
A Graph Based Framework for Structured
Prediction Tasks in Sanskrit

Amrith Krishna∗
University of Cambridge

Bishal Santra
Indian Institute of Technology
Kharagpur

Ashim Gupta∗∗
University of Utah

Pavankumar Satuluri
Chinmaya Vishwavidyapeeth

Pawan Goyal
Indian Institute of Technology
Kharagpur

We propose a framework using Energy Based Models for multiple structured prediction tasks in
Sanskrit. Ours is an arc-factored model, similar to the graph based parsing approaches, and we
consider the tasks of word-segmentation, morphological parsing, dependency parsing, syntactic
linearisation and prosodification, a prosody level task we introduce in this work. Ours is a
search based structured prediction framework, which expects a graph as input, where relevant
linguistic information is encoded in the nodes, and the edges are then used to indicate the
association between these nodes. Typically the state of the art models for morphosyntactic tasks in
morphologically rich languages still rely on hand-crafted features for their performance. But here,
we automate the learning of the feature function. The feature function so learnt along with the
search space we construct, encode relevant linguistic information for the tasks we consider. This
enables us to substantially reduce the training data requirements to as low as 10 % as compared
to the data requirements for the neural state of the art models. Our experiments in Czech and
Sanskrit show the language agnostic nature of the framework, where we train highly competitive
models for both the languages. Moreover, our framework enables to incorporate language specific
constraints to prune the search space and to filter the candidates during inference. We obtain
significant improvements in morphosyntactic tasks for Sanskrit by incorporating language
specific constraints into the model. In all the tasks we discuss for Sanskrit, we either achieve
state of the art results or ours is the only data driven solution for those tasks.

1. Introduction

Sentence constructions in morphologically rich languages (MRLs), such as Sanskrit, gener-
ally rely on the morphological markers to encode the grammatical information (Tsarfaty,
Sima’an, and Scha 2009). This makes Sanskrit a relatively free word-order language

∗ Work done while at Indian Institute of Technology Kharagpur. Email: amrith@iitkgp.ac.in
∗∗ Work done while at Indian Institute of Technology Kharagpur.

Submission received: 23 July 2019, Revised version received: 25 August 2020, Accepted for publication: 3
October 2020

© 2020 Association for Computational Linguistics

mailto:amrith@iitkgp.ac.in

Computational Linguistics Volume 1, Number 1

(Staal 1967; Gillon and Shaer 2005). In fact, the same sentence follows a different word
order when written as a verse, as compared to the word order in prose (Tubb and Boose
2007). However, the sentence will still maintain the same syntactic analysis, irrespective
of its varying word orders (Scharf et al. 2015; Gillon and Shaer 2005). Recently, Kr-
ishna et al. (2018) has shown that approaches for non-sequential processing of Sanskrit
sentences result in better system performance even for low-level tasks such as word-
segmentation and morphological parsing. In this work, we extend the energy based
model (EBM) for joint modelling of word segmentation and morphological parsing
proposed by Krishna et al. (2018), into a general graph-based parsing framework for
multiple structured prediction tasks in Sanskrit. We extend the framework to include
two downstream syntax level tasks, dependency parsing and syntactic linearisation.
We also introduce the prosodification task where a Bag-of-Words is taken as input and a
verse sequence, where the sequence follows a metrical pattern, is predicted. In prosod-
ification, only the prosody level information, and no morphosyntactic information,
about a given input is used. Figure 1 shows the hierarchy of the tasks. The challenges

Input

Word
Segmentation

Morphological Parsing

Dependency Parsing Syntactic Linearisation

Prosodification

Morpho-syntactic Tasks Prosody Level Tasks

Figure 1
Hierarchy of the tasks.

arising from the computational treatment of Sanskrit fall somewhere between speech
recognition and the analysis of written text (Huet 2005). The written representation in
Sanskrit is actually a phonemic stream (Huet 2005). The word boundaries in Sanskrit are
not always explicitly marked, and are often obscured due to phonetic transformations
at word boundaries. The fusional language has rich morphology, and suffers from
ambiguity due to syncretisms and homonymy. Further the ‘case’ information from the
morphological markers is crucial for identifying the syntactic roles between words in
their dependency analysis (Kiparsky and Staal 1969). The case to dependency relation
mapping is often a many-to-many mapping, and contextual information is required to
resolve the ambiguity in such cases. Even a small eight character string, ‘nagarān. i’1,
can create ambiguities due to multiple possible word-segmentation, morphological
and syntactic analyses. ‘Nagarān. i’ can either be segmented as a two-word sequence

1 The International Alphabet of Sanskrit Transliteration (IAST) scheme, a lossless romanisation scheme for
Sanskrit. The International Phonetic Alphabet (IPA) equivalents for the IAST scheme can be found in
https://en.wikipedia.org/wiki/Help:IPA/Sanskrit

2

https://en.wikipedia.org/wiki/Help:IPA/Sanskrit

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

‘na garān. i’ (no poisons) or be treated as an inflected form of ‘nagara’ (town) (Krishna,
Satuluri, and Goyal 2017). Assuming the latter is correct, ‘nagarān. i’ is a plural form
of the neuter gender stem ‘nagara’, which can either be in nominative, vocative or
accusative case. Assuming the inflection to be in nominative-case, this information
enables the nominal to form one of the two possible syntactic relations with the main
verb in the sentence, namely kartā (subject) or karma (object)2 in the syntactic analysis of
the sentence. The cyclic dependency between morphological and syntax-level tasks is
well known (Tsarfaty 2006), and these tasks are often solved jointly (More et al. 2019).
Similarly, the potential error propagation from word-segmentation to its downstream
tasks in pipeline models is also well established for multiple languages (Hatori et al.
2012; Zhang and Yang 2018). Taking this into consideration, our proposed framework is
designed to perform joint training of such related tasks.

We propose a search-based structured prediction framework for numerous NLP
tasks in a free-word order language like Sanskrit. The framework we propose is an arc-
factored model, similar to graph-based parsing frameworks (McDonald et al. 2005b;
Ishikawa 2011). Here, the system expects a graph as input with its edges featurised,
irrespective of the task. We design suitable inference procedures to incorporate task-
specific constraints, by which the search space for the possible solutions is considerably
reduced. The task is then framed as the search for a task-specific structure. In principle,
the graph based dependency parsing approaches such as McDonald et al. (2005b) or
the lattice based morphological parsing approaches such as Kudo, Yamamoto, and
Matsumoto (2004) can all be formalised as specific instances under this framework. To
further elaborate, consider the case of dependency parsing. Here, the input graph will be
a complete graph, with the (segmented) words in the sentence forming the nodes of the
graph. Here, the specific sub-structure to search for will be a spanning tree (Hirakawa).
The inference procedure searches for the minimum cost spanning tree, using a suitable
algorithm such as Chu-Liu-Edmond (Edmonds 1967). Summarily, training consists of
learning an energy function that assigns lower scores to the ground-truth spanning
tree than the other candidate spanning trees. All our models follow an arc-factored
approach, where the energy of the structure is nothing but the sum of the energies of
its edges (Ishikawa 2011; LeCun et al. 2006). The edges being featurised, the energy
function is used to score these featurised edge vectors.

The performance of a system depends highly on the choice of feature function used
for the task. In MRLs, hand-crafted features still form a crucial component in contribut-
ing to the performance of the state of the art systems for tasks such as morphological
parsing and dependency parsing (More and Tsarfaty 2016; More et al. 2019; Seeker and
Çetinoğlu 2015). But Krishna et al. (2018) learn a feature function using the Path Ranking
Algorithm (PRA) (Lao and Cohen 2010) for the joint task of word-segmentation and
morphological parsing. PRA essentially maps the problem of learning a feature function
to that of automatic learning of horn clauses (Gardner, Talukdar, and Mitchell 2015),
where each clause is a morphological constraint. The domain knowledge required here
confines to just defining the literals, the combinations of which will be used to form
the clauses. In Krishna et al. (2018), morphological tags and grammatical categories
form the literals and the feature (clause) values are calculated using distributional
information from a morphologically tagged corpus. We find that the same feature

2 Nominative case can be karma in a passive construction, e.g., dı̄paih. nagarān. i prakās̀ayante – English
translation: “Towns are illuminated by lamps", here the karma ‘nagarān. i’ is in nominative case. Gloss:
dı̄paih. - Lamps ; nagarān. i - Towns; prakās̀ayante - Illuminate

3

Computational Linguistics Volume 1, Number 1

function can be used effectively for all the standalone and joint tasks we experimented
with, including the downstream morphosyntactic tasks. In the case of prosodification,
prosody level information, instead of the morphological information, is used to define
the literals. We further improve our feature function learning approach using Forward
Stagewise Path Generation (FSPG) (Meng et al. 2015). FSPG based features consistently
and significantly outperform PRA based features and achieve state of the art results
in all the tasks we experiment with. Our work is an extension of the work by Krishna
et al. (2018), where a joint model for word-segmentation and morphological parsing
was proposed. The contributions of our works are as follows:

1. We extend the work of Krishna et al. (2018) to a general graph-based
parsing framework for multiple structured prediction tasks in Sanskrit. We
achieve state of the art (SoTA) results in all the tasks we experiment with.
In fact, this is the first work that introduces statistical models for
performing dependency parsing and prosodification in Sanskrit.

2. We automate the process of learning a common feature function to be used
across all the morphosyntactic tasks, by using the FSPG approach. This is
completely automated, and avoids the need for feature engineering for
each task separately. Further, this simplifies the process of choosing the
feature function, and is not constrained by the accessibility to domain
expertise. We use the same approach for learning different feature
functions for the prosodification task and the morphosyntactic tasks.

3. Sanskrit being a low-resource language, task-specific labelled data is
particularly hard to come by. All our models use as low as 10 % of the
training data as required by the current neural SoTA models in Sanskrit for
various tasks. We used around 9.26 % (10,000) and 1.5 % (8,200) of training
data as against 108,000 and 0.5 million training sentences for the SoTA
neural models in syntactic linearisation (Krishna et al. 2019) and
word-segmentation (Hellwig and Nehrdich 2018), respectively.

