
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 494–504, Osaka, Japan, December 11-17 2016.

Word Segmentation in Sanskrit Using Path Constrained Random Walks

Amrith Krishna, Bishal Santra*, Pavankumar Satuluri,
Sasi Prasanth Bandaru#, Bhumi Faldu, Yajuvendra Singh## and Pawan Goyal

*Dept. of Electronics & Electrical Communication Engineering,
#Dept. of Electrical Engineering, ##Dept. of Mathematics,

Dept. of Computer Science & Engineering
Indian Institute of Technology, Kharagpur, WB, India

amrith@iitkgp.ac.in

Abstract

In Sanskrit, the phonemes at the word boundaries undergo changes to form new phonemes
through a process called as sandhi. A fused sentence can be segmented into multiple possible
segmentations. We propose a word segmentation approach that predicts the most semantically
valid segmentation for a given sentence. We treat the problem as a query expansion problem and
use the path-constrained random walks framework to predict the correct segments.

1 Introduction

Word segmentation is an essential step for most of the text processing tasks. In Sanskrit texts, it is very
common that the phonemes at the word boundaries undergo changes to form new phonemes, through
a process termed sandhi. It also makes the word boundary between the words that undergo sandhi, in-
distinguishable. Proximity between phonemes (sam. hitā) is the sole criteria for applying sandhi, thus
phonetic transformation takes place between two consecutive words. This poses a big challenge in iden-
tifying individual words in a given sentence, as the same fused form can be segmented into many possible
segmentations. Though, there has been considerable advancements in tackling word segmentation chal-
lenges faced in other languages including Chinese, Korean and Arabic, a direct application of those
approaches is not possible in Sanskrit texts due to the phenomena of sandhi. Since the sandhi rules are
well documented in the tradition, all the syntactically valid segmentations (splits) of a given sentence
in Sanskrit can be enumerated. Sanskrit Heritage Reader provides a nice compact interface to show all
the valid solutions (Huet and Goyal, 2013). The main challenge is to identify the most relevant solution
from all the possible segmentations. The relevance of contextual information in identifying semantically
relevant segments is a well-accepted fact (Hellwig, 2009). Mittal (2010), Natarajan and Charniak (2011)
have successfully applied statistical methods for sandhi splitting in Sanskrit. But, both the approaches
relied heavily on word co-occurrence features as their context with minimal usage of the morphological
information. We, unlike the previous methods, propose a segmentation approach which effectively com-
bines the morphological features in addition to the word co-occurrence features from a manually tagged
corpus of more than 400,000 sentences (Hellwig, 2009). We treat the problem as a query expansion
problem that iteratively selects a segment amongst the competing segmentations and then continues to
select the next correct segment with the information from extended context. The algorithm terminates
when no more candidates remain to be evaluated. We use the scalable “path-constrained random walks
(PCRW)” (Lao and Cohen, 2010) framework with linguistically motivated Inductive Logic Programming
(ILP) formulations for finding the correct segmentation. Using extensive experiments, we find that our
approach outperforms the existing approaches by a significant margin.

2 Challenges in Sandhi Splitting

Processing of Sanskrit text poses challenges of its own due to the sandhi phenomena. For example,
consider the phonemic change at the boundary for the case of ramā + īśa.→ rameśah. . Here the phonemes
ā at the end of the previous word and ı̄ at the beginning of the subsequent word combine together to

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

494

Figure 1: Possible segmentations for the compound “pravaramukut.amaimarı̄cimañjarı̄cayacarcitacaran. a-
yugalah. ” from the Sanskrit Heritage Reader. Each colour specifies a separate morphological class (Goyal
and Huet, 2013; Huet and Goyal, 2013).

form the phoneme e. Such a transformation does not result in any change in morphological, syntactic
or semantic properties of the individual words. However, there are phonetic variations resulting in the
words to change their written forms.

As already mentioned, finding a semantically valid segmentation for a given sentence is a
challenging task, due to the large number of possible segmentations. For example, consider
the sentence, “tatra sakalārthikalpadrumah. pravaramukut.aman. imarı̄cimañjarı̄cayacarcitacaran. ayugalah.
sakalakalāpāraṅgato’maraśaktirnāma rājā babhūva” - [from the text Pañcatantram (kathāmukham)] trans-
lates to, “There was a king namely Amaraśakthi, who was the wish-granting tree (fulfiller of all the
desires) to the whole group of seekers, and the pair of whose feet was covered with a stream of rays
originating from the gems in wreaths of eminent noble kings, and who was proficient in all arts”. The
sentence of 9 words (3 of them being compound words) can be segmented into more than half a million
possible syntactically valid segmented sentences1.

