5words;
3) top-〈num〉*-adv*-adj*-noun: #top3romanticmovies;
4) presence of plurals at the beginning or end:

6http://books.google.com/ngrams

MULLICK et al.: HARNESSING TWITTER FOR ANSWERING OL QUERIES 1087

TABLE I

CATEGORIZATION OF FEATURES FOR OL DETECTION

#unsolvedmysteries, #thingsthatmakeyoucoolinschool; and
5) presence of superlative adjectives (best, worst, most, and
so on): #besttimeoftheyear, #worstcustomerservices.

Search Features
Some hashtags are quite interesting—e.g.,

“howtoloseaguyin10days” looks like an OL-hashtag but
actually is a movie name. An important way to detect it is
by querying in search engines. Intuitively, if the titles of
returned webpages contain phrases with different cardinality
of list items, it is an OL-hashtag, else it is not. For example,
all search results for “how to lose a guy in 10 days” refer
to exactly 10 days. However, a search for “10 birthday day
gift ideas” leads to results with five ideas, 20 ideas, and so
on in the title. Accordingly, we have extracted the following
features by querying in Google and Bing with segmented
hashtags as follows.

o) Page Body Coverage: Number of times the segmented
hashtag appears in the top 10 webpages.

p)–q) Title Coverage in Top 10 and Top 20 Search Engine
Results: Number of titles in top 10/20 results which contain
the hashtag but with a different number. For hashtags that do
not contain the number, this feature is set to the number of
titles containing the hashtag.

Tweet Features
Processing the English tweets related to OL-hashtags,

following features are extracted.
r) Duration: Time duration for which the hashtag was

popular.
s) #Timespans: Number of contiguous time chunks for

which the hashtag was popular.
t)–y) Distribution of Other Cooccurring Hashtags: While

event related hashtags may cooccur frequently with other hash-
tags, other cooccurring tags are expected to have a relatively
low frequency for OL-hashtags. We encode this intuition as
a set of features which provide the distribution over tweets
(containing the current hashtag) with 0–5 other hashtags.

A summary of all the features is presented in Table I.

B. Classification Results

After the features have been extracted for the hashtags,
various classifiers: Naïve Bayes (NB), Logistic Regression
(LR), Support Vector Machine (SVM), Local Deep SVM
(LDSVM), Binary Neural Network (BNN), Gradient Boosted
Tree (GBT), Averaged Perceptron (AP), and XGBoost Binary
Classification (XGBBC) were used to detect OL-hashtags.
Average across 10 rounds of 10-fold cross-validation test

TABLE II

OL-HASHTAG DETECTION: AVERAGE ACROSS 10 ROUNDS OF 10-FOLD
CROSS-VALIDATION RESULTS AND RESPECTIVE SD OF PRECISION (P),

RECALL (R), ACCURACY (A), AND AUC
FOR VARIOUS CLASSIFIERS

Fig. 7. AUC for various classifiers.

results in terms of precision (P) and recall (R) for OL-hashtags,
overall accuracy (A), area under curve (AUC), and respective
standard deviations (SD) are shown in Table II.

Table II shows that LR provides the best accuracy and AUC
among all the classifiers. Tuning various parameters for LR
classifier, we have found the best AUC with regularization
weights L1 = 0.5, L2 = 0.1, and initial weight = 0.5. For
the proposed task, an ideal classifier would be one with very
good recall and reasonable precision. A lower precision would
simply amount to indexing of some extra OL-hashtags, which
may never be used. Hence, we tune the LR classifier to provide
a high recall of 0.953 with a precision of 0.755. We perform
further analysis using this recall-optimized LR classifier. Fig. 7
shows precision–recall curves for classifiers having the best
and least three AUC. Fig. 7 shows that LR classifier is the
best recall optimized classifier with highest AUC.

C. Feature Importance

We explored the accuracy obtained using various broad
feature subset combinations to measure the feature importance
for all the combinations of language features, search features,
and Tweet features. The best results are obtained when we use
all the three feature subsets together.7

To understand individual feature importance, we calculate
the information gain (IG) and one attribute evaluation (OAE)
accuracy results for each feature. Detailed analysis is presented
in [2], which shows that that “a) hashtag length,” “f) count of
nouns,” “j) POS tag entropy,” and “m) presence of plurals” are
very effective features with high IG and high OAE values.

7Please refer to [2] for further details.

1088 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 4, DECEMBER 2018

TABLE III

REGULAR EXPRESSIONS FOR LIST ITEM EXTRACTION
AND THEIR INTERPRETATION

TABLE IV

EXAMPLE TWEETS CONTAINING OBJECTIVE
AND SUBJECTIVE LIST ITEMS

We apply this classifier on the top frequent 0.1 M hashtags
in our data set to get 0, 4, 47, 601, and 6993 OL-hashtags
from the top frequent 10, 102, 103, 104, and 105 hashtags,
respectively.

V. EXTRACTION OF LIST ITEMS

After identifying the OL-hashtags, we extract candidate
list items from the tweets containing these hashtags. Besides
extracting from tweets, we also extract list items from URLs
mentioned in these tweets.

A. Extracting List Items From Tweets

Identifying list items from tweets is quite challenging
because there is no unique structure in the way the list items
are mentioned. We, therefore, carefully observed the patterns
of list items in the tweets, and came up with various regular
expressions (regex) as listed in Table III. We explain our
algorithm using three tweets shown in Table IV.

Our algorithm to extract list items from each tweet depends
on matching the tweet text with regular expression patterns.
The algorithm works as follows.

First, we match each tweet to Regex-1 to find out if the
tweet contains multiple list items, in which case this expression
gives two matches, otherwise, the list does not return any
match. If there are at least two matches, we consider it as an

TABLE V

PERCENTAGE DISTRIBUTION OF VARIOUS TYPES OF URLS

objective list based on our observation that objective list items
generally occur in multiples in a single tweet, otherwise, it is
considered as a subjective list. Thus, using Regex-1, we mark
Tweet-1 in Table IV as objective (two matches) and Tweet-2
and Tweet-3 as subjective (0 matches each). These are further
processed using the other regexes as follows.