4. Our Experiments on Sanskrit and Czech show the language-agnostic
nature of the framework. We train models for three morphosyntactic tasks
in Czech. We outperform all the participating systems in the CoNLL 2018
shared task on “multilingual parsing from raw text to universal
dependencies" (Zeman et al. 2018), i.e. in joint morphological and
dependency parsing. We report the third best score in comparison the
performance of participating systems in SIGMORPHON 2019 shared task
on “morphological analysis and lemmatisation in context" (McCarthy et al.
2019), i.e. in morphological parsing. Finally, we outperform two highly
competitive neural dependency parsers (Qi et al. 2020; Straka and
Straková 2017) in dependency parsing.3

5. Though the framework is language-agnostic, it still enables to incorporate
language specific constraints to prune the input search space and filter the
candidates during inference. Use of such constraints led to performance
improvements in dependency parsing and syntactic linearisation tasks in
Sanskrit. The LAS (UAS) for dependency parsing improved from 79.28

3 All the experiments were performed on the Czech-PDT UD treebank.

4

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

Table 1
List of most commonly used abbreviations in this work.

Abbreviations
SHR Sanskrit Heritage Reader WS Word Segmentation
DCS Digital Corpus of Sanskrit MP Morphological Parsing

PCRW Path Constrained Random
Walk DP Dependency Parsing

FSPG Forward Stagewise Path
Generation SL Syntactic Linearisation

PRA Path Ranking Algorithm Raw2UD
CoNLL 2018 shared task on
Raw Text to Universal
Dependencies

EBM Energy Based Model Joint
T1 + T2

Joint modelling of the
tasks T1 and T2

BoW Bag of Words MIT Metre Identification Tool
MRL Morphologically Rich Language SoTA State of the Art

(82.65) to 83.93 (85.32) and the BLEU score for syntactic linearisation
improved by about 8 BLEU scores.

This article is organised as follows. In Section 2, we first elaborate the characteristics
and the history of usage of the language. Then we describe each of the task we perform
along with the challenges that need to be addressed. Section 3 details the architecture
of the Energy Based Model framework and then describes each component in the
framework. Our experiments and results are discussed in Section 4. Section 5 discusses
some of the key observations along with the future work. In Section 6, we present the
related work. Section 7 then concludes the article by summarising our key findings from
the work. Table 1 provides the list of the most commonly used abbreviations in this
work.

2. Computational Processing of Texts in Sanskrit and its Challenges

Sanskrit is a classical language (Coulson 1976) and was the prevalent medium of
knowledge transfer in the demographic of Indian subcontinent for about three millennia
(Pollock 2003; Goyal et al. 2012). Composition and preservation of Sanskrit texts as part
of a rich oral tradition was a salient feature of the Vedic age, prevalent presumably in
the second millennium BCE (Staal 2008; Scharf 2013). Fairly advanced disciplines of
prosody (Chandas), phonetics (s̀iks. ā) and grammar (vyākaran. a), with their intellectual
roots in the Vedic oral tradition, were developed for Sanskrit by the middle of the
first millennium BCE (Scharf 2013; Kiparsky 1995). The oral tradition and these later
developments have shaped the characteristics of the language and its usage in multiple
ways. First, the words in a sentence often undergo phonetic transformations at the
juncture of their boundaries, similar to what one expects in connected speech. These
transformations obscure the word boundaries and often result in the modification
and the fusion of the sounds at the word boundaries (Matthews 2007, p. 353). Such
transformations, called as Sandhi, get reflected in writing as well. Secondly, a large
body of works in Sanskrit is in the form of verses, where a verse should adhere to

5

Computational Linguistics Volume 1, Number 1

one of the prescribed metrical patterns in Sanskrit prosody. Such constructions often
followed a relatively free word order, and the grammatical information is encoded via
the morphological markers. The adherence to metrical pattern came even at the cost
of verbal cognition to the listener (Bhatta 1990). However, later, commentators of these
verses started to reorder the sentences in the “most easily understandable prose order"
(Tubb and Boose 2007), or the "natural order" (Apte 1965), for easier verbal cognition.
The prose so obtained is called as the anvaya of the verses, and it is merely a permutation
of the words in the verse. Both the original verse and its corresponding anvaya will have
the same syntactic analysis as per the Sanskrit grammatical tradition. The word ordering
in prose is observed to be more restrictive as it tends to follow SOV word order typology
(Hock 2015). Further, the words tend to behave as constituents of phrases, implying that
the phrases are continuous (Gillon and Shaer 2005; Schaufele 1991). Given this context
and history of usage of Sanskrit, we describe the tasks we have considered.

2.1 Tasks

The tasks we consider are word-segmentation, morphological parsing, dependency-
parsing, syntactic linearisation (word-ordering) and prosodification. In this section, we
discuss each of these five tasks in detail. As shown in Figure 1, the aforementioned tasks
are categorised into morphosyntactic tasks and prosody level tasks. Prosodification,
a prosody level task, is the task of arranging a bag of words into a verse sequence,
such that the resulting sequence follows a metrical pattern. Here, we do not make use
of any morphosyntactic information about the input and rather use the syllable level
information for modelling the task. The rest of the tasks form a hierarchy such that each
task expects predictions from its upstream tasks to fulfil its input requirements. The
tasks in the hierarchy are collectively termed as morphosyntactic tasks as each of these
tasks either require morphosyntactic information in input or is an upstream task to such
tasks (e.g., word segmentation).The joint modelling of such related tasks in a hierarchy
has empirically shown to perform better, than a pipeline based approach (Seeker and
Çetinoğlu 2015; More et al. 2019). We jointly model the morphological parsing (MP)
and word segmentation (WS) tasks, similar to Krishna et al. (2018). We further extend
this framework to jointly model WS, MP and dependency parsing tasks as well as
the WS, MP and syntactic linearisation tasks. Throughout the section we will use a
verse from the literary work ‘Rāmāyan. a’, “Rāmo’pi paramodārassumukhassumahāyas̀āh. na
caicchatpiturādes̀ādrājyam. rāmo mahābalah. ", for illustrative purposes. We will henceforth
refer to this sentence as the ‘reference sentence’. The sentence translates to, “But Rama,
a source of universal delight, exceedingly noble, of beautiful countenance, of very great
fame, very strong, did not want to accept the kingdom in accordance with the command
of his father.".4

Word Segmentation. Word segmentation is the task of identifying the words in a given
character sequence. This can be a challenging task in a language like Sanskrit, where
the word-boundaries are often obscured due to Sandhi. Sandhi is defined as the eu-
phonic assimilation of sounds, i.e. modification and fusion of sounds, at or across the
boundaries of grammatical units (Matthews 2007). While such phonetic transformations

4 Gloss: rāmah. - one who delights everybody, api - also, paramodārah. - exceedingly noble, sumukhah. -
beautiful countenance, sumahāyas̀āh. - greatly renowned, mahābalah. - very strong, Rāmah. - Rama (Name
of a person), pituh. - father’s, ādes̀āt - by command, rājyam. - kingdom, na - not, ca - and, aicchat - desired.

6

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

rāmo’pi paramodārassumukhassumahāyaśāḥ na caicchatpiturādeśādrājyaṁ rāmo mahābalaḥ

rāmaḥ api paramodāraḥ sumukhaḥ sumahāyaśāḥ na ca aicchat pituḥ ādeśāt rājyaṁ rāmaḥ mahābalaḥ

rāmaḥ api parama udāraḥ sumukhaḥ sumahā yaśāḥ na ca aicchat pituḥ ādeśāt rājyaṁ rāmaḥ mahā balaḥ

a) Verse

b) Segmentation – word splits

c) Segmentation – word and compound splits

Figure 2
The reference sentence in a) its original fused form. b) its segmented form which shows all the
word boundaries. and c) segmented form which shows all the word boundaries and compound
splits. The regions where the sandhi originally occurred between word boundaries are shown in
orange and where the sandhi originally occurred between the compound components are shown
in yellow.

between the morphemes of a word are common across languages, these transformations
are observed also between the successive words in a sentence in Sanskrit. For instance,
Figure 2(b) shows the verse with all the seven splits of the words that were fused due
to sandhi in its original form (Figure 2(a)).5 Here, six of the seven instances of sandhi
result in phonetic transformations at the word boundaries, while the remaining one
results in concatenation of the words without any phonetic transformations. Similarly
Figure 2(c) shows the splits between the components of a compound along with the
word splits. Here, we jointly perform the task of compound splitting, along with word
segmentation, similar to previous word segmentation models in Sanskrit (Hellwig and
Nehrdich 2018; Reddy et al. 2018). The knowledge of the individual components of a
compound will help in its analysis in downstream tasks, and hence is important for
processing Sanskrit corpora abundant with multi-component compounds.

3

21

1

2

3

Figure 3
All the lexically valid segmentations for reference sentence based on the analysis from SHR. The
candidate segments are colour coded by SHR based on their lexical categories. Blue for
substantives, red for finite verb-forms, mauve for indeclinables, and yellow for all the non-final
components of a compound. Cyan is used for those inflected-forms which can only as the final
component of a compound (Goyal and Huet 2016). The numbered boxes indicate the
morphological analysis as per SHR for the inflected forms ‘yas̀āh. ’ and ‘pituh. ’.