It can also be observed that multiple semantically valid splits are possible for a given string. For
example, the phrase śveto dhāvati may be decomposed in two different ways. Both, the splits, śvetah.
dhāvati (The white [one, horse] runs) and śvā itah. dhāvati (The dog runs [towards] here) are valid and
give two different interpretations of the same phrase. This re-emphasizes the need for the context of the
whole sentence in determining the correct set of candidates. The Sanskrit grammar poses no restriction
on words in undergoing sandhi, other than the proximity of the phonemes at word boundaries. Con-
sider the statement dadarśāvatarantamambarāddhiran. yagarbhāṅgabhuvam. munim. harih. (Lord Vis.n. u saw
Brahma’s son Nārada, descending from the sky). Here, in this statement, the words ambarāt (from the
sky) and hiran. yagarbhāṅgabhuvam. (Nārada, son of Lord Brahma) are not related semantically, barring
this they undergo euphonic transformation and fuse together to form ambarāddhiran. yagarbhāṅgabhuvam. .

In dealing with segmentation, there are scenarios where the compound words should not be split into
the constituents. Exo-centric compound refers to an external entity and the compound should be consid-
ered as a whole. Otherwise, the statement in which the compound is used need not result in a meaningful
sentence. For example, the word ‘daśaratha’ refers to a person and it does not refer to any of its con-
stituents ‘daśa’ (ten) or ‘ratha’ (chariot). But during the analysis, it is required to use the compound com-
ponent information, or else there might not be sufficient distributional information about each segment.
Compound formation in Sanskrit is highly productive in nature. In the sentence from Pañcatantram me-
nioned earlier, the compound,“pravaramukut.aman. imarı̄cimañjarı̄cayacarcitacaran. ayugalah. ” (The pair of
whose feet was covered with a stream of rays originating from the gems in wreaths of eminent noble
kings,) is an Exo-centric (Bahuvrı̄hi) compound which consists of 9 constituents. Figure 1 shows the
possible segmentation for the mentioned compound. The correct segmentation is the collection of words
numbered 1-2-19-20-5-6-7-8-9. In such cases, it may be difficult to obtain distributional information
about the compound if we analyse it without decomposing the compound into its components. But, after
the analysis, if we do not join the compound components back to the original compound, then it alters
the meaning of the sentence.

1Using the Sanskrit Heritage Reader available at http://sanskrit.inria.fr/

495

Figure 2: Flowchart for the Proposed Approach

3 Method

We treat the word segmentation problem as a query expansion problem. An input sentence is passed
through the Sanskrit Heritage Reader2. The Sanskrit Heritage Reader provides all the possible segmen-
tations for the input sentence along with the morphological information for each of the segments, similar
to those in Figure 1. The output segments will henceforth be referred to as candidates. We now concep-
tualise a graph with these candidates as the nodes in the graph, in which we perform path-constrained
random walks (PCRW) (Lao and Cohen, 2010) using a set of pre-defined path types. We start with the
most promising candidate(s) as our initial query node and perform PCRW to obtain a winner node among
the candidates. We add the winner to the extended context and repeat the process until no more candi-
dates remain to be evaluated. We eliminate all the candidates conflicting with the winner node whenever
a winner node is selected. The conflicting nodes are eliminated using positional information and Sandhi
rules. Figure 2 provides the flowchart for the entire process.

3.1 Graph Formation

With the segments from the morphological analyser, we form a weighted multi-digraph G(V,E, W),
such that each node in the vertex set V represents a candidate. Every node has three attributes, the
word-form, the lemma and the POS tag (morphological information) of the given segment. In this work,
POS denotes the morphological information that each word-form possesses based on its usage in the
sentences as directly obtained from the Sanskrit Heritage Reader. For nouns, the gender, the plurality
and the grammatical case of the word-forms are obtained. For verbs the tense, number and person are
the relevant morphological information that we obtain. We now construct multiple edges between all
the candidate nodes except those which are conflicting with each other. We decide whether two nodes
are conflicting using the position information and sandhi analysis. Consider two segments (k, z) and
(k′, z′) in a given sentence. Here k and k′ are the starting position (offsets) of these segments relative
to the sentence, z and z′ are the length of the segments. We say that (k, z) and (k′, z′) conflict if
k ≤ k′ < k + |z| − 1 or k′ ≤ k < k′ + |z′| − 1 (Huet and Goyal, 2013).

