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Abstract
Systematically discovering semantic relationships
in text is an important and extensively studied area
in Natural Language Processing, with various tasks
such as entailment, semantic similarity, etc. De-
composability of sentence-level scores via subse-
quence alignments has been proposed as a way to
make models more interpretable. We study the
problem of aligning components of sentences lead-
ing to an interpretable model for semantic textual
similarity. In this paper, we introduce a novel
pointer network based model with a sentinel gating
function to align constituent chunks, which are rep-
resented using BERT. We improve this base model
with a loss function to equally penalize misalign-
ments in both sentences, ensuring the alignments
are bidirectional. Finally, to guide the network
with structured external knowledge, we introduce
first-order logic constraints based on ConceptNet
and syntactic knowledge. The model achieves an
F1 score of 97.73 and 96.32 on the benchmark
SemEval datasets for the chunk alignment task,
showing large improvements over the existing so-
lutions. Source code is available at https://github.
com/manishb89/interpretable sentence similarity

1 Introduction
Measuring semantic similarity between sentences has been
one of the major problems towards text understanding.
Many tasks including paraphrase identification [Socher et
al., 2011], text entailment recognition [Heilman and Smith,
2010], etc. also utilize sentence similarity. Clearly, it has
attracted a lot of attention in the NLP research commu-
nity [Shao, 2017; Tai et al., 2015]. Semantic textual simi-
larity (STS) dataset from SemEval 2012 [Agirre et al., 2012]
has been one of the commonly used benchmark for sentence
similarity task, which attempts at measuring the degree of se-
mantic equivalence between two sentences. While recently
proposed deep learning methods built on pretrained language
models have shown great success for the task [Reimers and
∗Equal contribution.
†Now at Amazon.

Figure 1: Interpretable sentence similarity defined as alignments be-
tween chunks (indicated by connecting lines) of the two sentences.
An unaligned chunk is considered aligned to special ‘not aligned’
chunk (denoted by φ in paper).

Gurevych, 2019], interpretability and explainability of the fi-
nal scores remains a concern in general. [Agirre et al., 2015]
proposed to formalize interpretable semantic textual similar-
ity (henceforth, iSTS) as an alignment between pairs of seg-
ments across the two sentences at SemEval 2016. This is also
linguistically well motivated because similarity between sen-
tences has been observed to be decomposable [Sultan et al.,
2015] over segments and the overall similarity is a combined
measure of similarity on parts (words, chunks, etc). The
problem of interpretable semantic textual similarity is to pro-
vide an interpretation or explanation of semantic similarity
between two texts (usually sentences). We consider chunk-
ing to be a preprocessing step and assume that the sentences
are already chunked. Not all chunks in the sentences may be
aligned and number of aligned chunks gives indication to the
overall similarity between the sentences. Figure 1 provides
an illustrative example.

We introduce a novel logic statement constrained gated
pointer network model to align constituents of the two sen-
tences, aiding in interpretation of semantic relationships be-
tween sentences. Our model uses a pointer network [Vinyals
et al., 2015] with a sentinel gating function to align the con-
stituent chunks, which are represented using BERT. We im-
prove this base model with a loss function to equally penal-
ize misalignments in both sentences, ensuring bidirectional
alignments. Finally, we introduce first-order logic constraints
based on ConceptNet as well as syntactic knowledge to aid in
training and inference.

Experiments over two different SemEval datasets indicate
that our proposed approach achieves state of the art results on
both the datasets. We achieve F1 score of 97.73 on headlines
and 96.32 on images, an improvement of 7.8% and 5.6% over
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the previous best results, respectively. Through ablation stud-
ies, we also find that the proposed logical constraints help
boost the performance on both the datasets. Further, since
getting alignments for training the model is costly, we also
perform a cross-domain experiment (training on headlines,
testing on images and vice-versa) and find that even in this
scenario, we achieve F1 scores of 96.16 and 94.80 on these
datasets, comprehensively beating state-of-the-art methods.

2 Related Work
Discovering semantic relations in text is a widely studied
problem in Natural Language Processing (NLP) with various
tasks. One such task is STS which was first introduced as
a shared task in [Agirre et al., 2012]. Several approaches
to this task have been developed [Bär et al., 2012; Jimenez
et al., 2012], with deep learning based methods achieving
the most success recently [Shao, 2017; Tai et al., 2015;
Reimers and Gurevych, 2019]. [Shao, 2017] train a CNN-
based sentence encoder on the STS task. [Conneau et al.,
2017] and [Pagliardini et al., 2018] train sentence encoders
on alternative similar tasks to aid in learning. Many such
approaches make use of an alignment (implicitly or explic-
itly) between parts of sentences (e.g. [Hänig et al., 2015;
Sultan et al., 2015]) with the assumption that composing sub-
sequence alignments can lead to better identification of se-
mantic similarity. Alignments also lend a notion of inter-
pretability of sentence level similarity judgements.