5 For e.g., ca+ aicchat→ caicchat; pituh. + ādes̀āt→ piturādes̀āt; ādes̀āt + rājyam. → ādes̀ādrājyam. . For a
complete list of possible transformations due to Sandhi, visit https://bit.ly/2BFy01F

7

https://bit.ly/2BFy01F

Computational Linguistics Volume 1, Number 1

The analysis of a sequence with fused words can lead to ambiguity in identifying
the original words in the sequence. Goyal and Huet (2016) propose ‘Sanskrit Heritage
Reader (SHR)’, a lexicon driven shallow parser which encodes all the rules of sandhi
as per traditional Sanskrit grammar.6 SHR can enumerate all possible lexically valid
segmentations for a given sequence. Figure 3 shows the possible analyses for the refer-
ence sentence as per SHR.7 Here, we define a segmented solution that spans the entire
input sequence as an ‘exhaustive segmentation’. For the sentence in consideration, the
correct solution is one among the 59,616 possible exhaustive segmentations.7 Given the
possible word-splits, our task can be formalised as one that finds the semantically most
valid exhaustive segmentation, among the candidate solutions.

Table 2
Instances of homonymy and syncretism in the
reference sentence. yas̀āh. is a case of syncretism,
where the stem has the same inflected form but has
different morphological tags. pituh. is a case of both
syncretism and homonymy, as it can be an inflection
of two different stems, pitu and textitpitr.. ‘Num’ is the
grammatical category, ‘number’. The information is
based on the analysis from SHR.

Word Stem Morphological Tag

Case Num Gender

yas̀āh. yas̀as nominative 1 feminine
nominative 1 masculine

pituh.
pitr.

genitive 1 masculine
ablative 1 masculine

pitu nominative 1 masculine

Table 3
Grammatical features and their
distribution over inflectional classes.
‘Other’ includes forms such as
infinitives, absolutives,
compound-components,
indeclinables, etc.

Feature V
al

ue
s

N
ou

n

Fi
n.

ve
rb

Pa
rt

ic
ip

le

Tense 18 3 3
Case 8 3 3
Number 3 3 3 3
Gender 3 3 3
Person 3 3
Other 6
Total 41 72 162 1296

Morphological Parsing. Morphological parsing is the task of identifying the morphemes
of the words in a sentence. Specifically, our task focuses on obtaining the correct stem
and the morphological tag of the inflected forms in a sentence. Sanskrit, similar to Czech
(Smith, Smith, and Tromble 2005), is a fusional language where a morpheme encodes
multiple grammatical categories. Morphological parsing in Sanskrit is challenging pri-
marily due to two factors. First, Sanskrit has a rich tagset of about 1,635 possible tags.
Table 3 shows the lexical categories in Sanskrit and the grammatical categories they
comprise of. Second, an inflected form in Sanskrit may lead to multiple morphological
analyses, due to syncretism and homonymy. For instance,Table 2 shows the candidate
morphological analyses produced by SHR for the inflected-forms ‘pituh. ’ and ‘yas̀āh. .’8.
Here, the word ‘pituh. ’ has 3 possible analyses, of which two are cases of syncretism
for the inflected-forms of the stem ‘pitr. ’ and the third analysis is an inflection of the

6 https://sanskrit.inria.fr/DICO/reader.fr.html
7 The analysis is available at https://bit.ly/2WYVkie
8 Figure 3 also shows the SHR analysis (marked with numbered boxes) for both the inflected forms; ‘Yas̀āh. ’

is final component of the compound ‘sumahāyas̀āh. ’. In Sanskrit, the inflectional marker is applied
generally to the final component of a compound.

8

https://sanskrit.inria.fr/DICO/reader.fr.html
https://bit.ly/2WYVkie

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

stem ‘pitu’. Similarly, ‘yas̀āh. ’ is a case of syncretism, where it has two possible analyses
both with the same stem ‘yas̀as’, but differing in their morphological tags. In this task,
we rely on SHR to obtain an exhaustive list of possible morphological analyses for the
words in a sequence. We then formulate our task as obtaining the correct morphological
analysis from the exhaustive list of candidate solutions obtained from SHR.

Dependency Parsing. Given a sentence in Sanskrit, dependency parsing requires to find
the syntactic relations between the words in the sentence, thereby predicting a labelled
dependency tree as the final output. For the task, we follow the widely adopted depen-
dency tagging scheme proposed for Sanskrit (Kulkarni, Pokar, and Shukl 2010; Kulkarni
and Ramakrishnamacharyulu 2013). The tagging scheme, consisting of 22 relations9, is
in principle motivated from the traditional dependency analysis for Sanskrit, known as
the ‘kāraka’ theory (Kiparsky and Staal 1969). These relations are known to be syntactic-
semantic in nature (Bharati and Sangal 1993). Using this scheme enables us to integrate
our predictions into the pipeline of systems currently in use for linguistic annotations
and processing of Sanskrit texts (Goyal et al. 2012; Huet and Kulkarni 2014; Goyal and
Huet 2016; Das 2017). The relations rely heavily on the case markers of the nominals
and the valency of the verb to infer the structural information of the sentence (Kiparsky
and Staal 1969; Ramkrishnamacharyulu 2009). Figure 4 shows the dependency analysis
for the reference sentence. For presentational clarity, the figure uses the prose word
ordering (anvaya of the verse) rather than the original verse order. The sentences in prose
in Sanskrit tend to follow weak non-projectivity in their dependency analyses, but the
same is not guaranteed for the word arrangements in verse order (Kulkarni et al. 2015).
Nevertheless the dependency tree is not dependent on the configurational information
of the words in a sequence.

mahābalaḥrāmaḥ apiparamodāraḥ sumukhaḥ sumahāyaśāḥ na ca aicchatpituḥ ādeśāt rājyaṁrāmaḥ

rāmaḥ api paramodāraḥ sumukhaḥ sumahāyaśāḥ na ca aicchat pituḥ ādeśāt rājyaṁ rāmaḥ mahābalaḥ

kartāviśeṣaṇaṁ

viśeṣaṇaṁ
viśeṣaṇaṁ

viśeṣaṇaṁ
viśeṣaṇaṁ

karma
hetuḥ

niṣhedhaḥ

ṣaṣṭhī-
sambandaḥ

samuccitam

sambandhaḥ

1 23 4 5 6 7 89 10 111213

Figure 4
Dependency analysis for the reference sentence. The kāraka tags as per the dependency tagging
scheme of Kulkarni, Pokar, and Shukl (2010) are shown as the edge labels in the figure. For
presentational clarity, the figure uses the word ordering from the anvaya of the verse. The
numbers in the boxes indicatre the position of the word (from left) in the original word order in
the verse. The corresponding English translation for the tags are: Hetuh. – Cause; Karma – Object;
Kartā - Subject; Nis.edhah. – Negation; Sambandhah. - Relation; Samuccitam – Conjunction;
Sas. ṫhı̄samsambandhah. – Genitive or possessive relation, Vis̀es.an. am - Adjectival modifier.10

9 https://bit.ly/3hKLZT9
10 “Sambandhah. " translates to relation. This coarse level tag is included in the tagging scheme, to assign to

those cases which require extra-syntactic factors for resolving the exact fine-grained relation. For a more
detailed understanding of the tagging scheme and kāraka theory in general, please refer to Kulkarni and
Sharma (2019) or Kulkarni, Pokar, and Shukl (2010).

9

https://bit.ly/3hKLZT9

Computational Linguistics Volume 1, Number 1

Syntactic Linearisation. Commentators often reorder the words in a verse and place them
in the “most easily understandable prose order" (Tubb and Boose 2007, p. 150), as part
of writing a commentary for the verse. This converted prose order is called as the anvaya
of the verse, and Apte (1965) describes it as the natural order or connection of words in
a sentence, construing grammatical order or relation. Such orderings tend to follow a
subject-object-verb word order (Hock 2015; Tubb and Boose 2007) and facilitate easier
verbal cognition of the sentence for others (Bhatta 1990). As previously mentioned, the
words in an anvaya tend to behave as constituents of phrases, implying that the phrases
are continuous (Gillon and Shaer 2005; Schaufele 1991). The objective of this task is to
predict the anvaya of a given verse. However, the word order in a verse is guided by the
metrical constraints, and has little to offer in rearranging the words to a prose order11

(Scharf et al. 2015; Kulkarni et al. 2015). Hence we formulate the task as a syntactic
linearisation task. Syntactic linearisation is the task of ordering a bag of words (BoW)
into a grammatical and fluent sentence (Liu et al. 2015). In the standalone setting, we
consider a BoW, along with correct morphological analysis for each of the words in the
BoW, as the input. Figure 5 shows an instance of syntactic linearisation from a BoW. But
a more realistic scenario is when the input is a verse in its original written form, where
several words may be present in the fused form due to sandhi. In the joint setting, the
task takes the verse in its original written form and jointly performs word segmentation,
morphological parsing and linearisation. The word order divergences between the verse

aicchat, api, ādeśāt, ca, mahābalaḥ, na, paramodāraḥ, pituḥ, rājyaṁ,
rāmaḥ, rāmaḥ, sumahāyaśāḥ, sumukhaḥ

rāmaḥ paramodāraḥ sumukhaḥ sumahāyaśāḥ mahābalaḥ api rāmaḥ pituḥ ādeśāt rājyaṁ na ca aicchat

rāmaḥ api paramodāraḥ sumukhaḥ sumahāyaśāḥ na ca aicchat pituḥ ādeśāt rājyaṁ rāmaḥ mahābalaḥ

Bag

Of

Words

Verse Order

rāmo’pi paramodārassumukhassumahāyaśāḥ na caicchatpiturādeśādrājyaṁ rāmo mahābalaḥ

Prose Order

Verse (After Sandhi)

Figure 5
Instances of syntactic linearisation and prosodification from a BoW input. In prosodification,
sandhi may be essential at specific word boundaries to adhere to metrical constraints. However,
sandhi is purely optional in sentences in prose order.

and the corresponding anvaya at a syntactic level can be assessed using the following
three aspects. First, Sanskrit sentences in their prose order tend to follow SOV typology
(Hock 2015). In the reference sentence, as shown in Figure 4, ‘rāmah. ’ (numbered 12) is
the kartā (subject), ‘rājyam. ’ (numbered 11) is the karma (object), and both have the verb
‘aicchat’ (numbered 8) as their head. As shown in Figure 5, the prose order conforms
to the SOV typology, whereas the verse order does not. Second, dependency analysis
of the prose constructions in Sanskrit tends to be planar, or weakly non-projective

11 We use the terms ‘anvaya’ and ‘prose order’ interchangeably in this work.

10

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

(Kulkarni et al. 2015). Finally, the ordering in the prose is likely to follow the principles
of dependency locality theory (Gibson 1998, DLT). However none of these three claims
can be established for a verse. As per DLT, the linear distance between words linked in
dependencies should be as short as possible (Gibson et al. 2019). As a consequence of
the DLT, the dependency length of the prose ordering tends to be shorter than that of
the verse ordering.

rā mo ’pi pa ra mo dā ra ssu mu kha ssu ma hā ya śāḥ na cai ccha tpi tu rā de śā

drā jyaṁ rā mo ma hā ba laḥ

a)

rā maḥ a pi pa ra mo dā raḥ su mu khaḥ su ma hā ya śāḥ na ca ai ccha t-pi tuḥ ā

de śā t-rā jyaṁ rā maḥ ma hā ba laḥ

b)
Syllable weight Light Heavy

Figure 6
Syllable level segmentation, along with the syllable weights for a) Verse in its original form; b)
Verse with segmented word boundaries.