For objective lists: Using Regex-2 on Tweet-1, we split
the list into meaningful units after basic noise removal. The
following noise removal steps are performed.

1) The first part, which contains mention and hashtags,
is ignored as it is the part before the list starts.

2) The last element in the tweet might contain some trailing
unwanted text which we remove by recognizing the
emoticons, the URLs and hashtags.

3) We clean each answer by removing unnecessary padding
spaces and hex code.

For Tweet-1, the final output consists of three list items:
1) livingleondre; 2) Liondre and Charlie; and 3) chocolate.

For subjective lists: Regex-3 and Regex-4 remove all the
unnecessary hashtags, Retweet Delimiters (“RT”—as shown in
the third example of Table IV), mention at the beginning and
the end of the tweet, respectively. Subsequently, unnecessary
non-ASCII characters and words are removed, and the remain-
ing text is provided as the final answer. The final extraction is
as follows.

Tweet-2: “He liked food. She liked Instagram. together, they
posted annoying food pictures.”

Tweet-3: “Remember when I almost fought haji.”

B. Extracting List Items From URLs

In our data set, 45.45% tweets contain a URL of which
around 72.58% were still active. Active URLs are of three
main types as follows.

1) Social Network Pages: Mainly Twitter pages fall in this
category. 62.41% of active URLs are social pages. Further-
more, these pages are of three types: 1) containing only text
(19.23%); 2) containing only picture (6.47%); and 3) contain-
ing both text and picture (74.3%). We did not process the
pictures and focus only on text.

2) Shopping Website Pages: These are e-commerce web-
pages and form 5.25% of active URLs.

3) General Webpages: 32.34% of the active URLs are
neither social nor shopping pages. The statistical distribution
of URLs in our data set is shown in Table V. Examples of
different URLs are shown in Fig. 8.

If the tweet contains a URL, our algorithm tries to extract
list items from the corresponding webpage content. If the URL
is a social network page, it uses the method mentioned in

MULLICK et al.: HARNESSING TWITTER FOR ANSWERING OL QUERIES 1089

Fig. 8. Examples of different types of URLs. (a) Only text. (b) Picture and
text. (c) Shopping URL. (d) General URL.

Fig. 9. Statistics of list items and URLs.

Section V-A to process the tweet text and extract list items.
If the URL is from a shopping website or a general webpage,
it uses a generalized version of the top-k list extraction
algorithm from webpages [30].

Given our data set, we were able to collect ∼1.4M list
items. The distribution of list items and URLs across all the
OL-hashtags is shown in Fig. 9 where the x-axis denotes
various ranges and the y-axis denotes the percentage of
hashtags, for which that many list items/URLs are found.

C. Evaluation

We perform a crowd-sourced driven quality evaluation of a
random sample of 20 extracted list items for a random sample
of 58 OL-hashtags using Amazon Mechanical Turk (AMT).
The AMT workers were provided with detailed guidelines
and examples and were asked to judge the quality of the
extracted list items for a given OL-hashtag using one of the
three options: A) answer contains the list item and the list
item is considered to be good with respect to the OL-hashtag;
B) answer contains the list item but the list item is not good;
and C) answer is bad, i.e., unrelated to the OL-hashtag.

Each list item was evaluated by three different AMT work-
ers. We compute two metrics as follows.

1) Weak Accuracy: For each list item, we choose answers
“A” and “B” as positive and “C” as negative.

2) Strong Accuracy: For each list item, we choose only “A”
as positive and “B” and “C” as negative.

We found that the average weak and strong accuracy values
for randomly collected 10 items are 66.12% (weak@10) [for
objective list 54.3% and subjective list 74.1%], and 49.1%
(strong@10) [for objective list 39.3% and subjective list
56.1%]. The result shows that the accuracy is decent with
every one of two list items being accurate. In order to bubble
up to the relevant list items from this set, we develop a learning
to the rank framework in Section VI.

VI. RANKING THE LIST ITEMS (L2R)

Although there exist multiple papers on ranking
tweets [33], [34], but none of them ranks list items extracted
from tweets. In this section, we consider several features of the
list items and relate them to an importance score. To generate
distant supervision data for training, the importance score is
semiautomatically derived using search engines. Subsequently,
we execute a supervised learning algorithm to rank the list
items.

A. Feature Extraction

We use the following features for ranking the list items.

1) Frequency (freq): Number of times the list item appears
in tweets. The intuition is that a good list item would
occur in many different tweets.

2) Average Follower Count (foll): For the list item, we col-
lect follower counts of all users who posted tweets
containing this item and use the average follower count
as a feature. The intuition here is that more influential
users might post better list items.

3) Timestamp (time): We use the latest timestamp of posting
the list item as a feature, with the intuition that the newer
list items might be more relevant.

4) Cooccurring Items Count (cooc): We use a number of
cooccurring items across all the tweets, with the intuition
that good list items generally occur with many other list
items, especially for objective list items.

5) PageRank Scores (page): For each list, we first construct
a graph where each list item is a node. We construct sep-
arate graphs for objective and subjective lists. We then
use the PageRank scores of the list items with the
intuition that good list item will be related to many
other good items in this graph. We explain the graph
construction process in detail in the following.