Alignment of parts of sentence pairs is also well studied
in domains such as Machine Translation [Koehn et al., 2003]
and Paraphrase Recognition [Chang et al., 2010]. The iSTS
[Agirre et al., 2015] shared task focuses on predicting chunk
alignments as a means to lend interpretability to STS. [Ban-
jade et al., 2015] develop a rule-based alignment system us-
ing standard textual features such as parts-of-speech (POS)
tags. [Kazmi and Schüller, 2016] realize a similar rule engine
in Answer Set Programming, allowing reordering of rules.
[Konopik et al., 2016] pose chunk alignment as a binary clas-
sification task supported with rules. [Li and Srikumar, 2016]
build an alignment model using an integer linear program
(ILP), with scoring functions learnt using both alignment and
sentence similarity tasks. Chunk alignment is a central piece
in this line of work and is also the focus of our work.

Incorporating external information from large labelled or
unlabelled corpora into neural models for NLP has been
shown to improve task performance. One common way is
to use pre-trained word or sentence embeddings. In this
work, we experiment with GloVe [Pennington et al., 2014]
and BERT [Devlin et al., 2019] based chunk representations
and show ablations in model performance. Another external
source of information is in the form of structured knowledge
from knowledge bases like ConceptNet [Speer et al., 2017]
and Pharaphrase Database (PPDB) [Pavlick et al., 2015].
Structured knowledge can be incorporated in the form of first-
order logic statements without expensive direct supervision.
Logic rules provide a declarative language to express such
structured knowledge and thus have been used to guide neural
networks in several ways recently. [Towell et al., 1990] and
[França et al., 2014] build networks from a rule set expressed

in propositional logic. [Hu et al., 2016] make use of teacher-
student network formulation to distill logic rules into network
parameters. This approach does not restrict models to special-
ized networks but requires a specialized training procedure.
[Li and Srikumar, 2019] introduce logic statements to con-
straint labelled neurons (e.g. attention nodes) which can be
used in general neural networks. We introduce constraints in
the framework which are applicable to the chunk alignment
task.

3 Approach
Given two sentences, let us denote these by x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , ym), where xi and yj
are chunks (i.e contiguous words) in x and y, respectively.
The problem of iSTS is to predict an alignment between
chunks zi,j ∈ {0, 1} indicating if xi and yj are aligned. We
consider a supervised setting in which the ground truth align-
ment ai,j ∈ {0, 1} is specified in the training data. Not all
chunks in x are aligned to a chunk in y (and vise-versa). We
consider these non-aligned chunks to be aligned to a special
φ chunk. Therefore, the problem is to generate an alignment
from x to y ∪ {φ} and from y to x ∪ {φ}. Figure 2 shows a
block level view of our model. Next, we explain each of the
individual components in further details.

Figure 2: Block level illustration of our Bidirectional Pointer Net-
work with BERT based chunk embeddings. For ease of illustration,
we show the non-aligned chunk φ on both sentences and do not show
FOL constraints.

3.1 Chunk Representation
Given a chunked sentence, we obtain chunk representation
from BERT [Devlin et al., 2019] bert-base-uncased variant
by concatenation of contextualized embedding of first and last
word of a chunk. We use summation of last 4-layers from
BERT to represent a word as higher layers of BERT capture
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semantic features as suggested in [Jawahar et al., 2019]. We
use BERT WordPiece model for sub-words representations
corresponding to a word which are averaged to realize the
word final representation. We also experiment with GloVe
where the chunk representation is obtained by averaging the
word embeddings, as is common in literature.

