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Abstract. A leaderboard is a tabular presentation of performance scores
of the best competing techniques that address a specific scientific prob-
lem. Manually maintained leaderboards take time to emerge, which in-
duces a latency in performance discovery and meaningful comparison.
This can delay dissemination of best practices to non-experts and prac-
titioners. Regarding papers as proxies for techniques, we present a new
system to automatically discover and maintain leaderboards in the form
of partial orders between papers, based on performance reported therein.
In principle, a leaderboard depends on the task, data set, other experi-
mental settings, and the choice of performance metrics. Often there are
also tradeoffs between different metrics. Thus, leaderboard discovery is
not just a matter of accurately extracting performance numbers and
comparing them. In fact, the levels of noise and uncertainty around per-
formance comparisons are so large that reliable traditional extraction is
infeasible. We mitigate these challenges by using relatively cleaner, struc-
tured parts of the papers, e.g., performance tables. We propose a novel
performance improvement graph with papers as nodes, where edges en-
code noisy performance comparison information extracted from tables.
Every individual performance edge is extracted from a table with cita-
tions to other papers. These extractions resemble (noisy) outcomes of
‘matches’ in an incomplete tournament. We propose several approaches
to rank papers from these noisy ‘match’ outcomes. We show that our
ranking scheme can reproduce various manually curated leaderboards
very well. Using widely-used lists of state-of-the-art papers in 27 areas
of Computer Science, we demonstrate that our system produces very
reliable rankings. We also show that commercial scholarly search sys-
tems cannot be used for leaderboard discovery, because of their emphasis
on citations, which favors classic papers over recent performance break-
throughs. Our code and data sets will be placed in the public domain.

1 Introduction

Comparison against best prior art is critical for publishing experimental re-
search. With the explosion of online research paper repositories like arXiv, and
the frenetic level of activity in some research areas, keeping track of the best
techniques and their reported performance on benchmark tasks has become in-
creasingly challenging. Leaderboards, a tabular representation of the performance



scores of some of the most competitive techniques to solve a scientific task, are
now commonplace. However, most of these leaderboards are manually curated
and therefore take time to emerge. The resulting latency presents a barrier to
entry of new researchers and ideas, trapping “wisdom” about winning techniques
to small coteries, disseminated by word of mouth. Thus, automatic leaderboard
generation is an interesting research challenge. Recent work [4] has focused on au-
tomatic synthesis of reviews from multiple scientific documents. However, to the
best of our knowledge, no existing system incorporates comparative experimental
performance reported in papers into the process of leaderboard generation.

Limitations of conventional information extraction: The ordering of com-
peting techniques in a leaderboard depends on a large number of factors, includ-
ing the task being solved, the data set(s) used, sampling protocols, experimental
conditions such as hyperparameters, and the choice of performance metrics. Fur-
ther, there are often tradeoffs between various competing metrics, such as recall
vs. precision, or space vs. time. In fact, an accurate extraction, in conjunction
with all the contextual details listed above, is almost impossible. We argue that
conventional table and quantity extraction [2, 10] is neither practical, nor suf-
ficient, for leaderboard induction. In fact, numeric data is often presented as
combinations of comparative charts and tables embedded together in a single
figure [11]. These may even use subplots with multicolor bars representing base-
line and proposed approaches.

Table citations: A practical way to work around the difficult extraction prob-
lem is to focus on the relatively cleaner and more structured parts of a paper,
viz., tables. Performance numbers are very commonly presented in tables. A
prototypical performance table is shown in Singh et al. [11, Figure 3]. Each row
shows the name of a competing system or algorithm, along with a citation. (A
transposed table style is easily identified with simple rules.) Each subsequent
column is dedicated to some performance metric. The rows make it simple
to associate performance numbers with specific papers. In recent years, tables
with citations (here, named table citations) and performance summaries have
become extremely popular in arXiv.