1) Graph Construction for PageRank Score Computation:
We construct the graph differently depending on whether the
list items are subjective or objective.

a) Cooccurrence graph for objective lists: We observe
that objective list items generally occur together in the same
tweet. Therefore, we construct a graph for all the list items
such that if two items cooccur in a tweet, then an edge exists
between them and the edge weight depends on the number
of tweets they cooccur in, normalized on a logarithmic scale.
For example, if “smile” and “chocolate” both appear in four
different tweets, then frequency n = 4. Similarly, we collect

1090 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 4, DECEMBER 2018

TABLE VI

RANKING LIST ITEMS: 10-FOLD CROSS VALIDATION RESULTS
OF CC, MAE, AND RMSE FOR DIFFERENT REGRESSION

METHODS—LIN-REG, SVM, DT, AND BG

all the possible frequencies and let N denote the sum of
all the frequencies. The normalized edge weight is given by
log(n + 1)/ log(N).

b) Similarity graph for subjective lists: We observe that
subjective list items do not cooccur, however, we find that good
items have some similarity on the surface level. Therefore,
we construct the graph for all the subjective list items, and
an edge exists between two nodes if cosine similarity (CS)
between them is above a predefined threshold (we choose
positive similarities) value after removing stop words.

We combine the above-mentioned features using a
regression-based learning to rank framework. The learning
to rank framework requires some labeling of comparisons or
relevance scores to the set of items. To avoid manual labeling,
we use the following observation to provide the labeled data
set for learning to rank in a semiautomated manner.

B. Semiautomated Ranking Using Search Results

We observe that while for most of the list items, search
engines do not provide good results, for some, the search
engines provide good webpages, which contain the answers.
We select 100 random OL-hashtags, for which a reasonable
number of results come up, and collect top 10 results using
both Google and Bing APIs. After implementing the gen-
eralized version of the top-k list extraction algorithm [30],
we collect list items from these webpages.8 Furthermore,
we manually check each list item and remove a few incorrect
results (those coming from ads or other parts of the webpages,
not containing the list items), or added missing list items.
Score for a list item l is then computed as score(l) =∑10

i=1(11 − i) × f (i) where f (i) denotes the frequency of
list item l on webpage at position i .9 We normalize this
score using max-normalization and use it as a label to train
the learning to rank model using the five features. Thus,
we approximate the learning to the rank problem using a
pointwise approach. Table VI compares various regression

8The method proposed in [30] works only for specific types of webpages;
we generalized it to collect list items from more webpage types.

9The weight functions are linear—for both Google and Bing search engines.
If we get the list item from the first website, then the weight is put to 10, and
it is decreased linearly for further positions. However, the same item may be
mentioned in multiple webpages and also multiple times on the same webpage.
We, therefore, provide a weight to this item by multiplying the frequency of
occurrence in a given webpage with the weight of the webpage, and summing
it over all the webpages. For example, for the OL-hashtag “#giftideas,” we
get “ring” as a list item four times (once in first and third page, and twice in
the fourth webpage), wedding ring (three times—once in the first and twice
in the sixth webpage), birthday ring (two times—once in the second and
tenth webpage). Now, after clustering, the frequency of ring is 9 (4 + 3 + 2),
wedding ring is 3, birthday ring is 2, and aggregated weight of ring is 62
(1 × 10 + 1 × 8 + 2 × 7 + 1 × 10 + 2 × 5 + 1 × 9 + 1 × 1), wedding ring is
20 (1 × 10 + 2 × 5), and birthday ring is 10 (1 × 9 + 1 × 1).

TABLE VII

RANKING LIST ITEMS: INDIVIDUAL FEATURE IMPORTANCE
AND FEATURE ABLATION RESULTS

mechanisms such as SVM, Linear Regression (Lin-Reg),
Decision Tree (DT), and Bagging (Bg) using 10-fold cross
validation using three metrics: correlation coefficient (CC),
mean absolute error (MAE), and root mean squared error
(RMSE). Bg performs the best. After training the model on
100 OL-hashtags, we use it to rank the list items extracted for
the rest (901) of the OL-hashtags.

C. Evaluation

We perform a crowd-sourced evaluation through AMT for
top 20 list items for randomly selected 120 OL-hashtags
from the remaining 901 OL-hashtags using three different
annotators. 50 of these 120 lists overlap with the ones labeled
for random extraction evaluation (Section V). Annotators mark
each list item as “A,” “B,” or “C.”10 The evaluation shows that
we obtain a high strong accuracy of 79.23% for Prec@10 [for
objective list 70.3% and subjective list 85.5%] and 77.12%
for Prec@20; and very high weak accuracy of 92.14% for
Prec@10 [for objective list 88.5% and subjective list 94.6%]
and 91.45% for Prec@20. This is much better compared to
the accuracy of randomly chosen 20 list items before ranking
(Section V).

Furthermore, to evaluate feature importance, we learn
regression models using individual features and also perform
feature ablation experiments. The AMT results are shown
in Table VII where it is easily seen that using learning to rank
(L2R) framework helps in improving the performance by a
huge margin. Note that for the “Random” method, the average
is computed over 50 overlapping lists but for other methods,
we use 120 OL-hashtags. Clearly, all the five features are
important; leaving any of the features reduces the performance
by a good margin.

VII. AUGMENTATION OF TAIL OPINION LISTS

Several OL-hashtags produce just a few number of list
items because: 1) the hashtag is contained in small number
of tweets; 2) number of English tweets containing the hashtag
are few; or 3) items repeat across tweets. We define them
as “tail” OL-hashtags (producing less than 20 list items).
Fig. 10(b) shows the cumulative distribution of OL-hashtags

10Interannotator agreement Fleiss κ is 0.61

MULLICK et al.: HARNESSING TWITTER FOR ANSWERING OL QUERIES 1091

Fig. 10. Distribution of list items produced by (a) all OL-hashtags (left)
and (b) hashtags with #List Items<100 (right).

containing a number of list items between 0 and 100. The
x-axis denotes the number of list items and y-axis denotes
cumulative percentages of lists with that many list items. Note
that 23% lists have list items in the range 0–100 [Fig. 10(a)]
and among them 38% are in range 0–20, i.e., tail OL-hashtags
as shown in Fig. 10(b). The idea is to enrich tail lists by
borrowing items from similar lists.