Prosodification. We define this task as imposition of prosodic structure to a BoW input.
We specifically use the metre information, based on Sanskrit prosody, to convert a BoW
input into a verse sequence. For a verse sequence, its metre can be deterministically
identified based on the sequence of syllable weights present in the sequence. The syl-
lable weight can either be laghu (light) or guru (heavy), decided deterministically using
rule-based systems (Melnad, Goyal, and Scharf 2015). Our task is to convert a BoW input
to a sequence such that the generated sequence adheres to one of the prescribed metres
in Sanskrit prosody. While prosodification involves rearranging a BoW to a sequence,
the rearrangement in itself need not result in a sequence that adheres to a valid metrical
pattern. Given a sequence, the phonetic transformations due to sandhi may lead to
reduction in the number of syllables in the sequence or might alter the syllable weight
of one or more syllables. While sandhi operations are optional when writing in prose, a
poet might be compelled to use sandhi in a verse to obtain a valid sequence of syllable
weights, i.e., a metrical pattern. Figure 5 shows the linear arrangement of the words
followed in the verse, as well as the final verse sequence where sandhi is performed
at specific word boundaries. While the former does not adhere to any known metre
in Sanskrit prosody, the latter belongs to the ‘Anus.t.ubh’ meter. So in prosodification,
our task is not just confined to finding the correct permutation from a BoW, but also
to determine the junctures at which sandhi needs to be performed. As shown in Figure
6, the reference sentence has 32 syllables in its original form (Figure 6(a)). Further, its
syllable weight pattern adheres to the Anus.t.ubh meter. However, the segmented form,
as shown in Figure 6(b)), results in a sequence of 34 syllables. The segmented sequence,
with 34 syllables, does not adhere to any known meter pattern in Sanskrit prosody.
Consider the string, rāmo’pi, a substring of the reference sentence. rāmo’pi has 3 syllables,
where the syllables rā and mo are heavy syllables and the remaining ’pi is a light syllable.
However, after word segmentation, the string becomes rāmah. api; this has 4 syllables,
where rā is a heavy syllable, while mah. , a and pi are light syllables. This illustrates,
how sandhi becomes a convenient tool for poets in verse generation and the decision of

11

Computational Linguistics Volume 1, Number 1

sandhi is bound by the metre patterns. In the case of prose, since the generated sentence
is not bound to follow any metrical pattern, sandhi is purely optional.

3. Energy Based Framework for Structured prediction in Sanskrit

We define a search-based structured prediction framework using Energy Based Models
(LeCun et al. 2006, EBMs) for performing numerous sequence level NLP tasks in a free-
word order language like Sanskrit. The framework essentially consists of 3 components,
namely, a graph generator, an edge vector generator, and a structured prediction model.
A structured prediction model can further be subdivided into input representation,
learning and inference (Belanger 2017). The processed outputs from graph generator
and edge vector generator forms the input representation for the structured prediction
model. For all the tasks we consider, the graph generator takes input from the user,
which can either be a sequence or a BoW, and converts it into a graph structure. The
edge vector generator then generates feature vectors for the edges in the graph.

Formally, the aforementioned graph and feature vectors form the observed variable
X to the structured prediction model in our framework. The model performs inference
on X to predict an induced subgraph of X , which forms the output variable Y . Here,
X and Y are structured objects which can be factorised into multiple variables. Such
problems are challenging because the number of candidates in the output-space is
exponential in the number of output variables that comprise the factored structure of
Y (Doppa, Fern, and Tadepalli 2014; Belanger 2017). EBMs enable non-probabilistic
training of structured models, thereby avoiding the need to normalise over Y . EBMs
can be used to design architectures that can incorporate known properties about the
language or the properties beneficial for the task, and then perform constrained opti-
misation over Y (Belanger, Yang, and McCallum 2017). In EBMs, a model is viewed as
an energy function that captures the dependencies between the observed and output
variables, by associating a scalar energy to each configuration of the variables (LeCun
et al. 2006). The inference process consists of finding the values of output variable Y that
are most compatible with the observed variable X , such that the energy is minimised
(LeCun et al. 2007). Learning consists of finding an energy function that associates
lower energies to correct output structures and higher energies to the incorrect ones
(LeCun et al. 2007). The models we train are non-probabilistic models that use ‘margin
losses’ (LeCun et al. 2006, §6) to create the energy gap between the correct structure and
incorrect structures.

An overview of our framework is shown in Figure 7. In the figure, dependency
parsing for a four word sentence S, ‘sund. arah. rāmah. rāvan. aṁ hanti’ (Handsome Rama
kills Ravana), is shown for illustrative purposes. Similar to other graph based parsing
approaches, S is first converted to a complete graph using graph generator. The edge
vectors are then generated such that each edge captures the distributional information
between the pair of nodes it connects. The graph structure and the edge vectors together
form the input (X) to the EBM, which uses an inference procedure to predict a structure
with the minimum energy (Y). For dependency parsing, Chu–Liu–Edmond’s algorithm
becomes the inference procedure that searches for the minimum energy spanning tree.12

We train eight models, five in standalone setting and three in joint setting for the
tasks mentioned in Section 2.1. While the learning procedure generally remains the

12 We search for the minimum energy spanning tree, instead of the maximum spanning tree as in the case of
McDonald et al. (2005b).

12

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

sunḍaraḥ rāmaḥ rāvaṇaṁ hanti Graph Generator

Edge Vector Generator
e < …. >
f < …. >

d < …. >
c < …. >
b < …. >

a < …. >

hanti

rāvaṇaṁ ̣rāmaḥ

sunḍarah

a b

cd

e

fEnergy

Based Model

Input

representation

X

User Input S

Predicted output Y

hanti

rāvaṇaṁ ̣rāmaḥ

sunḍarah

a b

d

Edge vectors

Figure 7
Overview of the Energy Based Model Architecture. Dependency parsing for a four word
sentence, sundarah. rāmah. rāvan. am hanti (Handsome Rama kills Ravana), is shown as the use-case.

same across the tasks in the framework, the input representation and the inference
procedures are task-specific. Table 4 enumerates the setup for each of the tasks in terms
of user given input S, the observed variable X , the output variable Y and the inference
applied. In our case, X will always be a graph X(VX , EX).13 Here, VX forms the vertex
set and EX forms the edge set of the graph X . Each vertex encodes relevant linguistic
information about the component it represents. For morpho–syntactic tasks, VX is a set
of words, whereas syllables form the vertices for the prosody-level tasks. Every edge
e ∈ EX is then featurised using the “edge vector generator" module. A suitable inference
procedure gives a structured output Y ∗ with the minimum energy, from a set of possible
solutions Y (LeCun et al. 2006). Y ∗ can be expressed as:

Y ∗ = argmin
Y ∈Y

E(Y,X)

where E is the energy function and Y is the set of possible solutions. Every element Y ∈
Y is an induced sub-graph of X . The design of the inference procedure further restricts
the type of induced subgraphs that can form a solution, and this is task-specific. For
instance, in word-segmentation, we use the greedy maximal clique selection approach
as the inference (Section §3.3, Algorithm 1), thereby restricting Y to be the set of all
maximal cliques in X . Similarly for dependency parsing, Y is the set of all the directed
spanning trees inX . Ours is an arc-factored model and hence, the energy of the structure
produced by the inference procedure is factorised as the summation of energies of its

13 We overload the notations to indicate both the observed variable for the model as well as its
corresponding graph representation.

13

Computational Linguistics Volume 1, Number 1

Table 4
Task-wise description of user input S, observed variable of the model X , output variable of the
model Y and the inference applied.