Performance improvement graphs: We digest a multitude of tables in dif-
ferent papers into a novel performance improvement graph. Each edge rep-
resents an instance of comparison between two papers, labeled with the ID of
the paper where the comparison is reported, the metric (e.g., recall, precision,
F1 score, etc.) used for the comparison, and the numeric values of the metric in
the two papers. Note that every individual performance edge is extracted from
a table with citations to other papers. Each such extracted edge is noisy. Apart
from the challenge of extracting quantities from tables and recognizing their nu-
meric types [2, 10], there is no control on the metric names, as they come from
an open vocabulary (i.e., the column headers are arbitrary strings). Processing
one table is a form of ‘micro’ reading; we must aggregate these ‘micro’ readings
into a satisfactory ‘macro’ reading comparing two papers. We propose several
reasonable edge aggregation strategies to simplify and featurize the performance
improvement graph, in preparation for ranking papers.
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Ranking papers using table citation tournaments: Ranking sports teams
into total orders, on the basis of the win/loss outcomes of a limited number of
matches played between them, has a long history [5, 3, 9]. We adapt two widely-
used tournament solvers and find that they are better than some simple baselines.
However, we can further improve on tournament solvers using simple variations
of PageRank [8, 12] on a graph suitably derived from the tournament. Overall,
our best ranking algorithms are able to produce high-quality leaderboards that
agree very well with various manually curated leaderboards. In addition, using a
popular list of papers spanning 27 different areas of Computer Science, we show
that our system is able to produce reliable rankings of the state-of-the-art pa-
pers. We also demonstrate that commercial academic search systems like Google
Scholar (GS)1 and Semantic Scholar (SS)2 cannot be used (and, in fact, are not
intended to be used) for discovering leaderboards, because of their emphasis on
aggregate citations, which typically favors classic papers over latest performance
leaders.

2 Emergence of leaderboards

Experts in an area are usually familiar with latest approaches and their perfor-
mance. In contrast, new members of the community and practitioners need guid-
ance to identify the best-performing techniques. This gap is currently bridged by
“organically emerging” leaderboards that organize and publish the names and
the performance scores of the best algorithms in a tabular form. Such leader-
boards are commonplace in Computer Science, and in many other applied sci-
ences.

The prime limitation of manually curated leaderboards is the natural latency
until the performance numbers in a freshly-published paper are noticed, verified,
and assimilated. This can induce delays in the dissemination of the best tech-
niques to non-experts. In this paper, we build an end-to-end system to automate
the process of leaderboard generation. The system is able to mine table citations,
extract noisy performance comparisons from these table citations, aggregate the
micro readings to a smooth macro reading and finally obtain rankings of papers.

In Table 1, we show an example leaderboard generated by our system (de-
tails of the system to be discussed later in the subsequent sections) for the
PASCAL VOC Challenge (which involves semantic segmentation of images).
Similar results reproducing other leaderboards are presented by Singh et al.
[11]. We observe that our system is able to find many of the papers present in
this human-curated leaderboard. Traditional academic search systems like GS
and SS do not fare well in finding leaderboard entries; each returned only seven
papers (see Table 1) in their top 50 results retrieved for the query ‘semantic
segmentation’. Systems that emphasize cumulative citations rather than perfor-
mance scores cannot be used for leaderboard discovery. Citations to a paper
that make incremental improvements, resulting in the best experimental perfor-

1https://scholar.google.com/
2https://semanticscholar.org/
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Table 1: Ability of GS, SS, and our system to recall prominent leaderboard
papers for the PASCAL VOC Challenge.
Paper GS SS Our

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation × × ×
Rethinking Atrous Convolution for Semantic Image Segmentation × × X
Pyramid Scene Parsing Network × × X
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition × × ×
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation X × ×
Understanding Convolution for Semantic Segmentation × × X
Not All Pixels Are Equal: Difficulty-aware Semantic Segmentation via Deep Layer Cascade × × X
Identifying Most Walkable Direction for Navigation in an Outdoor Environment × × ×
Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep . . . × × ×
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, . . . × X X
Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation X × X
High-performance Semantic Segmentation Using Very Deep Fully Convolutional Networks × × X
Higher Order Conditional Random Fields in Deep Neural Networks × × ×
Efficient piecewise training of deep structured models for semantic segmentation X X X
Semantic Image Segmentation via Deep Parsing Network × X X
Semantic Image Segmentation with Task-Specific Edge Detection Using CNNs . . . X × X
Pushing the Boundaries of Boundary Detection using Deep Learning × × X
Attention to Scale: Scale-aware Semantic Image Segmentation X X X
BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks . . . X X ×
Learning Deconvolution Network for Semantic Segmentation X X X
Conditional Random Fields as Recurrent Neural Networks × × ×
Weakly- and Semi-Supervised Learning of a DCNN for Semantic Image Segmentation × × X
Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures . . . × × ×
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs × X X
Global Deconvolutional Networks for Semantic Segmentation × × ×
Convolutional Feature Masking for Joint Object and Stuff Segmentation × × ×

mance, may never catch up with the seminal paper that introduced a general
problem or technique.