3.2 Alignment with Gated Pointer Networks
Extending previous work [Vinyals et al., 2015], we design a
pointer network (PN) to model alignment between chunks of
sentences x and y. The alignment between chunks xi and yj
is modelled as

θi,j = vT f(W1xi +W2yj +W3xi ⊗ yj) (1)
where W1, W2, W3 and v are model parameters, f is a non-
linearity (we use tanh) and ⊗ is the Hadamard product. The
W matrices are of the same dimension and project chunk em-
beddings to a lower dimension d; v is a d-dimension vector.
Thus, the PN ‘points’ from chunks in x to chunks in y. How-
ever, we consider the pointers as unidirectional and interpret
Equation (1) as alignment between yj and xi as well. To al-
low for non-aligned chunks, we consider such chunks to be
aligned to a special empty chunk φ and treat its representa-
tion as a parameter of the model. Specifically with a little
abuse of notation, we model non-aligned chunks xi and yi
using bxi,φ and byφ,i, respectively, given by

bxi,φ = vT f(W1xi +W2φ) (2)

byφ,i = vT f(W1φ+W2yi)

Using Equations (1) and (2), we define a gating function that
models xi’s alignment to y and yi’s alignment to x,

gxi = σ(c1 max
j

(θi,j − bxi,φ) + c2) (3)

gyi = σ(d1 max
j

(θj,i − byφ,i) + d2)

where c1, c2 and d1, d2 are parameters of the model. Intu-
itively, gxi captures how well xi is aligned to its best align-
ment (with high θi,j) in y in comparison to φ. Mathemati-
cally, gxi → 1 when xi is better aligned to some yj in com-
parison to φ. Let zi,j ∈ {0, 1} indicate if xi is aligned to
yj (zi,j = 1). Using Equations (3) and (1), we model the
probability of the event zi,j as,

p(zi,j = 1) ∝ gxi g
y
j θi,j (4)

Thus, the alignment probability of xi and yj is proportional
to product of xi being aligned to some chunk in y, yj being
aligned to some chunk in x and xi being aligned to yj .

The probability of non-alignment of xi (aligned to φ) is
proportional to 1−gxi and probability of non-alignment of yj
is proportional to 1− gyj . Thus

p(zi,φ = 1) ∝ (1− gxi ) (5)

p(zφ,j = 1) ∝ (1− gyj )
Equations (4) and (5) are appropriately normalised by

passing them through a softmax layer. Mathematically,
m∑
j=1

p(zi,j = 1) + p(zi,φ = 1) = 1 (6)

p(zi,j = 1) = softmax([gxi g
y
j θi,j ; (1− g

x
i )])

where [·; ·] indicates concatenation.
Therefore, the alignment is modeled for every index i in

x because p(zi,·) is a distribution for every i. The model is
trained by minimizing the categorical cross-entropy loss be-
tween correct (ai,j) and predicted alignment (zi,j). However,
this loss alone fails to capture the non-alignment for chunks
in y because the PN ‘points’ from x to y and therefore cannot
model φ aligning to multiple yj’s. We address this separately
by binary cross-entropy loss between pφ,j and non-aligned
chunks in y indicated by aφ,j . The combined loss is addition
of these two losses,

− C1

n

n∑
i=1

(
m∑
j=1

ai,j log(pi,j) + ai,φ log(pi,φ)

)
(7)

+ C2

(
−

n∑
i=1

aφ,i log(pφ,i) + (1− aφ,i) log(1− pφ,i)

)

where C1, C2 are positive hyperparameters capturing the rel-
ative cost sensitivity between the two loss functions.

3.3 Improving Alignments with Bidirectionality
For a pair of similar sentences, usually a certain part of a sen-
tence is semantically similar to only a particular part of the
other sentence. Thus, the alignment is usually one-to-one be-
tween chunks in the two sentences. We observed this phe-
nomenon in SemEval 2016 dataset on iSTS, where approxi-
mately 85% of alignments between the chunks in the sentence
pair are one-to-one. However, the gated PN formulation we
developed in Section 3.2 falls short in modelling one-to-one
alignments. This is because while alignment for every chunk
xi in x is modelled explicitly as a distribution zi,·, thus en-
couraging a hard alignment to a chunk yj (because of the
cross-entropy loss), the alignments for yj are unconstrained
(e.g the model might easily choose to align two chunks xi
and xk to yj). Therefore, the one-to-one alignment for yj’s
is violated because it is not being modelled, and is implic-
itly derived from z·,j’s. We illustrate this in Figure 3 with an
example from the SemEval dataset.

Figure 3: Alignment as obtained by gated PN in Section 3.2. Many-
to-one alignment obtained by the model for a chunk in y is incorrect.
This is a because it only models x to y alignment as a distribution.