For every non-conflicting pair of nodes, we form edges with varying edge weights where the edge
weights are decided by the possible combinations of attribute pairs at these nodes. Since each node has
3 attributes we form a total of 9 directed edges (in E) between every pair. The edge weights (in W) are
defined as the co-occurrence probability of the attribute value at the target node given the attribute value
at the source node. The probability values can be computed from a suitable corpus.

2http://sanskrit.inria.fr/DICO/reader.fr.html

496

3.2 Language Model

We represent our corpus, from which we obtain the distributional information for our task, as a Graph
G2(V2, E2, W2). We add every unique lemma, POS tag and word-form that occur in the corpus as a
vertex in the graph. So, we define V2, the vertex set as the union of the vocabulary of each of the three
attributes. Now we form directed edges (in E2) between every pair of nodes that co-occur in a sentence
in the corpus. We calculate the edge weights (in W2) using the expression 1.

Pco(j|i) =
count(j, i)
count(i)

(1)

Here count(i, j) denotes the total number of sentences in the corpus in which the nodes i and j
co-occur. count(i) is the count of documents in which node i occurs. For example, in order to com-
pute the edge-weight for an edge from a POS node ‘gen.m.sg.’ to a lemma node ‘hari’, we calculate
P (hari|gen.m.sg.), i.e, conditional probability of the lemma ‘hari’ co-occurring with any word having
the POS tag ‘gen.m.sg.’ in the same sentence. Similarly, we find edge weights from every possible pair
of nodes that co-occur in the given corpus.

3.3 Path Selection using PCRW

With PCRW, the framework supports forming paths of any arbitrary length and also to formulate the
constraints for path formations. The constraints we impose for path formation are termed as path types.
We define various linguistically motivated path-types as Inductive Logic Programming (ILP) formula-
tions. The path types are defined in Table 1. We form all possible paths in the graph G which satisfy the
constraints defined in various path-types. In our formulation of the path types, a single edge path-type is
defined as shown in expression 2.

Attributeconstraint
node id

Pco−−→ Attributeconstraint
node id (2)

POSNoun
i

P (j|i)−−−→ LemmaV erb
j (3)

Constraint = {P(Noun),P(V erb),P(Compound),P(Indeclinable), ∗} (4)

We define a node-type as Attributeconstraint
node id . Here Attributenode id denotes the attribute value of the

node in G with the id of the node given as the subscript. The superscript is a constraint that specifies the
requirements a node in G must satisfy to be in the path of the specified type. Expression 3 is a path-type
of length one. Here, the source node in the expression is POSi, i.e., it expects the POS tag value of
node i. The source node in the path must be a noun and the target node must be a verb. In the sentence
in Figure 1, the only eligible nodes to be the source node for this path type are nodes numbered 3,13,9
and 18. There are only two nodes which can be the target node which are 10 and 14. Hence, there are
eight possible paths of the path-type given in expression 3. Now, consider one of the eight possible paths

nom.sg.f.Noun
13

Pco(aca|nom.sg.f)−−−−−−−−−−−→ acaV erb
14 . We obtain the edge weight as Pco(aca|nom.sg.f) from W2,

where ‘aca’ and ‘nom.sg.f ’ are two nodes in G2

Please note that the constraint ‘Noun’ is defined as the set of all the possible POS tags that a noun
word-form can assume. Each POS tag in the Noun set conveys the case, gender and plurality of a
word. We similarly define disjoint sets of POS tags for verbs, compounds and indeclinables. The set
‘Constraint’ is defined in the expression 4, where P denotes a power set. By defining ‘Constraint’
as a power set, we can group different POS tags as a single constraint to be used. For example, in
Lemmaverb

i −→ Lemma
Noun−{nom.sg.m,inst.sg.m.}
j , the set {nom.sg.m, i.sg.m.} is an element of P ,

where ‘nom’ and ‘i’ signify nominative and instrumental cases respectively. The edge here starts with a
verb node and looks for any noun node other than ‘nom.sg.m.’ and ‘i.sg.m.’ cases. By design, we do not
allow POS tags of noun, verbs or compounds to be combined, as P does not contain such a combination
as its element. We specify ‘∗’ as a wild-card constraint which allows any POS tag.