3 Limits of conventional table information extraction

Performance displays are implicitly connected to a complex context developed
in the paper, including the task, the data set, choice of training and test folds,
hyperparameters and other experimental settings, performance metrics etc. Mil-
lions of reviewer hours are spent each year weighing experimental evidence based
on the totality of the experimental context. “Micro-reading” one table at a time
is not likely to replace that intellectual process. Beyond contextual ambiguities,
there are often trade-offs between different metrics like space vs. time, recall
vs. precision, etc. In summary, leaderboard induction is not merely a matter of
accurately extracting performance numbers and numerically comparing them.

One way to partly mitigate the above challenges is to use relatively cleaner,
structured parts of the papers, e.g., single tables or single charts. We focus on
tables in our first-generation system. However, with advanced visual chart mining
and OCR [7, 1, 6], we can conceivably extend the system to charts as well.

We concentrate on (the increasing number of) tables that also cite papers,
which are surrogates for techniques. Table 2 shows the average number of ci-
tations in a paper p that occur in tables, against the year of publication of p.
Clearly, there is a huge surge in the use of table citations in the last five years,
which further motivates us to exploit them for building our system.
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Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Average 0.0 0.0 0.12 0.17 0.082 0.18 0.40 0.46 0.57 1.04 3.22 3.61 4.06

Table 2: Average number of table citations made by an arXiv paper between
2005 and 2017.
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Fig. 1: First table extraction step toward performance tournament graph con-
struction: (a) An example table present in paper P comparing three methods,
A, B and C, for two evaluation metrics, Z1 and Z2. (b) Unique citations to the
methods as well the evaluation metrics used are extracted, and (c) an abstract
performance tournament graph is constructed.

4 Performance improvement graph

4.1 Raw performance improvement graph

The performance improvement graph G(V,E,Z) is a directed graph among a
set of research papers V that are compared against each other. Here, Z repre-
sents the set of all the evaluation metrics. An edge between two papers (A,B)
(see Figure 1) is annotated with four-tuple (z, v1, v2, P ), where z ∈ Z, v1 and
v2 represent the metric value (‘recall’, ‘F1’, ‘time’) and lower and higher per-
forming papers respectively. P denotes the paper that compared A and B. The
directionality of an edge e (e ∈ E) is determined by the performance comparison
between two endpoints. The paper with lower performance points toward better
performing paper. Simple heuristic rules are used to orient the edges. E.g., large
F1 but small running times3 are preferred. Figure 1 shows a toy example of the
construction of a raw performance improvement graph from an extracted table.

One table provides just one noisy comparison signal between two papers or
techniques. Although table citations allow us to make numerical comparisons,
there is no guarantee of the same data set or experimental conditions across
different tables, leave alone different papers. Therefore, we process the raw per-
formance improvement graph in two steps:
Local sanitization: All directed edges connecting a pair of papers in the raw

performance improvement graph are replaced with one directed edge in the
sanitized performance improvement graph. This is partly a denoising step,
described through the rest of this section (4.2).

Global aggregation: In section 5, we present and propose various methods of
analyzing the sanitized performance improvement graph to arrive at a total
order for the nodes (papers) to present in a synthetic leaderboard.

3‘Time’ is ambiguous by itself: a long time on battery but short training time are
preferred. Our system is meant to take such errors it might make in stride.
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4.2 Sanitized performance improvement graph

Relative edge improvement (REI) distribution: One unavoidable char-
acteristic of the raw performance improvement graph is the existence of noisy
edges from incomparable or botched extractions. We define

REIz(u, v) =
vz − uz
uz

(1)

where (u, v) represents a directed edge from paper u to v; uz and vz denote
performance scores of paper u and v respectively against a metric z. As described
in previous section, uz is lower than vz.

We computed REIs from four leaderboards described in Section 6.1. These
improvement scores are computed by considering all pairs of papers present
in the respective leaderboards. We note that less than 0.5% of the edges have
REI above 100%. In contrast, manual inspection of various erroneously extracted
edges revealed that their REI was much larger than 100%. Therefore, we sanitize
the raw performance improvement graph by pruning edges having improvement
scores larger than 100%. This simple thresholding yielded graphs as clean as by
using supervised learning (details omitted) to remove noisy edges.