Ta
sk

U
se

r
In

pu
t

S

O
bs

er
ve

d
V

ar
ia

bl
e

X

O
ut

pu
t

V
ar

ia
bl

e
Y

Ve
rt

ex
A

tt
ri

bu
te

s
A

In
fe

re
nc

e

m
or

ph
os

yn
ta

ct
ic

ta
sk

s

W
or

d
Se

gm
en

ta
ti

on
(W

S)
A

st
ri

ng
w

it
h

fu
se

d
w

or
ds

G
ra

ph
V
X

=
se

to
f

w
or

ds

M
ax

im
al

C
liq

ue

              G
re

ed
y

m
ax

im
al

cl
iq

ue
se

le
ct

io
n

he
ur

is
ti

c.
§3

.3
,

A
lg

or
it

hm
1

M
or

ph
ol

og
ic

al
Pa

rs
in

g
(M

P)
A

se
qu

en
ce

of
se

gm
en

te
d

w
or

ds

G
ra

ph
V
X

=
se

to
f

w
or

ds

M
ax

im
al

C
liq

ue

D
ep

en
de

nc
y

Pa
rs

in
g

(D
P)

A
se

qu
en

ce
of

se
gm

en
te

d
w

or
ds

,
w

it
h

m
or

ph
em

es

C
om

pl
et

e
G

ra
ph

V
X

=
se

to
f

w
or

ds

Sp
an

ni
ng

Tr
ee

C
hu

–L
iu

–E
dm

on
ds

C
hu

an
d

Li
u

(1
96

5)
Ed

m
on

ds
(1

96
7)

Sy
nt

ac
ti

c
Li

ne
ar

is
at

io
n

(S
L)

A
Ba

g
of

w
or

ds
,

w
it

h
m

or
ph

em
es

C
om

pl
et

e
G

ra
ph

V
X

=
se

to
f

w
or

ds

H
am

ilt
on

ia
n

Pa
th

    

A
1
=S

te
m

A
2
=I

nfl
ec

te
d

fo
rm

A
3
=M

or
ph

.
Ta

g

Be
am

Se
ar

ch

Jo
in

t
W

S
+

M
P

A
st

ri
ng

w
it

h
fu

se
d

w
or

ds

G
ra

ph
V
X

=
se

to
f

w
or

ds

M
ax

im
al

C
liq

ue
§3

.3
,A

lg
or

it
hm

1

Jo
in

t
W

S
+

M
P

+
D

P
A

st
ri

ng
w

it
h

fu
se

d
w

or
ds

G
ra

ph
V
X

=
se

to
f

w
or

ds

St
ei

ne
r

Tr
ee

Pr
im

’s
al

go
ri

th
m

§3
.3

A
lg

or
it

hm
2

Po
et

ry
to

Pr
os

e
Jo

in
t

W
S

+
M

P
+

SL

A
ve

rs
e

(a
dh

er
in

g
to

m
et

re
)w

it
h

fu
se

d
w

or
ds

G
ra

ph
V
X

=
se

to
f

w
or

ds

H
am

ilt
on

ia
n

Pa
th

Be
am

Se
ar

ch

Pr
os

od
y

le
ve

lt
as

k

Pr
os

od
ic

Li
ne

ar
is

at
io

n
(P

L)
A

ba
g

of
w

or
ds

C
om

pl
et

e
G

ra
ph

V
X

=
se

to
f

sy
lla

bl
es

H
am

ilt
on

ia
n

Pa
th

A
1
=S

yl
la

bl
e

A
2
=S

yl
la

bl
e

W
ei

gh
t

Be
am

Se
ar

ch

14

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

edges (McDonald et al. 2005b; Ishikawa 2011).

E(Y) =
∑
e∈EY

E(~e)

Here ~e is a non-negative real valued vector, for each edge e ∈ EX . The energy function
E(.) : [0,∞)|~e| → (−∞,∞), takes non-negative real valued edge-vector and produces a
scalar energy value. The energy function is calculated using multilayer perceptrons,
with leaky ReLU activation function at the hidden layer. The training involves learning
an energy function that minimises the energy of the ground-truth structure Y GT as
compared to other candidate structures in Y . We apply Hinge Loss (Taskar, Guestrin,
and Koller 2003; Altun, Johnson, and Hofmann 2003), a generalised margin loss, as the
loss function. The loss function takes the following general form:

L = max(0,m+ E(Y GT)− E(Ȳ)),

where m is the positive margin, E(Y GT) is the energy of the ground truth solution and
E(Ȳ) is the energy of the incorrect candidate with the lowest energy. This loss attempts
to make E(Y GT) lower than E(Ȳ), at least by m (LeCun et al. 2007, §2.1). Thus, unless
E(Ȳ) has the energy value larger than E(Y GT) by the margin m, loss is computed. The
margin is defined as a function that captures the structural divergences between the
ground truth and other candidate structures, such that energy of an incorrect candidate
with a higher structural divergence should be much higher. For dependency parsing,
the margin m is the number of nodes with an incorrect head attached to them (McDon-
ald et al. 2005b; Carreras 2007; Bohnet 2010). Similarly, for all the tasks that use beam-
search as inference and for joint WS+MP+DP, the margin is the number of incorrect
local decisions, i.e. incorrect edges. For word-segmentation, morphological parsing and
also for joint WS+MP (Krishna et al. 2018), we predict a structure containing a subset
of nodes from the vertex set VX of the input X . Here, the margin is the square of the
number of nodes in the prediction which are not in the ground truth, i.e.

m = |VȲT
− VY GT |2

We minimise the given loss function using gradient descent. The network param-
eters are updated per sentence using back-propagation. The hinge loss function is
not differentiable at the origin. Hence, we use the subgradient method to update the
network parameters (Socher, Manning, and Ng 2010; Ratliff, Bagnell, and Zinkevich
2007). Next, we discuss various components of our framework in further details.

3.1 Graph Generator

The graph generator analyses the user input S, and transforms S into a graph
X(VX , EX). An edge is added between every two vertices that can co-exist in a pre-
dicted output structure. Hence the set EX encodes the structural information between
the vertices in VX . The edges are featurised to capture the distributional information
between the pair of vertices they connect. This feature vector is used to calculate the
scalar energy for the edge, which indicates the strength of the association between
the node pairs. For morpho–syntactic tasks, we have word-level vertices in VX . Here,
each vertex is a word, represented using the word’s inflected-form, its stem and its

15

Computational Linguistics Volume 1, Number 1

morphological tag. Similarly, prosody-level tasks have syllable-level vertices, where
each vertex encodes the syllable and its syllable-weight. Thus, a vertex v in the set
VX essentially represents some linguistic information encoded as a tuple of multiple
attribute–value pairs.14 Formally put, every (type of) task consists of predetermined
set of attributes, A1, A2...An. We define A as the Cartesian product of these sets, A =
A1 ×A2...×An. Every vertex encodes a tuple a ∈ A, where a(i) indicates the value for
the ith attribute. The vertices in VX for morphosyntactic tasks form a 3-tuple, consisting
of (inflected form, stem,morphological tag), while that of a prosody level task form a 2-
tuple, consisting of (syllable, syllable weight).

Morpho–syntactic Tasks. As shown in Table 4, we experiment with 7 different settings for
the morphosyntactic tasks, of which four are for standalone and three are for the joint
models. For standalone dependency parsing and syntactic linearisation, the user input
S is expected to include the gold-standard inflected-form, stem and morphological-tag
for each word in the sentence. This information used directly to construct the vertices
and the aforementioned attribute tuples (3-tuple) for these vertices. However, for other
tasks, the user input S is expected to be a sequence. The sequence is then analysed
using a lexicon driven shallow parser, Sanskrit Heritage Reader (Goyal and Huet 2016,
SHR). SHR relies on finite state methods to exhaustively enumerate all possible word
splits for this sequence, based on rules of Sandhi. As previously shown in Figure 3 (§2.1),
SHR not only generates possible candidate words, but it also provides the word-level
morphological analysis, for each candidate word it generated. SHR is limited only by
the coverage of its lexicon’s vocabulary. The SHR analysis is then used to form the
vertex set VX and 3-tuple of attributes for each vertex in VX . For instance, SHR provides
four separate analyses corresponding to the substring pitur in the reference sentence,
as shown in Figure 3. One analysis is for the compound component (in yellow box)
pitu, and the remaining three analyses accommodate the homonymy and syncretism
expressed by the surface-form ‘pituh. ’ as per Table 2.15 Thus it will be represented by
four different nodes in the input graph X . For morphological parsing, as the task does
not involve word-segmentation, the user input S will be a sequence of segmented
words, for which SHR will produce only the stem and tag analyses. Summarily, for
all the seven morphosyntactic tasks, as shown in Table 4, each unique combination of
the aforementioned three attributes forms a vertex in X .16

The edges in X should connect those nodes that can co-occur in a solution. If two
candidate words are proposed as alternatives, such as the words ‘ādeśāt’ and ‘deśāt’ in
Figure 3, then they are defined as ‘conflicting nodes’. In Figure 3, we can find that all
the conflicting nodes do have overlapping spans in their word position w.r.t. the input
sequence. An exception to this will be those overlaps valid under the sandhi rules, such
as the pair of words ‘ca’ and ‘aichhat’ overlapping at the input character a in Figure 3.
The edge setEX consists of edges between every pair of nodes which are not conflicting.
This implies that a complete graph will be formed for standalone dependency parsing
and syntactic linearisation, as there will be no conflicting nodes in the input for both
the tasks. For other tasks, our current design choice results in a denser graph structure

14 We additionally add unique identifiers to each of the vertices, in order to avoid confusion due to multiple
instances of the same tuple in the input.

15 The morphological analyses for ‘pituh. ’ are shown also in Figure 3, marked with numbered boxes 2 and 3.
16 We additionally consider the span of the word-form w.r.t the input sequence (as a unique identifier) to

distinguish between words that are used more than once in the sentence. For instance, there are two
occurrences of the inflected-form “rāmah. " in the reference sentence used in §2.1

16

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

as input. Such a design choice may lead to a computationally costly inference, which
requires justification. A large number of texts in Sanskrit are written in verses. The
relatively free word order structure of Sanskrit, especially in verses, motivated us to
design a denser graph structure. Such a construction is agnostic to the original word
order in a sentence and ignores any word order information present in the original
input. The denser graph structure we use enables to capture the relation between word
pairs which might be grammatically related, even though the ordering between the
words may not be indicative of this.

ba

rā

mo

maḥ hā bama laḥ

rāmaḥ mahābalaḥ

lo

rāmo mahābalaḥ

rā

mo

maḥ ma laḥ

rāmaḥ mahābalaḥ

lo

rāmo mahābalaḥ

Syllable weight

Light

Heavy

a)

b)

Syllable level nodes

Merged nodes

hā

Figure 8
Input representation for the prosody level task. Nodes where there is no ambiguity in traversal
are merged to form a single node in the merged node representation.

