Misleading Metadata Detection on YouTube

Priyank Palod¹, Ayush Patwari², Sudhanshu Bahety³, Saurabh Bagchi², Pawan Goyal¹

¹Dept. of CSE, IIT Kharagpur, India; ²Purdue University; ³Salesforce.com

Objective

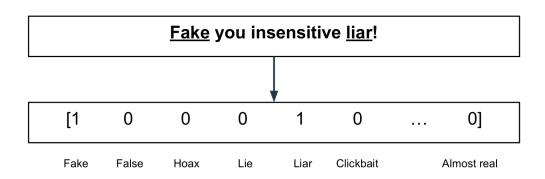
YouTube is plagued with misleading content that includes staged videos presented as real footages from an incident, videos with misrepresented context and videos where audio/video content is morphed. We tackle the problem of detecting such misleading videos as a supervised classification task.

2 Example Video 1:58 / 4:45 SHOCKING Demonic Photos of Obama! 1,063,438 views The Alex Jones Channel 🕏 SUBSCRIBE 2.1M Published on Sep 13, 2014

6 UCNet: Description

• Create a "fakeness indicator vector" for each comment using some words/phrases.

Viral photos show Obama with multiple 'devil horns' during speech on ISIS.



- Pass it through a dense layer with sigmoid activation to get a 'weight' of the comment (0-1).
- Get an embedding of each comment by passing it word by word (word2vec) through LSTM.
- Take the weighted average of all comments called "Unified Comments Embedding" (UCE).
- Concatenate UCE with Simple features and pass through dense layers for classification.

8 Results with UCNet

Class	Precision	Recall	F-score	#Videos	Class	Precision	Recall	F-score	#Videos
Real	0.64	0.88	0.74	72	Real	0.74	0.87	0.8	23
Fake	0.88	0.64	0.74	98	fake	0.89	0.77	0.83	31
Macro avg	0.76	0.76	0.74	170	Macro avg	0.82	0.82	0.82	54
Table 3: UCNet train: VAVD. test: FVC					Table 4: UCNet: train: FVC70, test: FVC30				

9 PCA further demonstrates importance

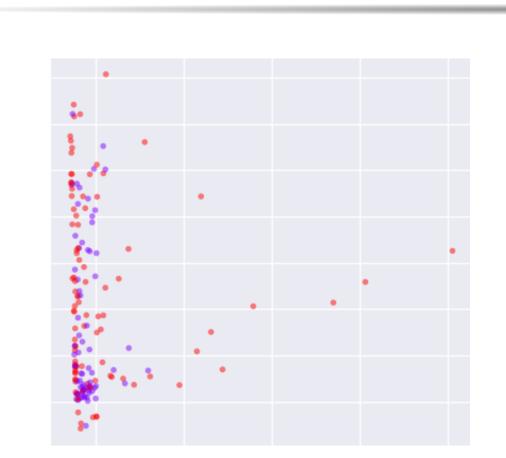


Figure 1: PCA for Simple Features

Figure 2: PCA for UCE

- Red dots are Fake Videos while blue dots are Real Videos
- UCE can distinguish between the fake and real videos better than the simple features.

References

3 Datasets

- Fake Video Corpus (FVC) [1]
- Had 117 fake and 110 real video URLs, but some got removed. Used 98 fake and 72 real videos.
- The paper reported 79% F-Score(fake class), but we found 36% Macro-Avg.
- We divided it in 30:70 ratio and called the subsets FVC30 and FVC70 respectively.
- Volunteer annotated Video Dataset (VAVD)
- Crawled 100K video urls from YouTube. Removed videos with views < 10k, comments < 120
- Handpicked phrases from some fake videos and bootstrapped (e.g., "complete bullshit")
- Removed videos with dislike count: like count < 0.3 and got 650 videos to be annotated by students.
- After annotations: 421 Real videos, 125 Fake videos. 104 videos not sure (these are ignored).

4 Some Example Simple Features

Title/Description Based: Presence of Clickbait phrase, Ratio of UpperCase:LowerCase words in Title, Ratio violent words in title, etc.