Sanitizing multi-edges: Every comparison creates a directed edge with dif-
ferent tuple value. A pair of papers can be compared in multiple tables, resulting
in (anti-) parallel edges or multi-edges. Two directed edges are termed as anti-
parallel if they are between the same pair of papers, but in opposite directions.
Whereas, two directed edges are said to be parallel if they are between the same
pair of papers and in the same direction. In Figure 1c, two parallel edges exist
between papers B and C and two anti-parallel edges exist between papers A
and B.

Multiple strategies can be utilized to summarize and aggregate multi-edges
into a condensed tournament graph. We consider the following variations. Note
that all of these are directed graphs. In each case, we discuss if and how a directed
edge (i, j) is assigned a summarized weight.

UNW — Unweighted Graph: The simplest variant preserves the directed
edges without any weights. This is equivalent to giving a weight of 1 for each of
these directed edge (i, j), if there is any comparison.

ALL — Weighted graph (total number of comparisons): This variation
uses the total number of comparisons between two papers pi and pj as the weights
of the directed edge. Thus, each time an improvement is reported, it is used as
an additional vote to obtain the edge weight.

SIG – Sigmoid of actual improvements on edges: This variation takes into
account the sigmoid value of the actual improvement score. If paper u having a
score of uz on a specific metric z, improves upon paper v which has a score of
vz in the same table and same metric, we compute the improvement score using
Eq. (1). We then pass this score through a sigmoid function of the form:

σz(u, v) =
1

1 + e−REIz(u,v)
(2)

To combine the multiple improvement scores of u over v on different metrics
and, thereby, obtain the edge weights, we use the following two techniques.
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Max: We set the weight of the edge pointing from v to u as the maximum of
all the sigmoid values of the improvement scores across the different metrics.

Average: We set the weight of the edge pointing from v to u as the average of
all the sigmoid values of the improvement scores across the different metrics.

Dummy winner and loser nodes: In the tournament ranking literature that
we shall discuss in the next section, the most prominent factor that guarantees
convergence is that the tournament must be connected. However, performance
tournament graphs are mostly disconnected due to extraction inaccuracies, in-
complete article collection, etc. Therefore, we introduce a dummy node that
either wins or loses over all other nodes in the graph. A dummy node has a
suitably directed edge to every other node.

5 Mining sanitized performance improvement graphs

In this section, we explore several ranking schemes to select the most competi-
tive papers by analyzing the sanitized performance graph. We begin with basic
baselines, then explore and adapt the tournament literature, and finally present
adaptations of PageRank-style algorithms. Solving an incomplete tournament
over n teams means to assign each team a score or rank inducing a total order
over them, and presents a natural analogy with incomplete pairwise observations.
The literature on tournaments seeks to extrapolate the anticipated outcome of
a match between teams i and j (which was never played, say) in terms of the
statistics of known outcomes, e.g., i defeated k and k defeated j.
Sink nodes: We can ignore the numeric values in table cells and regard each
table as comparing some papers, a pair at a time, and inserting an edge from
paper p1 to paper p2 if the table lists a better (greater or smaller depending
on metric) number against p2 than p1. In such a directed graph, sink nodes
that have no out-links are locally maximal. Thus, the hunt for leaders may be
characterized as a hunt for sink nodes. We do not expect this to work well,
because our graphs contain many biconnected components, thanks to papers
being compared on multiple metrics.
Cocitation: An indirect indication that a paper has pushed the envelope of
performance on a task is that it is later compared with many papers. We can
capture this signal in a graph where nodes are papers, and an edge and its reverse
edge (both unweighted) are added between papers p1 and p2 if they are cited by
any paper. Edges in both directions are added without considering the numbers
extracted from the tables.
Linear tournament: As described earlier, incomplete tournament presents a
natural analogy to performance comparisons. [9] started with an incomplete
tournament matrixM wheremij = mji is the number of matches played between
teams i and j.mmm = (mi) where mi =

∑
j mij is the number of matches played by

team i. Abusing the division operator, let M̄ = M/mmm denote M after normalizing
rows to add up to 1.