497

Sl. No. Linguistic Proprety Path types
1

General Relations
Lemma∗i −→ Lemma∗j

2 POS∗i −→ POS∗j
3 Compounds p(Lemmacompound

i |Lemmacompound
j)

4
Expectancy

POSnoun
i −→ POSverb

j −→ Lemmanoun
k

5 Lemmanoun
i −→ Lemmaverb

j −→ Lemmanoun
k

6
Proximity Nouns

Wordnoun
i −→ Lemmanoun

j , where,POSi = POSj

7 Lemmanoun
i −→ Lemmanoun

j , where,POSi 6= POSj

8
Proximity Verbs

Lemma
verb−{absolutive}
i −→ Lemmaabsolutive

j

9 Lemma
verb−{gerund}
i −→ Lemmagerund

j

Table 1: Path Types for path selection

Path-type starting from node i to node s is defined recursively as follows:

PathTypeLemmas
POSi

: POSNoun
i

P (j1|i)−−−−→ LemmaV erb
j1

P (j2|j1)−−−−−→ LemmaV erb
j2

P (s|jk)−−−−→ LemmaV erb
s

(5)
P (PathTypeLemmas

POSi
) = P (j1|i).P (s|jk)

∏
l=2...k

P (jl|jl−1) (6)

In expressions 5 and 6, P (j|i) denotes Pco(Attributej |Attributei). The value of the path from node
i to node s is defined as the product of all the weights (from W2) of the edges in the path. The value so
obtained can be thought as a random walk score, where a random walk traverses over graph G2 starting
at node Attributei and terminating at Attributes with all other nodes in the path as intermediate nodes.

Table 1 defines various path types that we use in our system. Though only a sample of path types is
shown, it is implied that path types of other attributes with a similar structure are also formed. In Table
1, we also mention the linguistic properties that motivated us to formulate the path types.

General Relations: The general relations use the ‘∗’ constraint implying any node can form path
of this type. Here we restrict ourselves to the path types which have same attribute types at both the
ends of the path (edge). We also use Kneser-Ney smoothing (Kneser and Ney, 1995) for word-form to
word-form co-occurrence and lemma to lemma co-occurrence values, though we do not do the same for
POS to POS co-occurrence. Smoothing is not provided for POS to POS as we find that all the possible
co-occurrences are already captured in the language model.

Compounds: We find bigram probabilities with various compound components since the compounds
strictly follow a sequential order in their formation.

Expectancy of a verb: In Sanskrit, there always exists a modifier-modified relation between the words
and the verb in the sentence, known as kāraka roles or semantic roles. Expectancy plays a vital role in
establishing these modifier-modified relations in a sentence. Every verb expects different semantic roles
in its sentence usages, which are marked with different syntactic markers in Sanskrit. The path types
4 and 5 try to capture this notion. For example, consider the sentence rāmah. brāhman. āya gām. dadāti
(Ram gives a cow to the Brahmin). Here the noun words rāmah. and brāhman. āya are in different POS
tags serving the roles of subject and beneficiary. Though we do not need to know the exact roles, but
with the path rāma−→dadāti−→brāhman. āya, we attempt to capture the probability of both the words to
co-occur with the verb (both the noun words need not co-occur in the same sentence in the corpus. Refer
expression 6), while both being in different POS tags. The path can be an approximation for expectancy.

Proximity - Kulkarni et al. (2015) defined Proximity in Sanskrit as ‘the representation of word mean-
ings without any intervention’. But in Sanskrit poetry, this may not be strictly followed as the poet needs
to maintain the meter of the verses. Kulkarni et al. (2015) conclude that there is a violation of proxim-
ity in case of viśes.an. a-viśes.ya, i.e., the modifier-modified relation between two nouns, both in case of
prose as well as poetry In such situations, morphological markers are one of the ways to identify related
words. Paths 6 - 9 attempt to capture this notion. In path 6, we find the co-occurrence probabilities of

498

two nodes when both appear in the same POS. Path 6 tries to capture the relation of viśes.an. a-viśes.ya
between two nouns. Path 7 exactly finds the inverse where we find the co-occurrence probabilities of two
nodes when they are not in the same POS. Path 8 is different from Expectancy path-types as there is no
verb in between the nodes.