Figure 4: Enforcing bidirectionality on gated PN improves the align-
ment. The alignment is one-to-one and corresponds to the ground
truth alignment.
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We address this shortcoming of our gated PN by ensuring
bidirectionality, i.e.,both zi,· and z·,j are distributions for all
i, j. Moreover, xi’s alignment to yj and yj’s alignment to
xi is modeled by the same event zi,j with probability pi,j .
Alignment between two sentences can be viewed as solution
to an optimal transport problem where the transportation cost
is defined by the activations in Equations (4) and (5). This
results in a combinatorial optimization and is difficult to solve
in an end-to-end manner with a neural network.

We propose an approximate solution to this problem using
Sinkhorn distance [Cuturi, 2013] which is an entropy regular-
ized approximation of optimal transportation problem. Math-
ematically, Sinkhorn distance is a solution p to,

min
p

∑
i,j∪{φ}

pi,jCi,j − λH(p) (8)

s.t ∀i
∑
j∪{φ}

pi,j = 1 ∀j
∑
i∪{φ}

pi,j = 1

where p is a distribution, H(p) is the entropy of p, C is a
transportation cost matrix and λ is the strength of the entropy
regularization. The constraints in Equation (8) ensure that p
is a distribution over alignments from x to y and from y to x.
We define the cost matrix C as,

Ci,j = −gxi gyj θi,j
Ci,φ = −(1− gxi )
Cφ,j = −(1− gyj )

In transportation problems, the cost matrix is defined as non-
negative. To ensure non-negativity of the cost matrix we sub-
tract the minimum of each row from the entries of the matrix
to define, Ci,j = Ci,j −minj Ci,j ∀i. We use Cuturi’s iter-
ative row and column normalization algorithm [Cuturi, 2013]
to solve Equation (8). To ensure convergence of Cuturi’s al-
gorithm [Cuturi, 2013], a small constant ε is added to every
entry of the cost matrix. The parameters of the model are
learnt in an end-to-end manner. The backward pass to com-
pute gradients differentiates through Cuturi’s algorithm. This
is achievable with automatic differentiation because the algo-
rithm consists of only multiplication and division steps over
differentiable terms.

Now both pi,· and p·,j form distributions and the modified
formulation can be viewed as a bidirectional PN which points
from both x to y and from y to x. The loss function is cate-
gorical cross-entropy on p. The two-way alignment distribu-
tion encourages one-to-one alignments for chunks in both x
and y,

2

(
−

n∑
i=1

m∑
j=1

ai,j log(pi,j)

)
(9)

+

(
−

n∑
i=1

ai,φ log(pi,φ)

)
+

(
−

m∑
j=1

aφ,j log(pφ,j)

)
Equation (9) can be viewed as summation of categorical
cross-entropy of distributions pi,· and p·,j . Figure 4 illus-
trates the improvement in alignment on the example given in
Figure 3.

3.4 Side-supervision with FOL
Guiding neural networks with structured external knowledge
has been shown to improve predictive performance by com-
plementing powerful data-driven learning. This knowledge

provides a mechanism to regulate the learning process by en-
coding human intention without expensive supervision. A
number of techniques have been proposed to incorporate
declarative logic statements into networks, such as data aug-
mentation [Collobert et al., 2011], knowledge distillation [Hu
et al., 2016], etc. [Li and Srikumar, 2019] propose a promis-
ing technique to augment existing networks by constraining
activations of named neurons (e.g. attention layer) using
declarative rules. Motivated by their approach, in this work,
we propose two intuitive rules for the chunk alignment task,
• R1: Two chunks should be aligned if they are related by

any of the relations: Synonym, Antonym, IsA, SimilarTo,
RelatedTo, DistinctFrom or FormOf. The relational infor-
mation to realize this rule is obtained from ConceptNet.

• R2: Two chunks should be aligned if they are syntacti-
cally similar. This similarity is defined based on overlap of
parts-of-speech tags of their ancestor or children nodes in
dependency parse trees of the two sentences.

These rules are based on structured knowledge and are ex-
pressed as declarative statements. We define predicatesReli,j
and SynSimi,j to indicate whether chunk xi is related to
chunk yj according to R1 or R2, respectively. Let Ai,j de-
note the model decision that chunk xi is related to chunk yj .
We use the following constraints:

∀i, j ∈W,Reli,j → Ai,j (10)
∀i, j ∈W,SynSimi,j → Ai,j

For rule R1, we experiment with two resources, Concept-
Net and the paraphrase database (PPDB). In the Concept-
Net knowledge base permitted relation types are [Synonym,
Antonym, IsA, SimilarTo, RelatedTo, DistinctFrom, FormOf]
which closely correspond to the alignment categories speci-
fied in the task [Agirre et al., 2015]. We also experiment with
PPDB since a large number of alignments are paraphrases.
As complete chunks may not always be available, we evalu-
ate using bigram and unigram alignments from these sources
as indicators of chunk alignments. We ignore non-content
words by restricting the alignment to content words W , iden-
tified as having POS tags [ADJ, ADV, INTJ, NOUN, PROPN,
VERB, NUM].