Some examples of “tail” OL-hashtags are: “moviesthat-
makeyoucrysobad,” “whydopeoplehateairlines,” having 3 and
7 list items only. For the first hashtag, there are other similar
hashtags, e.g., “moviesthatmakemencry,” “moviesthatmadey-
oucry” with 79 and 15 list items, respectively. Tail OLs can
be augmented by borrowing list items from similar lists. We
hypothesize that two lists are similar if they denote a similar
concept and contain similar list items. Based on this hypothesis,
we identify features to measure the similarity between the
names of the hashtag pair as well as the similarity between the
list item set corresponding to the pair. Furthermore, we use
these similarity measures as features to build a model for
learning similarity value for any pair of OL-hashtags. Finally,
we borrow items from the similar list set to augment tail lists
and verify the accuracy of augmentation.

A. Similarity Measures

1) Hashtag–Hashtag Similarity: We segment the
OL-hashtags into constituent words and then compute
three different similarity values described as follows.

1) CS: This captures CS between term frequency-inverse
document frequency (TFIDF) vectors for the two OL-
hashtags.

2) Concept-Based Similarity: Using CMU POS
tagger [32], we retain only nouns, verbs, and adjectives
for both the list hashtags. Next, we compute CS between
the 300-D word2vec [35] vector for every word pair
containing a word from each of the two lists. For every
word in the first list, we find the best matching word
in the second list with the highest similarity. Finally,
concept-based similarity is defined as the average CS
across matched word pairs. Thus, e.g., although the CS
between “breakupin4words” and “breakuplines” is low,
concept-based similarity is very high.

3) Pattern-Based Similarity: We manually created a dic-
tionary of list patterns. This similarity is set to
1 if both lists contain one of the dictionary pat-
terns, else 0. For example, “describethe90sin4words”
and “explainthe90sin4words” contain the same pattern
“in4words.” Since “in4words” is in the dictionary,
the similarity is set to 1.

2) Item–Item Similarity: We consider a list hashtag pair as
a candidate only if their CS value is above a threshold (we fix

TABLE VIII

ITEM–ITEM SIMILARITY: 10-FOLD CROSS VALIDATION RESULTS
FOR DIFFERENT REGRESSION METHODS

TABLE IX

HASHTAG–HASHTAG SIMILARITY: 10-FOLD CROSS-VALIDATION
RESULTS FOR DIFFERENT REGRESSION METHODS

it to 40%). Below this threshold, the similarity is considered
to be zero. This ensures that we deal with only promising
candidates making the computation efficient. We create a list
item pair for comparison by taking the first item from list A
and second from list B such that (A, B) is a candidate list pair.
List items could be objective or subjective. While the syntactic
match is good for objective items, subjective items need a
semantic match. Hence, we compute the following similarity
values.

1) Item–Item CS: After removing the stop words, we cal-
culate CS between the list items.

2) DSSM/CDSSM Score: We use deep semantic similarity
model (DSSM) and convolutional DSSM (CDSSM) [36]
to compute semantic match between list items.

B. Models for Learning List Similarity

We learn two regression models at two levels to weigh
different similarity measures and come up with a combined
similarity measure between OL-hashtags. The first model tries
to learn a combined measure for item–item similarity while
the second model incorporates hashtag–hashtag similarity sig-
nals along with the output of the first model to learn a
combined similarity measure for hashtag–hashtag similarity.

To learn the item–item similarity model, 250 matching
item–item pairs and 250 dissimilar pairs were identified by
annotators (different from the authors). We then experimented
with Weka [37] implementations of various regression models:
Lin-Reg, SVM, DTs, Bg, and Random Forest (RF) with
the three item–item similarity measures (cosine, DSSM, and
CDSSM) as features. Table VIII shows that the 10-fold
cross-validation results in terms of several standard measures
like CC, MAE, and RMSE. Note that Bagging provides the
best CC and least MAE and RMSE, so we use Bagging to
generate the item–item combined similarity score for the rest
of the data set.

To learn the hashtag–hashtag similarity model, 150 match-
ing hashtag–hashtag pairs and 150 dissimilar pairs were
identified by annotators (different from the authors). To run
the regression model, we used the three hashtag–hashtag
similarity values (cosine, concept, and pattern based), and
the aggregated item-based hashtag–hashtag similarity value as

1092 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 4, DECEMBER 2018

features. Table IX shows the 10-fold cross-validation results
in terms of CC, MAE, and RMSE of various regression
models: Lin-Reg, SVM, DTs, Bg, and RF. The RF regression
model provides the best CC and least MAE and RMSE,
hence, that is used subsequently. Feature importance analysis
using the ReliefAttribute Evaluator with Ranker-based search
method shows the following ranking of the features: item–item
similarity score, concept-based similarity score, CS score, and
pattern-based similarity score. It is interesting to note that the
underlying list items provide the best measure for establishing
similarity between two list hashtags.

Once the hashtag–hashtag similarity measure is
obtained, we perform clustering [38] to generate
hashtag clusters. For our data set of 1001 list hashtags,
we obtain 134 clusters covering 791 hashtags; 210 hashtags
remain isolated. For example, “primaryschoolmemories,”
“secondaryschoolmemories,” “teenagememories,”
“middleschoolmemories,” and “childhoodmemories”
form a single cluster. Another cluster includes hashtags
like “sophomoreyearin5words,” “senioryearin5words,”
“junioryearin5words,” and “freshmanyearin5words.” However,
some hashtags such as “georgiastatejokes,” “4favoritevillains,”
and so on remain isolated.

After clustering, we can augment the tail lists by borrowing
“good” list items from other lists in the same cluster. Let i
be a borrowed list item into a tail list l. Let L be the set of
lists in the same cluster as l. Rank score of i for l is defined
as a normalized weighted sum of rank scores (as computed in
Section VI) of i in other lists in L where weight corresponds to
the combined hashtag–hashtag similarity between l and other
list l ′ ∈ L − {l}.