3.4 Query Expansion with PCRW

In graph G, we form paths of all possible types starting from query node and terminating at any candidate
node. No two nodes in a path should be conflicting with each other. For Path types 1, 2 (General
relations) and 6 in Table 1, we perform random walks with restarts over graph G to capture the structural
properties of the graph. All the three paths are of length 1, i.e. they are edges. Here we relax the criteria
for path formation and we form edges with all the possible node pairs in G other than the conflicting
nodes. The edge weights are obtained again from W2. With other path-types, we do not perform random
walks over G, but as mentioned the path scores can be seen as random walk traversal over the graph G2.
This effectively helps us to leverage the structural properties of the content graph structure G and the
graph G2, which ideally represents the distributional properties in the language (corpus). We then do a
weighted sum of scores from all the paths and the winner node is selected from the combined scores.
We eliminate the conflicting nodes with winner nodes and then use the extended context to select the
subsequent winner. We choose the initial query node by identifying the longest candidate from the set of
candidates. The heuristic is inspired by the maximum matching approach used by Chen and Liu (1992).
In case of a tie, we select the candidate with the minimum number of conflicts.

3.5 Supervised Parameter Estimation for Path-Types

Every path type can be considered as a feature and the random walk score at each instance for a pair
of (query, source) node is a feature-value. We need to estimate the relative importance of each path
type. Our input is a pair of words, the source word and target words. We generate all possible positive
instances and down-sample the negative training instances from a training set of 5000 sentences. The
label to each instance is a +1 or 0 depending on whether or not the pair of words co-occur in a sentence
in the corpus. We use logistic regression with L-BFGS (Andrew and Gao, 2007) optimisation procedure
to handle over-fitting. We follow the same optimisation procedure as followed in Lao and Cohen (2010).
The authors argue that this approach is superior to the alternative one-weight-per-edge-label approach.

4 Experiments

4.1 Comparison with the Existing Approaches

We compare our system’s performance with the existing approaches for sandhi splitting by presenting
the results of our system on a data-set of 2148 strings, henceforth to be referred to as ‘Test 2148’, which
was used by Natarajan and Charniak (2011) in their work. Table 2 presents the results from 4 different
systems. OT2 and OT3 are the best performing variants from Mittal (2010) based on recall and precision
respectively. NC4 is the best performing version of the algorithm proposed by Natarajan and Charniak
(2011). It is a supervised Bayesian word segmentation approach which employs Gibbs sampling to
sample from the posterior distribution of a training set of 25000 split strings. We tested our system
on the test data with our pre-trained model and we do not use the training data used in Natarajan and
Charniak (2011). Precision is the proportion of correct predictions amongst all the predictions made by
the systems. Recall is the proportion of correct predictions which matched with the ground truth to the
total number of segments in the ground truth.

Since the dataset does not provide any compound component information, we join the compound
components from the prediction by applying the sandhi rules in order to obtain the compound before the
evaluation. Our approach provides an overall improvement of 28.81% in F-score from the previously
best performing system (NC4). A total of 1784 of 2148 (83.05%) were segmented with an F-score of
one.

499

Test 2148
System P R F

S 92.38 88.91 90.61
NC4 76.21 64.84 70.07
OT2 63.96 68.74 66.26
OT3 70.52 66.61 68.51

Table 2: Performance evaluation of our proposed
system, S with the state of the art, NC4 (Natarajan
and Charniak, 2011), OT2 and OT3 (Mittal, 2010).

DCS 90K Held-out Dataset
System P R F P R F

B1 37.02 50.81 42.83 36.89 50.74 42.72
B2 42.25 58.62 49.115 42.04 58.45 48.91
B3 65.13 76.78 70.48 65.07 76.70 70.41
S 74.11 84.92 79.15 73.28 82.73 77.72

Table 3: Performance evaluation of our proposed
system, S with the competing baselines B1, B2 and
B3 over 100,000 sentences from DCS

4.2 Dataset

We use the Digital Corpus of Sanskrit (DCS), to build the language models and train our model. The
corpus is a digitised collection of ancient works written in both prose and poetry styles with more than
430,000 segmented sentences with 66,000 unique lemmas. The corpus is a rich resource for the task as it
contains over 3.2 million segmented tokens which are tagged with lemma and morphological information
through expert supervision. We find only about 4067 Out Of Vocabulary (OOV) lemmas in the candidate
space for which there was no co-occurrence evidence.