We next discuss the details of syntactic similarity measure
which constitutes R2. Using the dependency tree of x and y
obtained from Spacy [Honnibal and Montani, 2017], we de-
fine syntactic similarity measure between two words w1 ∈ xi
and w2 ∈ yj as an average of (i). Jaccard similarity between
parts-of-speech (POS) tags of ancestor nodes of w1 and w2,
(ii). Jaccard similarity between POS tags of children nodes
of w1 and w2 and (iii). Boolean to indicate if both w1 and w2

are roots of the corresponding dependency trees. The syn-
tactic similarity between xi and yj is defined as the average
syntactic similarity between words in xi to its best aligned
word (maximum similarity) in yj . A high value of syntactic
similarity between xi, yj indicates a possible alignment.

Using the logic statements from Equation (10) we con-
straint the pointer network decisions by adding a positive con-
stantmi,j to the activations in Equation (1) if either R1 or R2
is true on (i, j) (i.e. a rule aligns xi and yj),

θ′i,j = θi,j + ρmi,j (11)
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where mi,j captures whether the antecedent Reli,j or
SynSimi,j or both are true. From an implementation per-
spective, we unroll the FOL statement to propositional state-
ments for all examples. The modified alignment strength θ′
in Equation (11) replaces θ and affects both the gating func-
tions in Equation (3) and combined alignment probability in
Equation (4). This saturates the probability of the event zi,j
to 1 constraining the network output towards rule predictions.
The importance of FOL rules is controlled using the ρ hyper-
parameter.

Hyperparameter Range

ρ [0, 1, 2, 4]
PN dimension(d) [100, 150, 200, 768]

Table 1: Hyperparameter configurations. The ρ value of 0 indicates
a model without constraints. The PN dimension of 768 is valid only
for BERT chunk based representation models (M3 & M4).

4 Experiments
We compare the proposed model against existing work on
iSTS. In line with much of previous research on this task,
we report experimental results on the SemEval 2016 inter-
pretable textual similarity dataset.

4.1 Dataset Description
We use SemEval 2016 Task 2 dataset for interpretable seman-
tic textual similarity [Agirre et al., 2016]. It consists of exam-
ples from two domains; News Headlines and Flickr Images.
In both domains, there are 1, 125 sentence pairs, with a 2:1
split between train and test sets. Each sentence pair is an-
notated with the alignments between the chunks, similar to
example in Figure 1. In this work, we focus on predicting the
alignment between the chunks. Additionally, the chunking of
the sentences is pre-specified in both train and test examples,
therefore we directly use the chunking in this work. For more
detailed specifications, please refer to [Agirre et al., 2016].

4.2 Baselines & Models
We compare against the best task submissions on the two
datasets as well as a followup work achieving SOTA results.
Inspire [Kazmi and Schüller, 2016] is a rule-based align-
ment system extending the earlier NeRoSim [Banjade et al.,
2015] rule engine. It introduces Answer Set Programming
to build an extended rule set. This model was the winning
entry of the SemEval task on the News Headlines dataset.
UWB [Konopik et al., 2016] pose alignment as binary clas-
sification between all possible chunk pairs using lexical, syn-
tactic, semantic and WordNet-based features, with impossible
alignments handled via rules. This model was the winning en-
try of the SemEval task on the Flickr Images dataset. Lastly,
we compare against [Li and Srikumar, 2016] which models
chunk alignment using an ILP. Scoring functions for the ILP
are calculated using a structured loss to penalize alignments
far-off from ground truth along with two additional terms for
chunk and sentence similarities. To the best of our knowl-
edge, currently this method achieves SOTA results for the
iSTS task on the SemEval dataset.

Model Configurations Dataset
BERT Glove FOL Bidirectional Headlines Images

Constraints PN

Inspire - - - - 81.94 86.7
UWB - - - - 89.87 89.37
ILP - - - - 92.57 87.38
M1 X × × 89.7 88.34
M2 X × X 91.48 90.88
M3 X × X 96.63 93.81
M4 X X X 97.73 96.32

Table 2: Average F1 score of alignments on the test set. The results
for the models M1 to M4 are on the best hyperparameter configura-
tion for each. Our best model M4 is better than the existing SOTA
method by 6.7% on average across the datasets.