C. Evaluation
To evaluate the accuracy of augmentation of tail OLs,

we perform an automated and a crowd sourced-based eval-
uation.

In automated evaluation, we randomly select k elements of
list items from a tail list set and check what fraction of them
can be recovered from the item sets within its cluster. We
only consider the top-k ranked elements from each item set.
The intuition is that a high recovery would mean that the list
sets within a cluster are similar, and consequently, it can be
assumed that augmentation of the tail list would be done with
relevant lists. We find that the accuracy of augmentation is
69.2% and 54.7% list items after removal of 10% and 20%
items, respectively, from “tail” OL-hashtags containing only
1–20 list items. For example, the list “moviesthatmakeyou-
crysobad” contains only three list items (“Miracle in Cell
No. 7,” “The Dark Knight,” and “Shawshank Redemption”)
but other similar lists contribute items such as “The Pianist,”
“Schindlers List,” “127 Hours,” and so on.

For crowd-sourced experiment, we augmented 30 tail OL-
hashtags, each with 20 list items. Furthermore, using AMT,
the augmented list items are labeled as “A,” “B,” or “C.” We
found that the weak and strong accuracies @20 are 86.56%
and 73.81%, respectively (which is slightly lower than what we
achieve for normal OL-hashtags), showing the effectiveness of
our augmentation approach.

VIII. ERROR ANALYSIS

In this section, we discuss detailed error analysis of different
parts of our proposed framework to gain more insights into the
difficult cases.

A. OL-Hashtag Detection

Most OL-hashtags contain a plural noun in them.
For instance, the OL-hashtags, “girlfriendsbelike,”
“mexicanmomsbelike,” and “90svideos.” Hence, the feature
“presence of plural” has been one of the distinguishing
features in classification. However, some OL-hashtags such
as “crazygirlfriendbelike” do not contain any plural noun
and, hence, do not get detected. OL-hashtags of a particular
pattern “ifyou,” e.g., “ifyouaremygirl,” “ifyouknowmewell”
also do not get detected because of their similarity with
many non-OL-hashtags such as “ifnotformusic,” “ifyouneed,”
“gotofftwitterif,” and so on. Finally, abstract OL-hashtags
such as “getabetterwatch” which expect very subjective list
items, suffer from very sparse feature vector representation
and, hence, get labeled as non-OLs incorrectly.

B. Extraction of List Items

Our extraction algorithm leads to errors in the following
cases.

1) Collecting list items containing exactly k words, e.g.,
from the tweet “#3bestwordsever thanks a lot...after
getting help,” we get “thanks a lot after getting help”
as the list item but the correct answer should be “thanks
a lot” (three words). The patterns should be able to make
use of this information in the hashtag.

2) In some cases, while removing unnecessary mentions
and hashtags, a sentence may become incomplete.
For example, from the tweet “#bigEconomicEvents2016
@Modi declares demonetization,” removal of hashtags
and mentions results in a partial answer, “declares
demonetization.”

C. Ranking the List Items (L2R)

We analyzed some of the list items with high scores but
labeled as “C” by all the AMT workers. In all these cases,
we found that the underlying tweets are not exactly on the
hashtag but related and since it has been highly retweeted or
has been tweeted by highly popular people, it scored high. For
example, for “#breakfastofchampion,” list item “GAME DAY
http://t.cogQykUKE5Y7” received a lot of retweets. Similarly,
for “#describeyourcrush,” list item “Tweet me with the hashtag
and I’ll retweet. Gooo” has come within top 10 due to its high
average follower count.

D. Augmentation of Tail Lists

We found that once good clusters are formed, augmentation
is usually good. However, there are two problems: 1) among
total 98 “tail” OL-hashtags, 25 remained isolated, hence, their
performance cannot be improved through this scheme and
2) some clusters are of low quality. Two lists could get
incorrectly clustered together if there are a lot of matching

MULLICK et al.: HARNESSING TWITTER FOR ANSWERING OL QUERIES 1093

words in the hashtags (but a keyword mismatches), and the
two lists also share a lot of list items but are conceptually
different. For example, “myteamsyearin5words” and “mylast-
wordsin5words” get incorrectly assigned to the same cluster
as “sophomoreyearin5words,” “senioryearin5words,” “junio-
ryearin5words,” and “freshmanyearin5words.”

IX. DISCUSSION

A. Categorization of Opinion Lists

For each of the 1001 opinionated hashtag that we man-
ually identified, we did further classification across multiple
perspectives as follows.

Some OLs are closed while others are not. We define
a list as closed if it has list items from a finite set. For
example, “worldsbiggestbookclub,” “placestovisitinindia,” and
“20favouritefootballers” are all closed lists. On the other
hand, lists such as “lovestoryin5words,” “thingsthatmadey-
oucoolatschool,” “8thgrademomories,” and “iftwitterdidntexis-
tanymore” are not closed lists. Among the 1001 OLs, we found
that only 242 were closed while people expressed themselves
socially in the other 759 lists. This showcases the social nature
of the lists extracted from Twitter which is very different from
lists extracted from general webpages or traditional lists.