4.3 Baselines

In Section 4.1 we showed the effectiveness of our model over the existing approaches. The systems
described in Section 4.1, however, do not handle the context of an entire sentence. Additionally, the
systems do not consider the morphological information in their training phases, and hence it will be
unfair to use those systems for further analysis. We propose the following methods as our baselines. In
all the systems we use the morphological analyser output as the input to predict the correct segmentation.
Longest Word selection (B1) - Inspired by the maximum matching approach from Chen and Liu (1992),
we iteratively select the longest word available from the given set of possible segmentations. At each
step of the iteration, we eliminate the candidates conflicting with the current winner. This method does
not use any morphological information as such.
Greedy candidate selection approach (B2) - Here we consider the morphological analyser output to be
a tree, and we perform a greedy selection that maximises the overall likelihood of the selection. In this
approach, we combine the co-occurrence probabilities mentioned in paths 1,2 and 6 in Table 1.
Unsupervised RWR - General Relations (B3) - In this approach, we form the graph G for the sentence,
similar to as mentioned in Section 3. However, we only use path-types 1,2 and 6 of Table 1. We perform
Random Walks with Restarts (RWR) over the graph G and then average the scores from different random
walk runs to obtain a winner node.
Supervised PCRW (S) - This is our proposed system, as defined in Section 3.

4.4 Results

We consider 100,000 sentences of varying length (not used for training in Section 3.5) from the DCS
corpus. From the 100,000 sentences, 90,000 of the sentences, henceforth to be referred to as “DCS
90K”, were used for calculating the co-occurrence values and we keep the remaining 10,000 sentences
as held-out data which was not used at any point in our framework. Figure 3b shows the box plot
for the number of sentences based on the frequency distribution of lemmas in ground truth against the
count of possible candidates as given by the Sanskrit Heritage Reader for all the 100,000 files. From
the plot, it is evident that the count of candidates increases manifold with the increase in lemmas. We
eliminate all the sentences with exactly one lemma from the dataset which amounts to less than 1% of
the total dataset. Table 3 compares the performance of each of the system in terms of precision, recall
and F-Score. Our final system S performs the best with an increase of 13.79% and 10.60% in precision
and recall respectively from our strong baseline B3 for the DCS 90K dataset. For the held-out dataset,
the results remain more or less consistent with those obtained over DCS 90K for all the systems. Our

500

(a) Recall Vs. GT Frequency distribution (b) Candidate Vs. GT Frequency distribution

Figure 3: Analysis of systems based on frequency distribution of ground truth (GT) lemmas

system S has an F-Score of 76.58% which is slightly less than the F-score attained on the original dataset,
which was 79.15%. Our system could predict all the correct segmentations for as many as 38.64% of the
sentences against the 19.57% fully correct predictions of B3.

Variation in Recall based on length of lemmas - The line graphs in the Figure 3a illustrate the recall
of each system over the frequency distribution on the ‘DCS 90K’ based on the number of lemmas per
sentence in the ground truth. The x-axis represents the count of lemmas in a sentence, and the y-axis
represents average recall. The bar chart represents the proportion of sentences with respect to the count
of lemmas in ground truth. The average length of sentences in our dataset is 6.87. It can be observed that
our system works better for the sentences of all the lengths.

5 Discussion

A close inspection of the Tables 2 and 3, reveals that for all the systems, precision is higher than recall for
the first dataset, and vice-versa in the DCS. On our manual inspection of the dataset, it is found that the
DCS being manually tagged, relies on the context to decide whether to decompose a compound into its
components. For example the word ‘daśaratha’ is a compound word, so is kr. s. n. ārjunanakulasahadevāh. .
In DCS, ‘daśaratha’ being an exo-centric compound, it will not be decomposed into its components.
But ‘kr. s. n. ārjunanakulasahadevāh. ’ is a copulative compound containing names of four different people.
DCS decomposes the compound into its components. But, our morphological analyzer decomposes all
the compounds into its components as it only considers the syntactic conditions. Unlike the case with
first dataset, DCS does not contain segmented word-forms but only segmented lemmas. Hence joining
of components is sometimes not possible as grammar cases for the nouns is not available in the system
to perform sandhi. Due to this issue we find that multiple components which are predicted are treated as
separate lemmas. This results in lower precision for the system, especially when 75% of the vocabulary
in DCS consists of compounds.

Another intriguing challenge is with the case of compounds where it can be split with different in-
terpretations such that, two possible segmentations result into being the exact negation of each other.
Even from the semantic context, it will be difficult to consider whether the negation is required or not.
There are a considerable number of sentences in which such issues occur. For example, the string kur-
vannāpnoti kilbis. am may be decomposed in two different ways ‘kurvan āpnoti kilbis. am’ (While doing,
you will accumulate sin) and ‘kurvan na āpnoti kilbis. am’ (While doing, you will not accumulate any sin)
Both of them have completely opposite meanings.