Of the mij matches between teams i and j, suppose i won rij times and j won
rji = mij − rij times. Then the dominance of i over j is dij = rij − rji and the
dominance of j over i is dji = rji− rij = −dij . Setting the dominance of a team
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over itself as zero in one dummy match, we can calculate the average dominance

of a team i as d̄i =
[∑

j dij

]/[∑
j mij

]
, and this produces a reasonable ranking

of the teams to a first approximation, i.e., up to “first generation” or direct
matches. To extrapolate to “second generation” matches, we consider all (i, k)
and (k, j) matches, which is given by the matrix M2. Third generation matches
are likewise counted in M3, and so on. [3] showed that a meaningful scoring of

teams can be obtained as the limit limT→∞
∑T

t=0 M̄
t · d̄dd, where d̄dd = (d̄i).

Exponential tournament: The exponential tournament model [5] is somewhat
different, and based on a probabilistic model. Given R = (rij) as above, it
computes row sums ρi =

∑
j rij . Let ρρρ = (ρi) be the empirically observed team

scores. Again, we can sort teams by decreasing ρi as an initial estimate, but this
is based on an incomplete and noisy tournament. Between teams i and j there
are (latent/unknown) probabilities pij + pji = 1 such that the probability that
i defeats j in a match is pij . Then the MLE estimate is pij = rij/mij . [5] shows
that there exist team ‘values’ vvv = (vi) such that

∑
i vi = 0 and

ρi =
∑
j

mijpij =
∑
j

mij

1 + exp(vj − vi)
. (3)

Here M and ρρρ are observed and fixed, and vvv are variables. Values vvv can be
fitted using gradient descent. Once the matrix PPP = (pij) is thus built, it gives a
consistent probability for all possible permutations of the teams. In particular,∏

j pij gives the probability that i defeats all other teams (marginalized over all
orders within the other teams j). Sorting teams i by decreasing

∏
j pij is thus a

reasonable rating scheme.
PageRank: PageRank computes a ranking of the competitive papers in the
(suitably aggregated) tournament graph based on the structure of the incom-
ing links. We utilize standard PageRank implementation4 to rank nodes in the
directed weighted tournament graph. We found best results (see Table 5) when
damping factor (α) is set at 0.90. We run this weighted variant of PageRank
on each induced tournament graph corresponding to each query. The induced
tournament graph consists of papers (P ) relevant to the query along with the
papers compared with P . These candidate response papers are ordered using
PR values. These scores can also be used for tie-breaking sink nodes.

6 Experiments

6.1 Datasets

ArXiv dataset: We downloaded (in June 2017) the entire arXiv document
source dump but restricted this study to the field of Computer Science. Table 3
shows statistics of arXiv’s Computer Science papers. ArXiv mandates uploading
the source of DVI, PS, or PDF articles generated from LATEX code resulting in
a large volume of papers (1,181,349 out of 1,297,992 papers) with source code.
Preprocessing and extracting table citations: The curation process in-
volves several sub-tasks such as reference extraction, reference mapping, table
extraction, collecting table citations, performance metrics extraction and edge

4https://networkx.github.io
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Table 3: Salient statistics about the arXiv and Computer Science data sets.

F
u
ll

Year range 1991–2017

C
o
m
p
.
S
c
ie
n
c
e Number of papers 107,795

papers 1,297,992 Year range 1993–2017
papers with LATEX code 1,181,349 Total references 2,841,554
Total fields 9 Total indexed papers 1,145,083

Total tables 204,264
Total table citations 98,943
Unique extracted metrics 14,947

orientation. Due to space constraints, we present detailed description and eval-
uation of each sub-tasks elsewhere [11].

State-of-the-art deep learning papers: A representative example from
the rapidly growing and evolving area of deep learning is https://github.com/

sbrugman/deep-learning-papers. The website contains state-of-the-art (SOTA)
papers on malware detection/security, code generation, NLP tasks like summa-
rization, classification, sentiment analysis etc., as well as computer vision tasks
like style transfer, image segmentation, and self-driving cars. This Github repos-
itory is very popular and has more than 2,600 stargazers and has been forked
330 times. The repository notes 27 different popular topics shown in Table 4.
The table also shows that the SOTA papers curated by knowledgeable experts
rarely find a place in the top results returned by the two popular academic
search systems — GS and SS. To be fair, these systems were not tuned to find
SOTA papers, but we argue that this is an important missing search feature.
As fields saturate and stabilize, citations to “the last of the SOTA papers” may
eclipse citations to older ones, rendering citation-biased ranking satisfactory. But
we again argue that recognizing SOTA papers quickly is critical to researchers,
especially new comers and practitioners.