Furthermore, lists could be classified as ambiguous versus
nonambiguous. Ambiguous lists are those where the list name
does not restrict the type of items in the list leading to a
possibility of different users focusing on list items of different
types. An example of an ambiguous list is “23goldenyearsof-
srk.” This list could contain names of movies in which Shah
Rukh Khan (SRK) has worked, or it could also contain names
of awards he has won, or it could describe his acting style.
An example of nonambiguous list is “bestsrkmovies.” We
observed that our 1001 list data set contains 101 ambiguous
and 900 nonambiguous lists. To classify ambiguous hashtags
from normal hashtags, we identify various features. General
features: 1) POS tagging features for the hashtag: the presence
of nouns, adjectives, verbs, pronouns, plural, prepositions,
and adverbs. 2) Tweet features: different tweet features—
a) ngram represents presence of n hashtags in that tweet
including the OL-hashtag where values of n are from 1 to
6 denoting unigram, bigram, trigram, tetragram, pentagram,
and hexagram; b) number of tweets; and c) time difference and
time span. We experimented with various classifiers—NB, LR,
SVM, repeated incremental and pruning (Rip), AdaBoost(AB),
RF, and Bg as shown in Table X. Bg produced the best
results among all classifiers in terms of precision, recall,
accuracy, and area under receiver operating characteristic
(ROC) (AU-ROC). By ranking the features using IG, we found
the following as the most important features—presence of
plurals (0.109), presence of adjectives (0.1), presence of
pronouns (0.071), bigram (0.044), time difference (0.43), and
presence of nouns (0.04). Furthermore, tweets corresponding
to individual subtopics of the ambiguous OL-hashtag can be
assigned to individual subtopics using topic modeling. For
example “bestofsrk” subtopics for the ambiguous OL-hashtag
can be award names, best movie names, best song names,
pictures, best movie dialogues, and so on. Using Named Entity

TABLE X

AMBIGUOUS OL-HASHTAG DETECTION: 10-FOLD CROSS-VALIDATION
RESULTS OF PRECISION (P), RECALL (R), ACCURACY (A),

AND AU-ROC FOR VARIOUS CLASSIFIERS

Tagger [39] and modified search features (e.g., presence of
words like “lyrics” or “songs” along with the searched string),
one can identify the topic of the ambiguous OL-Hashtag’s
tweet text. We plan to include this feature in our future model.

Finally, OLs could also be categorized as subjective
or objective. Our data set contained 589 subjective and
412 objective lists.

B. Temporal Aspect of Opinion Lists

While a large number of lists are invariant with respect
to time, some are temporal. Some of them are explicitly
temporal such as “heroineoftheyear.” Some other lists are
implicitly temporal because users usually discuss recent can-
didate items. For example, for the list “bestplayerintheworld,”
users tend to talk about recent players which are fresh in
their memory. In case of Football, users tweeted more about
“Manuel Neuer” in January 2015, about “Lionel Messi” in
first week of May 2015, and about “Christiano Ronaldo”
in the fourth week of May 2015 events. Similarly, in 2017,
users who tweeted about tennis tweeted a lot about “Nadal”
during French Open 2017 (May–June 2017) and about “Roger
Federer” during Wimbledon 2017 (July 2017). Another such
example is “bestmobileplans.” We found that in April 2015,
users tweeted about Google and Next Helsinki. While in
May 2015, Carphone Warehouse and Tata Docomo were more
popular. Thus, Twitter-based OLs can help us to get not only
just the popular list items right now but also popular list items
across time.

Time-based features on tweets have low IG and
low OAE accuracy for most of the OL-hashtags such
as “breakupin4words,” “highschoolmemories,” “advicefory-
oungjournalists,” and so on but time-based features are
important for some OL-hashtags, which show temporal vari-
ations with respect to time. Therefore, based on differ-
ent time features, we can classify OL-hashtags as volatile
(OL-hashtags showing temporal variations over time) or
nonvolatile (OL-hashtags which do not exhibit temporal vari-
ations over time).

C. Instant Answers

Traditional search engines do not always provide instant
answers for opinionated queries. We have developed a system
which provides ranked answers for queries corresponding
to OL-hashtags. For example, opinionated query like “8th
grade memories” is similar to the “#8thgradememories” and

1094 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 4, DECEMBER 2018

Fig. 11. Generating answers for opinionated queries.

respective tweets are shown in Fig. 4. When this query is input
to our system, after detecting it as an OL-hashtag, different list
items are extracted. Thereafter, ranking of list items and aug-
mentation with other list items of similar OL-hashtags (e.g.,
#primaryschoolmemories, #secondaryschoolmemories, and so
on) are done to get the ranked answers instantly as shown
in Fig. 11. We plan to include other social media data including
Reddit, Quora, Facebook, and so on and scale up the system
to allow large-scale OL finding. We also plan to publish this
database of OL items extracted from various social media and
provide an interactive Web service.

X. CONCLUSION

It is generally believed that Twitter is a treasure trove of
opinionated phrases—the main contribution of this paper lies
in exploiting that to lay foundation for an efficient search
system. We identified that there is a special category of
hashtags, called “OL-hashtags” (e.g., #TipsforInteriorDesign),
which can be leveraged to collect relevant OL answers (e.g.,
“Hang artwork at the right height,” “Pick the paint color last,”
and so on). The indexed answers can then be used to return
results for a search query. This is a challenging task as a very
small percent of hashtags in the Twitter pool are OL-hashtags.
We proposed multiple hashtag- and tweet-level features and
learned an LR model that provides 75.5% precision at 95.3%
recall. Furthermore, we studied various patterns through which
the list items for these OL-hashtags are reported and formu-
lated regular expressions to capture the social items. However,
there is no uniform way in which Twitter users provide these
list items, and hence, extraction led to a modest accuracy of
only 66.12%. The precision is enhanced by applying a learning
to rank framework whereby the Precision@10 achieved is
91.31% and Precision@20 is 90.72%.

While working with the data, we make several interesting
observations. We find that the URLs present in a tweet corre-
sponding to OL-hashtags are mainly pointing to either social
network pages or shopping website pages which perhaps also
provide the cue about the type of queries this indexing scheme
would cater to. In case of names of OL-hashtags, we interest-
ingly observe that the presence of plural word is an important

discriminatory feature to identify OL-hashtags (#5wordsbe-
forebreakup). We also observe that corresponding to several
OL-hashtags, there are very few tweets and, hence, very few
OL items. We realize that there are also similar hashtags,
the item set of which can be borrowed to populate the sparse
list. We develop an augmentation scheme to implement that.