501

6 Related Work

During the last couple of decades, computational analysis of Sanskrit and its grammar has gained consid-
erable attention from the computational linguistics community. Hyman (2008) observes that the Pān. inian
sūtras for external sandhi can be modeled using a finite state grammar. Huet (2009) developed a tool for
segmentation in Sanskrit by building an efficient Finite State Automata (FSA). With efforts from Huet,
an automated analyser for exhaustive syntactically valid analysis of a Sanskrit sentence, called as the
‘Sanskrit Heritage Reader‘ is available (Goyal et al., 2012; Goyal and Huet, 2013). However, the system
provides all the possible syntactically valid segmentation and it requires human assistance to choose the
relevant segmentations so as to form the semantically correct sentence. We use the ‘Sanskrit Heritage
Reader‘ in our pipeline to obtain the set of all possible segmentations.
Mittal (2010) has proposed an approach for automated Sanskrit segmentations by relying on the max-
imum a posteriori estimate from all possible sandhi splits for a given string. Natarajan and Charniak
(2011) has proposed ‘S3 - Statistical Sandhi Splitter’, a Bayesian word segmentation approach which
can handle sandhi formations. Hellwig (2015) proposed a neural network based approach that jointly
solves the problem of compound splitting and sandhi resolution. Mochihashi et al. (2009), Johnson et al.
(2006) developed non-parametric Bayesian approaches which have been applied on word segmentation
tasks. The work uses a Dirichlet process model inspired from the model of Goldwater et al. (2006). Kun-
cham et al. (2015) have developed a language independent sandhi splitter for agglutinative languages
using a strucutred prediction approach.
Word Segmentation challenges for in languages like Arabic, Japanese, Korean and Chinese are exten-
sively studied. Though, in theses languages, identifying the proper word boundary is a challenge, none
of these have to deal with the ‘Sandhi’ as such. In Chinese word segmentation, Xue (2003) presented a
character tagging approach. Wang et al. (2014) proposed a method based on dual decomposition (Rush
et al., 2010) to combine word-based and character based approaches in an efficient framework. Yao
and Huang (2016) proposed a bi-directional RNN with long short-term memory (LSTM) units which
makes use of character embeddings. In our approach, we use the PCRW framework proposed by Lao
and Cohen (2010). Gao et al. (2013) tackled the problem of query expansion using PCRW for web-log
queries. PCRW has been widely used in heterogeneous information networks. The framework has been
effectively put to use in Never Ending Language Learning (NELL) (Mitchell et al., 2015; Lao et al.,
2011).

7 Conclusion

In this paper we presented an approach to Sanskrit word segmentation using supervised PCRW. We
treated the problem as a query expansion problem. In our approach, the input sentence is treated as a
graph. The candidate segments form the nodes and there exists an edge between every pair of nodes ex-
cept the conflicting ones. In Sanskrit, since there is no guarantee of proximity to be maintained between
words, we presume that treating the input as a sequence as followed in models like linear-chain Con-
ditional Random Fields (CRF) and Hidden Markov Models might be a serious limitation for the task.
Also, with the rich feature space that we employ, inference in CRF Models might be a bottleneck for
the model’s performance (Doppa et al., 2014). We find that the inclusion of morphological information
by means of linguistically motivated ILP path-types greatly increases the performance of the system as
much as by 12.30% in F-Score. Our system also outperforms the existing best approach by 28.82% in
F-Score. We also showed the effectiveness of our system in a dataset with a collection of both prose and
poetry. Our approach is scalable and can be applied to larger datasets as well.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions
to improve the quality of the paper. The authors are grateful to Dr. Oliver Hellwig for providing the
DCS Corpus and Dr. Gérard Huet for providing the Sanskrit Heritage Engine, to be installed at local
systems, and helping with other queries related to Sanskrit Heritage Reader. They are also grateful to
Mr. Unnikrishnan T A for his suggestions on the implementation of the framework.

502

References
Galen Andrew and Jianfeng Gao. 2007. Scalable training of l 1-regularized log-linear models. In Proceedings of

the 24th international conference on Machine learning, pages 33–40. ACM.

Keh-Jiann Chen and Shing-Huan Liu. 1992. Word identification for mandarin chinese sentences. In Proceedings
of the 14th conference on Computational linguistics-Volume 1, pages 101–107. Association for Computational
Linguistics.

Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. 2014. Structured prediction via output space search.
Journal of Machine Learning Research, 15:1317–1350.

Jianfeng Gao, Gu Xu, and Jinxi Xu. 2013. Query expansion using path-constrained random walks. In Proceedings
of the 36th international ACM SIGIR conference on Research and development in information retrieval, pages
563–572. ACM.