Prosody level task. Prosodification is the sole prosody level task that we discuss in this
work. In this task, a BoW input is converted into a sequence that adheres to one of the
prescribed metres in Sanskrit. In addition to finding a suitable word order for the words
in the BoW, the task involves identifying the word boundaries where sandhi needs to
be applied. The phonetic transformation due to sandhi may alter the syllable patterns
of the sequence.For the task, the user given input S, i.e. a BoW, is converted into a
syllable level graph X(VX , EX). Here, each node encodes a syllable, representing the
surface-form of the syllable and its syllable weight. The syllables and the corresponding
weight of these syllables for each word are identified deterministically using the ‘Meter
identification tool’ by Melnad, Goyal, and Scharf (2015). Figure 8(a) shows the syllable
level graph X for a two word BoW input, “mahābalah. " and “rāmah. ". The vertex set VX
for this input is initialised with all the syllables of both the words, as shown in the boxes
enclosed with dotted lines in Figure 8(a). The graph is augmented further, by keeping
the following three points in mind. First, the relative ordering of syllables in a word
should not be allowed to change, as that would lead to a different word altogether.
This is ensured by representing each word as a directed path, i.e. rā→mah. and ma→hā→
ba→ lah. . For a word, the path begins with the first syllable of the word and terminates
at the last syllable of the word. Second, it should be possible to predict any possible

17

Computational Linguistics Volume 1, Number 1

permutation of words in the input BoW. To ensure this, we form directed edges from the
last syllable of every word to the first syllable of all the remaining words in the input.17.
The current input can lead to two permutations, rāmah. mahābalah. and mahābalah. rāmah. .
To enable these two permutations, we add edges from the last syllable nodes of each
word, mah. and lah. , to first syllable nodes of each word, ma and rā, respectively. Third,
the final sequence that adheres to a metre might have to undergo sandhi at specific word
boundaries. This leads to two more possible sequences, rāmo mahābalah. and mahābalo
rāmah. , one each from either of the two permutations. Hence, two more syllable nodes
are added, namely mo and lo. mo is inserted between rā and ma and lo is inserted between
ba and rā. The graph constructed after following all the three points can be seen in Figure
8(a). The graph allows to generate any valid permutation of the input BoW, including all
the possible sequences of each permutation which can be generated due to sandhi. We
use beam search as our inference procedure. However, if we look into the directed path
ma→hā→ ba, the inference has no prediction to make here. We will refer to such paths
as unambiguous paths. The nodes in an unambiguous path can be merged together to
form a single node, and this helps to reduce the search space size. The resultant graph
after merging of unambiguous paths is shown in Figure 8(b).18

3.2 Edge Vector Generator

Each edge in the edge set EX is passed onto the edge vector generator to obtain its
feature vector. The edge vectors, along with the graph structure form the input to the
arc-factored structured prediction model. Identifying a set of features that is beneficial
for each task is a challenge in itself. For morphologically rich languages the state of the
art models for dependency parsing (More et al. 2019; Seeker and Çetinoğlu 2015), and
even for morphological parsing (More and Tsarfaty 2016), rely on hand-crafted features
to obtain the feature-function. In our case, we automate the learning of the feature func-
tion, by using Forward Stagewise Path Generation (FSPG) algorithm (Meng et al. 2015).
The edge vector generation in Krishna et al. (2018) for the joint word-segmentation
and morphological parsing task was performed using Path Ranking Algorithm (Lao
and Cohen 2010, PRA). Both PRA and FSPG essentially map the problem of learning a
feature function to that of automatic learning of arbitrary length horn clauses (Gardner,
Talukdar, and Mitchell 2015). Both approaches follow a two step process of feature
function learning and feature value computation. Feature function learning involves
automated generation and selection of a finite subset of features from a potentially
infinite feature space, which are beneficial to the task. For all the morphosyntactic tasks,
we learn a common feature function and a separate feature function is learnt for the
prosody level task. This is a one time process that happens prior to the training of the
models. Feature-value computation involves finding the feature values for every edge,
and hence it happens every time an input is processed.

For feature value computation, both FSPG and PRA use Path Constrained Ran-
dom Walks (Lao and Cohen 2010, PCRW), a random walk based inference approach.
However, both approaches differ in the feature function learning step. PRA requires

17 As a converse, this implies that the first syllable of each word receives an edge from the last syllable of all
the other words in the input

18 In Figure 8(b), though lah.→rā form an unambiguous path, we will not merge the nodes in the path. This
is because the nodes in the path do not belong the same word. Further, we generally have multi word
inputs and in such cases there will be more than one outgoing edges from the syllable nodes at the word
boundaries.

18

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

exhaustive enumeration of all the possible horn clauses in the feature space prior to
feature selection. An arbitrary limit on the maximum number of predicates possible in
a horn clause is set, to make the feature space finite. The feature enumeration step is
followed by feature selection and feature value computation steps. FSPG, on the other
hand, is a modified version of least angle regression which uses greedy strategies for
feature selection, thereby avoiding the need for exhaustive enumeration of the features.
For a given edge, a feature should essentially capture the strength of the association
between the two nodes the edge connects, i.e. how likely are the two nodes to co-occur
in a solution. We calculate the strength of the association between the nodes based
on distributional information obtained from a corpus. Each feature acts as a means to
calculate this information under specific linguistic constraints. We now elaborate on our
feature space, feature value computation approach using PCRW and finally the feature
function learning approach using FSPG.

The feature space. We define the feature space F , from which the features, used for
forming the edge vectors, are filtered. Given an edge in EX , let the corresponding
attribute tuples for the pair of nodes it connects be denoted as a, a′ ∈ A. For the mor-
phosyntactic tasks, an element in A, i.e. an attribute tuple, is a 3-tuple consisting of
(inflected form, stem,morphological tag), while for a prosody level task it is a 2-tuple, con-
sisting of (syllable, syllable weight). Now, a(i), a′(j) are the ith and jth indexed attributes
of a and a′ respectively. A feature f ∈ F can be defined as a triple 〈a(i), ψ, a′(j)〉, which
captures the distributional information between the attributes a(i) and a′(j), under
the presence of the constraint ψ. Concretely, consider an edge connecting the node
with the attribute tuple (pitu

˙
h, pit

˙
r, genitive|1|masculine)19 to a node with the attribute

tuple (rāma
˙
h, rāma,nominative|1|masculine). So, a feature 〈a(1), ψ, a′(2)〉 should capture

the distributional information between the inflected form pituh. and the stem rāma, i.e.
〈pitu

˙
h, ψ, rāma〉, under the presence of the constraint ψ.

Formally, a feature, f = 〈a(i), ψ, a′(j)〉, is a tuple f = (a(i), ψ(1), ψ(2),ψ(k), a′(j))
of size k + 2, where k can be any non-negative integer. Every intermediate entry
ψ(1), ψ(2),ψ(k) is an entry in the constraint tuple ψ. For morphosyntactic tasks, we
use morphological constraints and for prosody level tasks, we use sub-patterns of a
metre (sequences of syllable weights) as these constraints. Since ψ can also be an empty
tuple, it is possible to enumerate nine (four) different features for a morphosyntactic task
(prosody level task), with no constraints. This comes from the possible combinations of
attributes from a, a′ ∈ A. We refer to this type of feature as ε-features, 〈a(i), ε, a′(j)〉. But,
the total number of possible features can be infinite, as the morphological constraint ψ
can be an arbitrary length tuple. We now define ψ as a member of a countably infinite
setMC where

MC =

∞⋃
i=1

M i

In other words, ψ ∈MC, is an arbitrary-length tuple where each element comes from
a set M . Mk indicates the k-ary Cartesian product on the set M . MC is the union all
such k-ary Cartesian products. In prosody-level task, M is nothing but a set consisting
of all the syllable weights, which happens to be a set of cardinality 2 for Sanskrit.MC
consists of all the possible sequences of syllable weights, which are crucial for metrical

19 The morphological tag for the nominal is of the form “case|number|gender".

19

Computational Linguistics Volume 1, Number 1

patterns. In morphosyntactic tasks, M is defined such that an element in it is either
a complete combination of categories, which leads to a valid morphological tag, or
a partially-complete combination of grammatical categories. We define the complete
combination and partial combination as follows:

1. Complete combination, i.e. a morphological tag – Any combination of
grammatical categories that forms a valid morphological tag for some
lexical category in the language is considered a complete combination. For
instance, a nominal is represented by case, gender and number. Hence, the
combination ‘genitive–masculine–singular’ forms a complete combination
for the lexical category Noun.

2. Partial combination – A combination of grammatical categories, which can
form a morphological class by adding one or more categories to it. For
instance, ‘genitive–masculine’ is a partial combination that denotes all the
possible (three) complete combinations which differ from each other only
in terms of the category ‘number’. However, ‘genitive–first person’ is not a
‘valid’ combination as it can never form a valid morphological tag. The
evidence for a partial combination in the corpus C can be obtained by
summing the evidence of all the morphological classes which it can form.

We obtain a total of 528 different entries in set M , where we consider 240 complete
combinations and 288 different partial grammatical category combinations. Here, we
consider all complete and partial combinations of a noun, verb and those denoted by
‘Others’ in Table 2.