Organic leaderboards: We identify manually curated leaderboards that
compare competitive papers on specific tasks. The four popular leaderboards
that we choose for our subsequent experiments are (i) The Stanford Ques-
tion Answering Dataset (SQuAD)5, (ii) Pixel-Level Semantic Labeling Task
(Cityscapes)6, (iii) VOC Challenge (PASCAL)7, and (iv) MIT Saliency (MIT-
300)8. Each leaderboard consists of several competitive papers compared against
multiple metrics. For example, the SQuAD leaderboard consists of 117 compet-
itive papers compared against two metrics ‘Exact Match’ and ‘F1 score’. The
tasks mostly include topics from natural language processing (e.g., question an-
swering) and image processing (e.g., semantic labeling, image segmentation and
saliency prediction).

6.2 Ranking state-of-the-art papers

Table 5 shows comparisons between Google Scholar (GS), Semantic Scholar
(SS), and several ranking variations implemented in our testbed. Recall@10,

5https://rajpurkar.github.io/SQuAD-explorer/
6https://www.cityscapes-dataset.com/benchmarks/
7https://goo.gl/6xTWxB
8http://saliency.mit.edu/results mit300.html
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Table 4: Recall of human-curated state-of-the-art (SOTA) deep learning papers
within top-10 and top-20 responses from two popular academic search engines
(Google Scholar and Semantic Scholar). Both systems show low visibility of
SOTA papers.
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#SOTA 7 3 3 2 15 1 2 6 2 1 14 6 1 1 15 6 3 2 30 4 5 4 9 1 9 8 6 166

GS
Top-10 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 6(3.6%)
Top-20 0 0 0 0 1 0 0 1 0 0 0 3 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 12 (7.2%)

SS
Top-10 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 7 (4.2%)
Top-20 0 0 0 0 0 0 0 1 0 0 0 2 0 1 1 1 0 1 1 0 1 0 1 0 0 1 0 11 (6.6%)

Recall@20, NDCG@10, and NDCG@20 are used as the evaluation measures, av-
eraged over the 27 topics shown in Table 4. Since our primary objective is to
find competitive prior art, recall is more important in case of Web search, where
precision at the top (NDCG) is paid more attention.

Given the complex nature of performance tournament ranking, our absolute
recall and NDCG are modest. Among naive baselines, sink node search led to
generally worst performance, which was expected. The numeric comparison is
slightly better, but not much.

GS and SS are mediocre as well. Despite the obvious fit between our prob-
lem and tournament algorithms, they are surprisingly lackluster. In fact, many
of the tournament variants lose to simple cocitation. PageRank on unweighted
improvement graphs performs beyond cocitation. However, the “sigmoid” ver-
sions of PageRank improve upon the unweighted case, almost doubling the gains
beyond GS and SS, and are clearly the best choice.

6.3 Leaderboard generation

In this section, we demonstrate our system’s capability to automatically gen-
erate task-specific leaderboards. We utilize four manually curated leaderboards
for this study. Automatic leaderboard generation procedure is divided into two
phases:
Obtaining list of candidate papers relevant to a task: We, first, obtain
a list of candidate papers relevant to a given task. We utilize textual informa-
tion such as title and abstract to find relevant candidate papers. These candi-
date papers are further ranked by utilizing best performing PageRank schemes
(described in section 6.2). We consider top-50 ranked results and show com-
parisons between Google Scholar (GS), Semantic Scholar (SS), and top-3 high
performing PageRank variations against two evaluation measures — Recall@50
and NDCG@50 — in Table 6. As expected, GS and SS performed poorly for
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Table 5: Comparison between several ranking schemes. Recall@10, Recall@20,
NDCG@10, NDCG@20 measures are averaged over the 27 tasks (queries). OS:
Online Systems; LT: Linear Tournament; ET: Exponential Tournament; ALL:
Weighted graph (total number of comparisons); UNW: Unweighted directed per-
formance graph; SIG: Sigmoid of the actual performance improvement; DW:
Dummy Winner; DL: Dummy Loser, DCC: Dense co-citation, NC: Numeric
comparison.

OS LT ET PageRank Sink BS

G
S

S
S

D
W

D
L

D
W

D
L

D
W

D
L

D
W

D
L

U
N

W

A
L

L

A
v
g
.