There are, however, several areas for improvement; we have
noted some of the limitations of the process in the error
analysis section. Besides this, the importance of several of
the list items may depend on time—hence, considering the
temporal aspect in ranking them is necessary. Also, hashtags
can be ambiguous leading to the possibility of different com-
munities focusing on producing tweets of different types. For
example, the list “23goldenyearsofsrk” could contain names of
movies in which SRK, a famous Indian actor, has worked, or it
could also contain names of awards he has won, or it could
describe his acting style. All these observations and limitations
would be addressed in the near future. Furthermore, the current
system is based only on Twitter data.

Nowadays, hashtags are being commonly used across all the
social platforms—Facebook, Instagram, Tumblr, Pinterest, and
so on. Therefore, a generic system can be developed based on
the use of hashtags in these social media platforms. Some other
social media platforms such as Quora, Reddit, and Huffington
Post also exhibit similar features but on such platforms, ques-
tions, and respective answers are present instead of hashtags
and tweets. For example, in Quora, opinionated questions
are like OL-hashtags and answers are like tweets. While
OL-hashtags are short but opinionated, Quora questions are
normally long. For example, corresponding to the OL-hashtag
“weekendplans,” there are different Quora questions such as
“What are your weekend plans to relax?,” “What are the
best things to do on a weekend?,” and so on. Thus, one of
our future plans is to extend the current system to support
other social media data including Reddit, Quora, Facebook,
Pinterest, and so on including the pictorial representations and
scale up the system to large-scale OL finding. Another plan
is to develop a runtime Web API to produce instant top-k
answers for opinionated search queries.

REFERENCES

[1] M. R. Morris, J. Teevan, and K. Panovich, “What do people ask their
social networks, and why? A survey study of status message Q&A
behavior,” in Proc. SIGCHI, 2010, pp. 1739–1748.

[2] A. Mullick, P. Goyal, N. Ganguly, and M. Gupta, “Extracting social lists
from Twitter,” in Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal.
Mining, 2017, pp. 391–394.

[3] D. M. Romero, B. Meeder, and J. Kleinberg, “Differences in the mechan-
ics of information diffusion across topics: Idioms, political hashtags, and
complex contagion on Twitter,” in Proc. WWW, 2011, pp. 695–704.

[4] K. Lee, D. Palsetia, R. Narayanan, M. M. A. Patwary, A. Agrawal, and
A. Choudhary, “Twitter trending topic classification,” in Proc. ICDM
Workshops, 2011, pp. 251–258.

[5] M. Naaman, H. Becker, and L. Gravano, “Hip and trendy: Characterizing
emerging trends on Twitter,” J. Assoc. Inf. Sci. Technol., vol. 62, no. 5,
pp. 902–918, 2011.

[6] P. Bhattacharya et al., “Deep Twitter diving: Exploring topical groups
in microblogs at scale,” in Proc. 17th ACM Conf. Comput. Supported
Cooperat. Work Social Comput., 2014, pp. 197–210.

[7] A. Zubiaga, D. Spina, R. Martínez, and V. Fresno, “Real-time classi-
fication of Twitter trends,” J. Assoc. Inf. Sci. Technol., vol. 66, no. 3,
pp. 462–473, 2015.

MULLICK et al.: HARNESSING TWITTER FOR ANSWERING OL QUERIES 1095

[8] O. Tsur and A. Rappoport, “What’s in a hashtag?: Content based
prediction of the spread of ideas in microblogging communities,”
in Proc. 5th ACM Intl. Conf. Web Search Data Mining, 2012,
pp. 643–652.

[9] S. K. Maity, A. Gupta, P. Goyal, and A. Mukherjee, “A stratified learning
approach for predicting the popularity of Twitter idioms,” in Proc.
ICWSM, 2015, pp. 642–645.

[10] K. Rudra, A. Chakraborty, M. Sethi, S. Das, N. Ganguly, and S. Ghosh,
“# FewThingsAboutIdioms: Understanding idioms and its users in the
Twitter online social network,” in Proc. PAKDD, 2015, pp. 108–121.

[11] S.-M. Kim and E. Hovy, “Extracting opinions, opinion holders, and top-
ics expressed in online news media text,” in Proc. Workshop Sentiment
Subjectivity Text (ACL), 2006, pp. 1–8.

[12] A. Qadir, “Detecting opinion sentences specific to product features in
customer reviews using typed dependency relations,” in Proc. eETTs,
2009, pp. 38–43.

[13] T. Scholz and S. Conrad, “Opinion mining in newspaper arti-
cles by entropy-based word connections,” in Proc. EMNLP, 2013,
pp. 1828–1839.

[14] H. Yu and V. Hatzivassiloglou, “Towards answering opinion questions:
Separating facts from opinions and identifying the polarity of opinion
sentences,” in Proc. EMNLP, 2003, pp. 129–136.

[15] J. Wiebe and E. Riloff, “Creating subjective and objective sentence clas-
sifiers from unannotated texts,” in Proc. CICLingLing. Berlin, Germany:
Springer, 2005, pp. 486–497.

[16] N. Asher, F. Benamara, and Y. Y. Mathieu, “Appraisal of opin-
ion expressions in discourse,” Lingvisticæ Invest., vol. 32, no. 2,
pp. 279–292, 2009.

[17] P. Rajkumar, S. Desai, N. Ganguly, and P. Goyal, “A novel two-stage
framework for extracting opinionated sentences from news articles,” in
Proc. TextGraphs, 2014, pp. 25–33.

[18] A. Mullick, P. Goyal, and N. Ganguly, “A graphical framework to
detect and categorize diverse opinions from online news,” in Proc.
Workshop Comput. Modeling People’s Opinions, Personality, Emotions
Social Media (PEOPLES), 2016, pp. 40–49.

[19] A. Mullick et al., “A generic opinion-fact classifier with application in
understanding opinionatedness in various news section,” in Proc. 26th
Int. Conf. World Wide Web Companion, 2017, pp. 827–828.