Thus, every feature is unique in two ways. One, given an edge, a feature cap-
tures only a partial information about the node pair the edge connects. This is be-
cause each feature contains only one attribute each from the nodes in the node pair
connected by the edge. For instance, consider 2 ε-features, f1 = 〈a(1), ε, a′(2)〉, and
f2 = 〈a(3), ε, a′(1)〉, for the edge connecting the tuples (pitu

˙
h, pit

˙
r, genitive|1|masculine)

and (rāma
˙
h, rāma,nominative|1|masculine). Then f1 calculates the feature value based

on distributional information between pitu
˙
h and rāma, whereas f2 calculates the fea-

ture value between genitive|1|masculine and rāma
˙
h. Two, it can additionally use a

constraint ψ to limit the distributional context under which the association strength
between a(i) and a′(j) should be measured. For instance 〈a(1), ψ, a′(2)〉 is different
from 〈a(1), ε, a′(2)〉 and results in different feature values, as the former has an ad-
ditional constraint ψ based on which the distributional information is calculated. The
distributional information is calculated from a morphologically tagged corpus. We first
construct a typed graph C from the corpus, henceforth to be referred to as the corpus
graph. Every node in C has exactly one type. For morphosyntactic tasks, C has 530 types
and the set of types is defined as T = {inflected form, stem} ∪M . This implies that
the type of a node in C can either be a partial combination in M , complete combination
(morphological tag) inM , an inflected form or a stem. The number of nodes of the types
inflected form and stem in C depends on the vocabulary of the corpus, as every unique
stem and inflected-form will form nodes in C. However, there will only be one node each
in C for each type in M . Prosody level task has a corpus graph C with just 3 types, the
surface-form of the syllable and the two syllable weight values, i.e. ‘light’ and ‘heavy’.
The number of nodes here will depend on the number of unique syllables present in the
corpus and further, we have one node each for the types heavy and light. Based on the
construction of C, a feature f = (a(i), ψ(1), ψ(2),ψ(k), a′(j)) can be seen as a typed

20

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

path in C, where each node in the typed path corresponds to a type in T . This trans-
lates to a horn clause Edge(a(i), ψ(1)) ∧ Edge(ψ(1), ψ(2)).... ∧ Edge(ψ(k − 1), ψ(k)) ∧
Edge(ψ(k), a′(j))→ Edge(a(i), a′(j)), where Edge(x, y) is a predicate defined as “an
edge from x to y". Thus, the features essentially denote different paths to reach from
a(i) to a′(j) in C, and the feature value for a given node pair will measure the strength
of the path. Next, we discuss the feature value computation process using PCRW.

Feature Score. We use Path Constrained Random Walks (Lao and Cohen 2010, PCRW) for
calculating the feature values. The feature values are calculated based on the distribu-
tional information from the corpus graph C. Two nodes in C are connected, irrespective
of their types, if they co-occur in a sentence in the underlying corpus. Further for every
node in C, we calculate its frequency of occurrence in the corpus. Such a formulation for
C enables us to use the PCRW for the calculation of feature values. For instance, consider
an ε-feature, 〈a(i), ε, a′(j)〉. Here, the attributes a(i) and a′(j) are nodes in C and since
the feature has no additional constraints, it simply forms an edge between the nodes
a(i) and a′(j) in C. The score for an ε-feature, translates to the co-occurrence probability
of both the attributes in sentences across the corpus. This is defined as PCO:

PCO(a(i)|a′(j)) =
count(a(i), a′(j))

count(a′(j))

Now, the feature score calculation in presence of morphological constraints ψ ∈MC,
can be formulated as follows. For a feature 〈a(i), ψ, a′(j)〉, where ψ = (ψ1, ψ2, ...ψk):

Pψ(a(i)|a′(j)) = PCO(a(i)|ψ1)×

(∏
i=2...k

PCO(ψi−1|ψi)

)
× PCO(ψk|a′(j))

The feature essentially is a typed directed-path with multiple edges. The score for the
typed path is the product of co-occurrence probability of the edges in the typed path.
We next describe about FSPG, the approach we use for learning the feature function.

Learning of Feature Function. We use the Forward Stagewise Path Generation (FSPG)
Algorithm (Meng et al. 2015) for the learning of feature function. The FSPG framework
essentially is an extension of Least-Angle Regression approaches (Efron et al. 2004,
LARS), which uses greedy strategies for feature subset selection from a potentially
infinite feature space. The approach is used as a pretraining step, with an auxiliary task
as the objective for the supervised regressor. We first define a regression model, where
the ground truth is obtained based on a measure of binary association between a pair
of words in a corpus, such as bigram, co-occurrence probability or PMI (Krishna et al.
2018). The method iteratively chooses the most relevant feature which can distinguish
the strong associations from the weak associations. The choice for the most relevant
feature is made greedily, where the method chooses a feature with the strongest corre-
lation to the expected output (Meng et al. 2015). For this purpose, a vector of residual
values called as the residual vector ~r is constructed. The residual vector essentially is
the element-wise difference between the values of the ground truth examples and the
predictions from the current model, for the training data given as input (Meng et al.
2015). Now, for a new feature to be added we create a vector ~m, where we calculate the
feature score for the training data given as input. The cosine similarity between ~r and ~m
for each of such feature is calculated, and the feature with the highest cosine similarity

21

Computational Linguistics Volume 1, Number 1

is chosen as the feature to be added. The algorithm terminates until the the residual
vector ~r is negligible i.e. |~r|< ε.

Meng et al. (2015) adapts LARS to handle infinite feature spaces by proposing
the ‘GreedyTree’ Algorithm (Meng et al. 2015, Algorithm 2), a greedy approach for
finding relevant features iteratively. Similar in spirit to the approaches used in Monte
Carlo Tree Search, GreedyTree algorithm follows a best first search, which explores a
graph by expanding the most promising node in the graph (Gaudel and Sebag 2010). A
feature in our framework is defined as a tuple (a(i), ψ(1), ψ(2), ...ψ(k), a′(j)). This tuple
is represented as a path in the GreedyTree. Here, each element of the tuple is a node.
A path is kept on expanding till a certain lower bound for a priority score is obtained.
After a feature with the highest priority is expanded, the tree structure is preserved for
subsequent feature generation passes (Meng et al. 2015). Krishna et al. (2018) perform
exhaustive enumeration of the features and then perform feature selection using Path
Ranking Algorithm. But in PRA the exhaustive enumeration was achieved in practice
by limiting the maximum length of the feature tuple to an arbitrary length. In both PRA
and FSPG, the feature score is calculated using PCRW.

Vector formation in the merged representation for prosody level tasks. In Section 3.1, we dis-
cussed merging of nodes in‘unambiguous paths’ for graph construction in the prosody
level task. Here nodes are formed at a syllable level, but the nodes in unambiguous
paths of a word are merged together to form a single node. For instance, in Figure 8(a),
consider a path of 2 edges ma → hā → ba. In Figure 8(b), this was merged to form a
single node, mahāba. The edges ba → lah. and ba → lo, will now become mahāba → lah.
and mahāba → lo, respectively. Since the graph structure with the merged node forms
the input to the structured prediction model, the edge vector generator has to generate
the feature vectors for the edges in the graph with merged nodes. However, the corpus
graph C for the prosody level task contains syllable level nodes only. To obtain the edge
vector for an edge, e.g., mahāba → lo, we first obtain the edge vectors for all the edges
in the original graph structure without any merged nodes. In this case we obtain three
vectors, one each for the edges ma→ hā, hā→ ba and ba→ lo. We then form a new vector
by performing element wise max operation using all the edge vectors in the path ma→
hā→ ba→ lo. This operation is similar to the max-pooling operation. It implies that, the
new vector will contain the maximum value at each dimension of the vector, among the
three edge vectors in the path.

3.3 Inference Procedure

We use the inference procedure to find the output variable Y , the structure with the
minimum energy, where Y will always be an induced subgraph of the observed variable
X . However, the inference procedure is task specific and it determines the search space
of the possible output structures from which the structure with the minimum energy is
predicted. Table 4 mentions the different inference procedures our framework uses and
the specific structures they predict. For instance, Algorithm 2 is used for the joint task of
word-segmentation, morphological parsing and dependency parsing. The procedure is
basically a slightly modified version of Prim’s algorithm, used here as an approximation
algorithm to find directed Steiner trees (Takahashi 1980). Similarly, Algorithm 1 is used
for the tasks of word-segmentation, morphological parsing and the joint task of word-
segmentation and morphological parsing (Krishna et al. 2018). Here, we start the clique
selection with a single node. At any given instance, we loop through the nodes in
the graph which are not yet part of the clique. We add a vertex v to the clique if the

22

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

cumulative score of all the edges from v to every vertex that is already in the clique is the
minimum. We discard all the nodes which are conflicting with vertex v. ‘As guaranteed
by our structured input graph construction, we obtain the maximal clique (exhaustive
segmentation) when there exist no more vertices to loop through. We perform this for
every node in the graphX . From all the cliques so obtained we select the maximal clique
with the least score. The approach does not guarantee enumeration of all the cliques, but
it is guaranteed that every node will be covered by at least one maximal clique. These
approximate algorithm based inference procedures can be seen as a means of sampling
some potential minimum energy maximal cliques for the learning task. Energy based
models do not require proper normalisation of the solution space (LeCun et al. 2006), a
choice that enables the use of the heuristic. During inference, the greedy clique selection
heuristic is performed for every node in X . Though the run-time for this inference is
polynomial, it can still be computationally expensive. But, in practice we find that our
inference procedure results in faster output for graphs with > 19 nodes in comparison
to the exponential time Bron–Kerbosch algorithm (Tomita, Tanaka, and Takahashi 2006;
Bron and Kerbosch 1973) for clique enumeration (McDonald et al. 2005a). We further
improve the run time of our inference procedure by paralleling the clique selection
procedure for each node on a separate thread.

Algorithm 1 Greedy maximal clique
selection heuristic

1: for each node vi in VX do
2: Initialise a graph Ki(VKi

, EKi
)

with Ki = X such that VKi
=

VX and EKi
= EX . Initialise a

vertex set VTi
with vi as the

only element in it. Remove all
the vertices which are conflict-
ing with vi from Ki.

3: Add the vertex vj ∈ (VKi
− VTi

)
to VTi

, such that in Ki, the sum
of edge weights for the edges
starting from vj to all other ver-
tices in VTi

is minimum.
4: Remove all the vertices which

are conflicting with vj from VKi
.