M
a
x
.

A
L

L

D
C

C

N
C

ALL SIG ALL SIG SIG

T
-1

0 Recall % 7.38 7.84 4.63 4.63 1.8 1.93 1.7 2.31 1.7 1.7 19.35 16.86 19.35 19.35 0.62 12.91 6.73
NDCG 0.073 0.065 0.029 0.029 0.016 0.019 0.027 0.024 0.02 0.02 0.151 0.131 0.154 0.149 0.009 0.142 0.036

T
-2

0 Recall % 10.48 10.08 5.86 5.86 6.5 6.63 4.17 2.93 2.93 2.93 21.74 21.95 22.36 22.09 0.62 19.25 7.35
NDCG 0.086 0.074 0.034 0.034 0.028 0.03 0.036 0.026 0.025 0.025 0.159 0.151 0.164 0.159 0.009 0.152 0.037

Table 6: Recall@50 and NDCG@50 measures for four leaderboards. Green cells
indicate best scores and red cells indicate worst scores.

Leaderboard name
GS SS PageRank UNW PageRank SIG (Avg) PageRank SIG (Max)

Recall (%) NDCG Recall (%) NDCG Recall (%) NDCG Recall (%) NDCG Recall (%) NDCG

SQuAD 0 0 7.14 0.014 21.42 0.206 21.42 0.205 14.29 0.177
Cityscapes 25 0.067 37.5 0.159 62.5 0.303 62.5 0.310 62.5 0.295
PASCAL 26.92 0.12 26.92 0.179 57.69 0.497 57.69 0.500 57.69 0.502
MIT-300 42.86 0.115 14.28 0.036 50.00 0.465 50.00 0.437 50.00 0.438

all of the four leaderboards. PageRank variations have almost double the gains
beyond GS and SS and are clearly the best choice. Some generated leaderboards
are listed in Singh et al. [11].
Ranking candidate papers to generate leaderboard: Next, we compute
the correlation between ranks in generated leaderboards with the ground-truth
ranks obtained from the organic leaderboards. Table 7 presents the Spearman’s
rank correlation of rankings produced by PageRank variations, UNW, SIG (Avg)
and SIG (Max), with the corresponding ground-truth rankings for the four
leaderboards. SQuAD shows the highest correlation (0.94 for F1 and 0.89 for
EM) for all of the three PageRank variations. CityScapes and PASCAL also
exhibit impressive correlation coefficients for all the PageRank variants. For the
MIT-300 leaderboard, while the correlation coefficient is decent for the SIM met-
ric it is somewhat low for the AUC metric. The reason for the low correlation
is existence of multiple weakly connected components. A local winner in one
component is affecting the global ranks across all components.

Name Nodes Metric UNW SIG (AVG) SIG (MAX)

SQuAD 9
F1 0.94 0.94 0.94
EM 0.89 0.89 0.89

CityScapes 7 iIoU 0.7 0.7 0.7
PASCAL 26 AP 0.57 0.57 0.57

MIT-300 9
AUC 0.23 0.23 0.23
SIM 0.53 0.45 0.45

Table 7: Spearman’s rank correla-
tion of rankings produced by UNW,
SIG (Avg) and SIG (Max) with the
corresponding ground-truth rankings
for the four leaderboards.
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6.4 Effect of graph sanitization

As described in section 4.2, graph sanitization is a necessary preprocessing step.
In this section, we present several real examples that resulted in greater visibil-
ity of state-of-the-art after sanitization. As representative examples, we consider
two tasks, “image segmentation” and “gaming”, to show how graph sanitiza-
tion results in noise reduction in the performance improvement graphs. We find
several state-of-the-art papers that performed poorer than a competitive paper
with high improvement score (>700%). This anomaly resulted in the poorer vis-
ibility of the state-of-the-art papers in top ranks. However, after sanitization,
the visibility gets improved. For example, Table 8 shows four examples of high
improvement edges whose removal resulted in the higher recall of the state-of-
the-art papers.

Table 8: Effect of graph sanitization. The first two edges correspond to the task
of “image segmentation” and the last two to the task of “gaming”. Removal of
these edges resulted in higher visibility of SOTA papers.