To thoroughly investigate the proposed approach, we re-
port the experimental results across four different configura-
tions of the proposed model, as described in Table 2. These
settings capture the relative merit of each of the model com-
ponents. The evaluation metric is F1 measure as per the Se-
mEval task description.

4.3 Evaluation
We report F1 measure across the model ablations and base-
lines discussed in Section 4.2. The results for the baselines
are reported from the corresponding papers owing to unavail-
ability of the their code bases. We trained each of the model
configurations on train part of the SemEval dataset and did
hyperparamter tuning on training set F1. We fixed the en-
tropy regularization strength λ to 0.6 across all experiments
and changing it had little effect on results. The embedding
dimension for Glove based representations was 300 and for
BERT was 768. To avoid over-fitting, we employed early
stopping using training set F1 as a metric and stop the train-
ing if training set F1 does not improve over 5 successive
epochs. In Table 2, we report the average test set F1 over
3 runs for each model configurations (corresponding to the
best hyperparameter setting) on news headlines and images
dataset. For example, the best identified hyperparameter con-
figuration corresponding to M4 are; ρ = 2 and PN dimen-
sion of 100 for experiments on headlines dataset and ρ = 2
and PN dimension of 150 for experiments on images dataset.
The results for M4 and M3 in comparison to M2 and M1
indicate that BERT based chunk embeddings are superior to
Glove based representation. The constraints improve the per-
formance of the BERT based model as highlighted by su-
perior performance of M4 over M3. The improvements us-
ing constraints are much more visible on the images dataset.
Both BERT chunk representation based models are signif-
icantly better than SOTA results [Li and Srikumar, 2016;
Konopik et al., 2016]. We see an improvement of 5.6% on
News headlines dataset and 7.8% on Flickr images dataset
for M4 over SOTA results. The Glove representation based
model even without FOL constraints (M2) is comparable to
SOTA method on both the datasets.

4.4 Qualitative Evaluation
We illustrate the qualitative merits of different components
of our model on two examples by investigating the alignment
produced by the four modelling configurations we introduced
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Figure 5: (Best viewed in color) Relative merit of M3 & M4 over
M1 & M2. The correct alignments according to ground truth are
shown in green and the incorrect ones are shown in red.

Figure 6: (Best viewed in color) Relative merit of M4 over M3. The
correct alignments according to ground truth are shown in green and
the incorrect ones are shown in red.

in Section 4.2. Figure 5 shows that modelling bidirectional-
ity is important as is evident from large number of alignment
errors made by M1 in comparison to M2. However, using
BERT based contextual embeddings for chunks in the sen-
tences leads to improved representations for chunks and both
M3 and M4 correctly align all the chunks.

Figure 6 shows the effect of including real-world knowl-
edge in the form of FOL statements in the model. The chunks
pair “in N Waziristan” and “in Pakistan” are aligned by the
FOL statements retrieved from ConceptNet. This is because
ConceptNet holds the real-world knowledge that “Waziris-
tan” is a part of “Pakistan” and relates them. BERT em-
beddings alone may not encode enough information to relate
“Waziristan” and “Pakistan” and M3 fails to align both these
chunks correctly, while M4 owing to the activated FOL con-
straint gives the correct alignment.

4.5 Cross-domain Experiments
While the proposed approach achieves significant improve-
ments over the previous baselines, a natural question arises
– how would this approach be applicable on a new sentence

similarity dataset to provide interpretability, when no chunk
alignments are available to train the model in the target do-
main? To answer this, we attempted a cross-domain experi-
ment, where we train on headlines, test on images, and vice
versa (i.e., do not utilize training examples from the target do-
main). Remarkably, even in this setting, using our best model
M4, we achieve F1 scores of 96.16 and 94.80 on headlines
and images datasets, respectively, outperforming the previ-
ous SOTA results. Note that no hyperparameter tuning was
performed on the target domain.

5 Conclusion
We propose a novel pointer network for the task of in-
terpretable sentence similarity along with logic constraints
based on ConceptNet and syntactic knowledge. Experiments
over benchmark datasets show a large performance improve-
ment for the alignment task, even in the cross-domain setting,
proving the general applicability of the proposed approach.

It was encouraging to see that the logical constraints im-
posed using external knowledge helped the model perfor-
mance, and it would be interesting to check how the whole
framework can be employed to improve performance for the
sentence similarity task, while providing interpretability and
explanation for the model decision.
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