[20] A. Mullick et al., “Identifying opinion and fact subcategories from
the social Web,” in Proc. ACM Conf. Supporting Groupwork, 2018,
pp. 145–149.

[21] B. Liu, R. Grossman, and Y. Zhai, “Mining data records in Web pages,”
in Proc. KDD, 2003, pp. 601–606.

[22] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and B. Pollak,
“Towards domain-independent information extraction from Web tables,”
in Proc. WWW, 2007, pp. 71–80.

[23] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang,
“WebTables: Exploring the power of tables on the Web,” Proc. VLDB
Endowment, vol. 1, no. 1, pp. 538–549, 2008.

[24] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E. Moser,
“Extracting data records from the Web using tag path clustering,” in
Proc. WWW, 2009, pp. 981–990

[25] F. Fumarola, T. Weninger, R. Barber, D. Malerba, and J. Han, “Extract-
ing general lists from Web documents: A hybrid approach,” in Proc. Int.
Conf. Ind., Eng. Appl. Appl. Intell. Syst., 2011, pp. 285–294.

[26] F. Fumarola, T. Weninger, R. Barber, D. Malerba, and J. Han, “HyLiEn:
A hybrid approach to general list extraction on the Web,” in Proc. ACM
20th Int. Conf. Companion World Wide Web, 2011, pp. 35–36.

[27] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and G. Mishne,
“Finding high-quality content in social media,” in Proc. WSDM, 2008,
pp. 183–194.

[28] D. Rafiei and H. Li, “Data extraction from the Web using wild card
queries,” in Proc. CIKM, 2009, pp. 1939–1942.

[29] D. Z. Wang, M. J. Franklin, M. Garofalakis, and J. M. Hellerstein,
“Querying probabilistic information extraction,” Proc. VLDB Endow-
ment, vol. 3, nos. 1–2, pp. 1057–1067, 2010.

[30] Z. Zhang, K. Q. Zhu, H. Wang, and H. Li, “Automatic extraction of
top-k lists from the Web,” in Proc. ICDE, 2013, pp. 1057–1068.

[31] G. Berardi, A. Esuli, D. Marcheggiani, and F. Sebastiani, “ISTI@ TREC
Microblog track 2011: Exploring the use of hashtag segmentation and
text quality ranking,” in Proc. TREC, 2011, pp. 1–9.

[32] K. Gimpel et al., “Part-of-speech tagging for Twitter: Annotation,
features, and experiments,” in Proc. ACL-HLT, 2011, pp. 42–47.

[33] Y. Duan, L. Jiang, T. Qin, M. Zhou, and H.-Y. Shum, “An empiri-
cal study on learning to rank of tweets,” in Proc. COLING, 2010,
pp. 295–303.

[34] X. Zhang, B. He, T. Luo, and B. Li, “Query-biased learning to rank for
real-time Twitter search,” in Proc. CIKM, 2012, pp. 1915–1919.

[35] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distrib-
uted representations of words and phrases and their compositionality,”
in Proc. NIPS, 2013, pp. 3111–3119.

[36] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck, “Learning
deep structured semantic models for Web search using clickthrough
data,” in Proc. CIKM, 2013, pp. 2333–2338.

[37] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: An update,” ACM
SIGKDD Explorations Newslett., vol. 11, no. 1, pp. 10–18, 2009.

[38] X. Yin, J. Han, and P. S. Yu, “CrossClus: User-guided multi-relational
clustering,” Data Mining Knowl. Discovery, vol. 15, no. 3, pp. 321–348,
2007.

[39] K. Bontcheva, L. Derczynski, A. Funk, M. A. Greenwood, D. Maynard,
and N. Aswani, “TwitIE: An open-source information extraction pipeline
for microblog text,” in Proc. Int. Conf. Recent Adv. Natural Lang.
Process. (RANLP), 2013, pp. 83–90.

Ankan Mullicke received the bachelor’s degree in
computer science and engineering from Jadavpur
University, Kolkata, West Bengal, India, and the
master’s degree in computer science and engineering
from IIT Kharagpur, West Bengal, India.

He is a Data Scientist with Microsoft, Hyderabad,
India. His areas of interest include machine learning,
natural language processing, data mining, and deep
learning.

Pawan Goyal received the B.Tech. degree in elec-
trical engineering from IIT Kanpur, West Bengal,
India, in 2007, and the Ph.D. degree in computing
and engineering from University of Ulster, Belfast,
U.K., in 2011.

He was then a Post-Doctoral Fellow at INRIA
Paris Rocquencourt. He is an Assistant Professor
with the Department of Computer Science and Engi-
neering, IIT Kharagpur, West Bengal, India. He has
published around 75 research papers in international
conferences and journals including ACL, NAACL,

EMNLP, KDD, SIGIR, CIKM, JCDL, CSCW, WWW, IEEE, and ACM
Transactions. His research interests include natural language processing, text
mining, information retrieval and Sanskrit computational linguistics.

Niloy Ganguly received the Ph.D. degree from the
Indian Institute of Engineering Science and Tech-
nology, Shibpur, India, and the bachelor’s degree
in computer science and engineering from IIT
Kharagpur, West Bengal, India.

He has been a Doctoral Fellow with the Technical
University of Dresden, Germany. He is a Professor
with the Department of Computer Science and Engi-
neering, Indian Institute of Technology, Kharagpur,
India, where he has worked in the EU-funded project
Biology Inspired techniques for Self-Organization

in dynamic Networks (BISON). He currently focuses on dynamic and self-
organizing networks, especially peer-to-peer networks, online social networks,
and delay tolerant networks.

Manish Gupta is a Principal Applied Researcher
at Microsoft India R&D Private Limited, Hyder-
abad, India. He is also an Adjunct Faculty at the
International Institute of Information Technology,
Hyderabad, and a Visiting Faculty at the Indian
School of Business, Hyderabad. His areas of interest
include web mining, data mining, and deep learning.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