Source Destination Improvement % Back-edge (Y/N)

1511.07122 1504.01013 775 Y
1511.07122 1511.00561 6597 Y

1611.02205 1207.4708 4012.3 N
1412.6564 1511.06410 928.8 N

6.5 Why is PageRank better than tournaments?

PageRank variations performed significantly better than tournament variations.
Several assumptions of tournament literature do not hold true for scientific per-
formance graphs; for instance, existence of disconnected components is a common
characteristic of performance graphs. Unequal number of comparisons between
a pair of papers in performance graphs is another characteristic that demarcates
it from the tournament settings. We observe that in a majority of task-specific
performance graphs, tournament-based ranking scheme is biased toward papers
with zero out-degrees. Therefore the tournaments mostly converge to the global
sinks; in fact, we observe more than half of the tournament based top-ranked
papers are sink nodes. This is why recall and NDCG in Table 5 for these two
methods are close.

7 Conclusion and future scope

We introduce performance improvement graphs that encode information about
performance comparisons between scientific papers. The process of extracting
tournaments is designed to be robust, flexible, and domain-independent, but
this makes our labeled tournament graphs rather noisy. We present a number
of ways to aggregate the tournament edges and a number of ways to score and
rank nodes on the basis of this incomplete and noisy information. In ongoing
work, we are extending beyond LATEX tables to line, bar and pie charts [7, 1].
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Fig. 1: Comparative charts and tables embedded together in a single figure.

Paper GS SS
SIG

UNW
MAX AVG

Reinforced Mnemonic Reader for Machine Reading Comprehension × × × × ×
Structural Embedding of Syntactic Trees for Machine Comprehension × × × × ×
ReasoNet: Learning to Stop Reading in Machine Comprehension × × × X X
Bidirectional Attention Flow for Machine Comprehension × × × × ×
Multi-Perspective Context Matching for Machine Comprehension × × × × ×
Exploring Question Understanding and Adaptation in Neural-Network-Based . . . × × X X X
Dynamic Coattention Networks For Question Answering × X × × ×
Ruminating Reader: Reasoning with Gated Multi-Hop Attention × × × × ×
Reading Wikipedia to Answer Open-Domain Question × × × × ×
Making Neural QA as Simple as Possible but not Simpler × × × × ×
Learning Recurrent Span Representations for Extractive Question Answering × × X X X
Machine Comprehension Using Match-LSTM and Answer Pointer × × × × ×
Words or Characters? Fine-grained Gating for Reading Comprehension × × × × ×
End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension × × × × ×

Table 1: Ability of GS, SS, and our system to recall prominent leaderboard papers for the SQuAD.



Fig. 2: Multiple comparative subplots with multi-color bars representing baseline papers.

Paper GS SS
SIG

UNW
MAX AVG

Rethinking Atrous Convolution for Semantic Image Segmentation × × X X X
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition × × × × ×
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation X × × × ×
Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes × × X X X
Multi-level Contextual RNNs with Attention Model for Scene Labeling × × × × ×
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution . . . × X X X X
Efficient piecewise training of deep structured models for semantic segmentation X X X X X
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation × X X X X

Table 2: Ability of GS, SS, and our system to recall prominent leaderboard papers for the CityScape.
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Fig. 3: Sample performance numbers in a table with citations. Each row corresponds to a competing
algorithm or system, which is associated with a paper cited (green highlighted link) from that row. Each
column represents a performance metric.

Paper GS SS
SIG

UNW
MAX AVG

DeepFix: A Fully Convolutional Neural Network for predicting Human Eye Fixations × X × × ×
A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection X X × × ×
Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model × X X X X
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks × X × × ×
A Deep Multi-Level Network for Saliency Prediction × × × × ×
Deep Visual Attention Prediction X X X X X
Shallow and Deep Convolutional Networks for Saliency Prediction × × × × ×
DeepFeat: A Bottom Up and Top Down Saliency Model Based on Deep Features of . . . X X X X X
Visual saliency detection: a Kalman filter based approach X X X X X
End-to-end Convolutional Network for Saliency Prediction × X X X X
WEPSAM: Weakly Pre-Learnt Saliency Mode X X X X X
Visual Language Modeling on CNN Image Representations X X × × ×
Visual saliency estimation by integrating features using multiple kernel learning X X × × ×
Saliency Detection by Forward and Backward Cues in Deep-CNNs X X X X X

Table 3: Ability of GS, SS, and our system to recall prominent leaderboard papers for the MIT Saliency
(MIT-300).
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