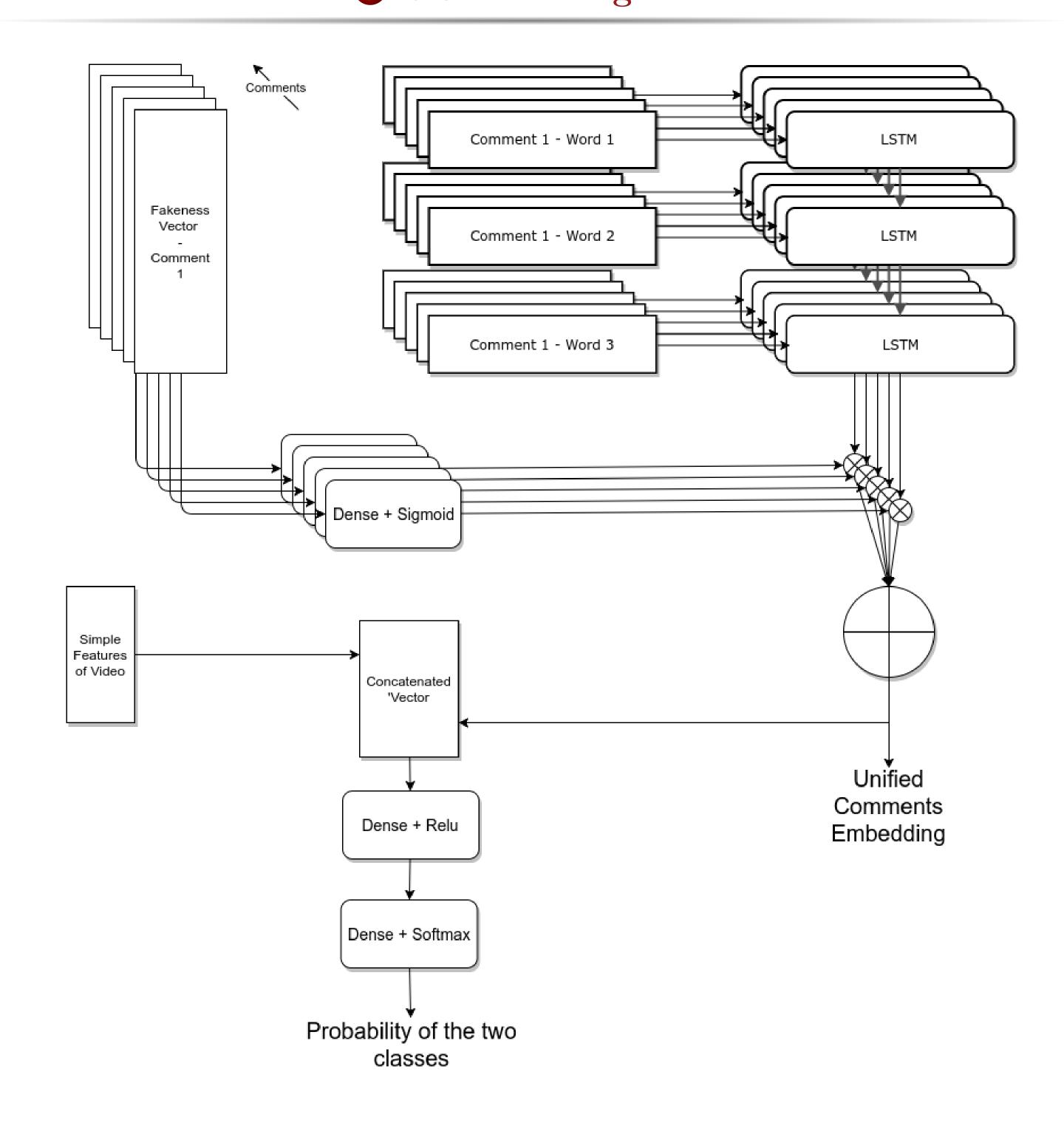
Comment Based: Ratio of comments with swear words, fakeness indicating words.

"Entirely <u>faaaake</u> video"	"this is <u>not real</u> "
"my <u>fake</u> detector exploded"	"this <u>idiot</u> is sick. <u>fake</u> "
"le there envision to met this kind of one	n removed from the internet? Hencetly!"

6 Experiments with Simple Features

Classifier	Precision	Recall	F-Score	_	Classifier	Precision	Recall	F-Score
SVM- RBF	0.74	0.60	0.49	_	SVM- RBF	0.56	0.55	0.54
Random Forests	0.73	0.58	0.46		Random Forests	0.74	0.73	0.73
Logistic Regression	0.54	0.53	0.45]	Logistic Regression	0.53	0.53	0.53
Decision Tree	0.53	0.52	0.46		Decision Tree	0.73	0.67	0.67
Table 1: Simple classifiers train: VAVD, test:FVC30				- -	Table 2: Simple classifiers train: FVC70, test: FVC30			

7 UCNet: Diagram



10 Conclusion

Our work presents VAVD, a new dataset for research on fake videos, and also presents UCNet, a deep learning based approach to identify fake videos with high accuracy using user comments. UCNet also generalizes well across datasets.

- Dataset: https://github.com/ucnet01/Annotations_UCNet
- Code: https://github.com/ucnet01/UCNet_Implementation