Sharon Goldwater, Thomas L Griffiths, and Mark Johnson. 2006. Contextual dependencies in unsupervised
word segmentation. In Proceedings of the 21st International Conference on Computational Linguistics and
the 44th annual meeting of the Association for Computational Linguistics, pages 673–680. Association for
Computational Linguistics.

Pawan Goyal and Gérard Huet. 2013. Completeness analysis of a sanskrit reader. In Proceedings, 5th Interna-
tional Symposium on Sanskrit Computational Linguistics. DK Printworld (P) Ltd, pages 130–171.

Pawan Goyal, Gérard P Huet, Amba P Kulkarni, Peter M Scharf, and Ralph Bunker. 2012. A distributed platform
for sanskrit processing. In COLING, pages 1011–1028.

Oliver Hellwig. 2009. Sanskrittagger: A stochastic lexical and POS tagger for sanskrit. In Sanskrit Computational
Linguistics, pages 266–277. Springer.

Oliver Hellwig. 2015. Using recurrent neural networks for joint compound splitting and sandhi resolution in
sanskrit. In 4th Biennial Workshop on Less-Resourced Languages.

Gérard Huet and Pawan Goyal. 2013. Design of a lean interface for Sanskrit corpus annotation. In Proceedings of
ICON 2013, the 10th International Conference on NLP, pages 177–186.

Gérard Huet. 2009. Sanskrit Segmentation, South Asian Languages Analysis Roundtable xxviii, Denton, Texas.
South Asian Languages Analysis Roundtable XXVIII.

Malcolm D. Hyman. 2008. From Paninian Sandhi to Finite State Calculus. In Sanskrit Computational Linguistics,
pages 253–265.

Mark Johnson, Thomas L Griffiths, and Sharon Goldwater. 2006. Adaptor grammars: A framework for specifying
compositional nonparametric bayesian models. In Advances in neural information processing systems, pages
641–648.

Reinhard Kneser and Hermann Ney. 1995. Improved backing-off for m-gram language modeling. In Acoustics,
Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on, volume 1, pages 181–
184. IEEE.

Amba Kulkarni, Preethi shukla, Pavankumar Satuluri, and Devanand Shukla. 2015. How Free is free Word Order
in Sanskrit. The Sanskrit Library, USA.

Prathyusha Kuncham, Kovida Nelakuditi, Sneha Nallani, and Radhika Mamidi. 2015. Statistical sandhi splitter
for agglutinative languages. In International Conference on Intelligent Text Processing and Computational
Linguistics, pages 164–172. Springer.

Ni Lao and William W Cohen. 2010. Relational retrieval using a combination of path-constrained random walks.
Machine learning, 81(1):53–67.

Ni Lao, Tom Mitchell, and William W. Cohen. 2011. Random walk inference and learning in a large scale knowl-
edge base. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing,
pages 529–539, Edinburgh, Scotland, UK., July. Association for Computational Linguistics.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Kr-
ishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles,
R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling. 2015. Never-ending learning.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15).

503

Vipul Mittal. 2010. Automatic sanskrit segmentizer using finite state transducers. In Proceedings of the ACL 2010
Student Research Workshop, pages 85–90. Association for Computational Linguistics.

Daichi Mochihashi, Takeshi Yamada, and Naonori Ueda. 2009. Bayesian unsupervised word segmentation with
nested pitman-yor language modeling. In Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume
1-Volume 1, pages 100–108. Association for Computational Linguistics.

Abhiram Natarajan and Eugene Charniak. 2011. S3-statistical sam. dhi splitting. In Proceedings of the 5th In-
ternational Joint Conference on Natural Language Processing, pages 301–308. Association for Computational
Linguistics.

Alexander M. Rush, David Sontag, Michael Collins, and Tommi Jaakkola. 2010. On dual decomposition and
linear programming relaxations for natural language processing. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, pages 1–11. Association for Computational Linguistics.

Mengqiu Wang, Rob Voigt, and Christopher D. Manning. 2014. Two knives cut better than one: Chinese word
segmentation with dual decomposition. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (ACL 2014), Baltimore, MD.

Nianwen Xue. 2003. Chinese word segmentation as character tagging. Computational Linguistics and Chinese
Language Processing, 8(1):29–48.

Yushi Yao and Zheng Huang. 2016. Bi-directional lstm recurrent neural network for chinese word segmentation.
arXiv preprint arXiv:1602.04874.

504