5: Repeat steps 3-4 till VKi
− VTi

=
∅

6: end for

Algorithm 2 Approximation algorithm for
finding directed Steiner Tree using Prim’s
algorithm originally proposed for Mini-
mum Spanning Tree

1: for each node vi in VX do
2: Initialise a tree Ti(VTi

, ETi
) with vi

as the only vertex in it. Initialise
a graph Ki(VKi

, EKi
) with Ki = X

such that VKi
= VX and EKi

= EX .
Remove all the vertices which are
conflicting with vi from Ki.

3: Find the minimum weighted di-
rected edge in EKi

, which has its
source node in one of the nodes in
VTi

and target node in one of the
nodes in (VKi

− VTi
). Add this edge

to ETi
and its target node vj to VTi

.
4: Remove all the vertexes conflicting

with vj from VKi
.

5: Repeat Steps 3 - 4 till VKi
− VTi

= ∅
6: end for

We use Beam search as our inference for the linearisation task both in standalone
and joint settings, and for the prosodification task. In the joint word-segmentation,
morphological parsing and syntactic linearisation task, similar to the other joint tasks,
only a subset of the nodes from the input X will be in the predicted structure. In such
tasks, we encode the constraints in the inference such that once a node is selected, it’s
‘conflicting nodes’ are removed from the search space. This can be observed in the
Step 4 of the Algorithms 1 and 2 and this is used in the beam search inference for the

23

Computational Linguistics Volume 1, Number 1

Joint WS+MP+SL task as well. ‘Conflicting’ nodes are any pair of nodes which are not
connected by an edge between them. This follows from the construction of the graphX ,
as the non-connectivity between the nodes implies that they are proposed as alternative
word suggestions in X . The removal of such nodes guarantees that the structures pre-
dicted by these inference procedures will always result in an ‘exhaustive segmentation’.
In fact, the inference procedures for all the tasks, with an exception to the dependency
parsing task, are essentially approximation algorithms. For dependency parsing, we use
the exact search based inference using the Edmonds–Chu–Liu algorithm for obtaining
the minimum energy directed spanning tree (McDonald et al. 2005b).

3.4 Design Decisions

The configurations of the Energy Based Model we have discussed so far can be seen as
language agnostic. The language specific components come from the Graph generator,
where we use SHR and MIT for the morphosyntactic and prosody level tasks, respec-
tively. The framework treats the input as a graph without incorporating any language
specific constraints. But, the architecture enables one to incorporate known properties
about the language and then perform constrained optimisation over the structure to
be predicted (Belanger, Yang, and McCallum 2017). We experiment with EBM config-
urations where we incorporate such language specific constraints for the dependency
parsing and syntactic linearisation. The linguistic information is made to use both in
pruning the search space and in filtering the candidates during the inference. Essen-
tially, these constraints can be seen as higher order features that capture constraints
that span beyond a pair of words. For dependency parsing we rely on the linguistic
information from rule based dependency analysers proposed for Sanskrit (Kulkarni,
Pokar, and Shukl 2010; Kulkarni and Ramakrishnamacharyulu 2013; Kulkarni 2013).
In the language agnostic version of dependency parsing we form a complete graph as
input. However several of these edges might not be valid as per the traditional San-
skrit grammar. Such invalid edges can be determined and pruned using the linguistic
information from the grammar, already employed in the aforementioned rule based
dependency parsers. For several MRLs, including Sanskrit, morphological markers are
indicative of the presence and also the type of the syntactic dependency between the
words in a sentence (Nichols 1986; Seeker and Kuhn 2013). Further, morphological
markers may also be indicative of the agreement that needs to be fulfilled between the
words in a syntactic relation (Nichols 1986). For instance, the subject and verb must
agree on the “Number" grammatical category in Sanskrit.

In Sanskrit, case markers of a nominal are indicative of the syntactic re-
lations it can have with a verb and in some case with other nominals.
For instance consider 2 candidate nodes (ādesāt, ādesa, ablative|1|masculine) and
(rāma

˙
h, rāma,nominative|1|masculine) in the graph X for the reference sentence. As

these two candidate nodes are not conflicting, they will have two edges between them,
one in either direction. However, as per the traditional Sanskrit grammar, a nominal in
nominative case cannot form a valid syntactic relation with a nominal in ablative case.
Hence, the edge can be removed from X .20 Summarily, we prune all those edges where
no relation is possible between the words as per Sanskrit grammar. The linguistically
informed pruning can happen not only prior to the inference, but also during the

20 A possible exception to this rule is when one of the nominals is derived from a verb. In such cases, it is
possible that the nominal may act as a verb. In such a case, we do not prune the edge.

24

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

inference. Consider the words rāmah. and sumukhah. in the reference sentence. Both
the nominals are in nominative case, and hence both are eligible to have the verb aicchat
as their head for the kartā (subject) relation. The linguistic pruning approach cannot
distinguish one from the other, as both have the same morphological information, and
will keep both the edges in the input. However during inference, once one of these two
edges is chosen to part of the (partial) predicted structure, then the other edge can be
pruned from the search space. This is because the verb aicchat can form an edge with
at most one nominal which is in nominative case.21 We also incorporate knowledge
that lies outside of morphological markers, such as roles of specific indeclinable words,
as well as cases where an indeclinable acts like a noun by taking a declension and
forming noun–noun relations (Kulkarni, Pokar, and Shukl 2010, §2.2). We add numerous
constraints which mandate or invalidate presence of certain word pair connections and
relations in the final solution, by virtue of presence of one or more relations in the
solution (Kulkarni and Ramakrishnamacharyulu 2013, §4). Such constraints are actively
used in the linguistic tradition of dependency analysis in Sanskrit (Kulkarni, Pokar, and
Shukl 2010, §2.1). We altogether incorporate about 120 constraints, which include rules
and exceptions that make use of morphological and morphosyntactic features, lexical
lists and lists of indeclinables, etc.

We incorporate additional linguistic information for syntactic linearisation as well
(Kulkarni et al. 2015; Scharf et al. 2015). Similar to the dependency parsing task, we
make use of the rule based constraints for dependency analysis (Kulkarni, Pokar, and
Shukl 2010) to obtain a pruned search space. Further, on the pruned search space we
apply the principles of dependency locality (Gibson 1998; Gibson et al. 2013) and weak
non-projectivity (Kulkarni et al. 2015, §3.2 and §4.3) to filter out invalid partial candidate
sequences. We perform each of these during inference and apply these principles on
partially predicted sequences. The three steps we use are: 1) take candidate (partial)
sequences from the beam, and evaluate if a dependency tree can be made using the
rule based parser from Kulkarni (2013).22 2) Based on the tree construction, we check
for violation of weak non-projectivity and minimum dependency length. 3) If any
of the sequence is more than double the minimum dependency length (Gildea and
Temperley 2010) and has more than 2 weak non-projectivity violations, then we discard
the candidate. For the partial sequence we always maintained a dummy root, to which
all the dangling nodes were connected to form a tree.23

4. Experiments

We present the results for experiments for all the tasks that we have described so far. We
first look into the performance of standalone tasks and compare them with other SoTA
baselines whenever possible and show the effectiveness of our model. Then we present
the results for the joint formulation of the tasks and compare them to the pipeline
based approaches. We further evaluate settings where linguistic characteristics specific
to Sanskrit are taken into consideration. Finally, to show the language agnostic nature
of the framework, we present the results for Czech. We train 2 standalone models for
dependency parsing and morphological parsing and one model for joint MP+DP.

21 A possible exception to this might be for those verbs like gamayati, which have a causative marker in it.
As SHR is equipped with this analysis as well, we consider such cases as well.

22 While we used the same set of rules from Kulkarni (2013), we re-implement the parser.
23 The number for minimum dependency length and number of violations of weak non-projectivity were

decided empirically on the development data.

25

Computational Linguistics Volume 1, Number 1

4.1 Dataset

We use the Digital Corpus of Sanskrit (DCS) (Hellwig 2010-2016), a morphologically
tagged corpus of Sanskrit, for all our experiments. The corpus mostly consists of texts
from Epic and scientific domains such as medicine, astronomy, grammar, etc (Hellwig
and Nehrdich 2018). DCS contains digitised works from periods that span over 3000
years, and includes works written in prose, poetry or mix of both. This makes the corpus
a collection of texts which are stylistically, topically and chronologically diverse. It
contains more than 66,000 unique lemmas and 3,200,000 tokens. DCS currently consists
of 561,596 lines of text, where every line has undergone word segmentation and mor-
phological parsing. We use a subset of 350,000 textlines from DCS for the construction
of the corpus graph. We mostly reuse the subset of DCS containing 350,000 textlines,
originally used by Krishna et al. (2016) for the word-segmentation task and later in
Krishna et al. (2018) for the joint WS+MP task. Some of these textlines were removed
from the original subset as they formed part of the train, test or dev dataset for the
newly introduced tasks in this work. However to maintain the count at 350,000, new
textlines, sampled randomly from DCS, were added. The train, test and development
split for each of the tasks discussed in this work is shown in Table 6.

Word Segmentation and Morphological Parsing Krishna et al. (2018) used a training
set of 8,200 textlines from DCS for training the joint model for word-segmentation and
morphological parsing. In Krishna et al. (2018), the segmentation results were reported
on a dataset of 4,200 sentences (termed as DCS4k), and results for morphological pars-
ing were reported on a dataset of 9,576 sentences called as the DCS10k. In this work,
we report the results of morphological parsing on the same DCS10k dataset. However
for word-segmentation we use a subset of the DCS10k with 8,925 textlines, as about 650
textlines were either missing or had alignment issues with the dataset used for one of
the baselines (Hellwig and Nehrdich 2018).

Dependency Parsing DCS is a morphologically tagged corpus, but does not contain
annotations for dependency parsing. We obtain 4,000 dependency tagged sentences
from the Sanskrit Treebank Corpus (Kulkarni 2013) and the corpus of S̀is̀upālavadha24.
From the collection, we choose a subset of 1,300 sentences as our test dataset. For
training, we do not use any gold standard sentences directly, but obtain 12,320 sentences
by augmenting the remaining 2,700 gold standard sentences. Dependency parsing is
the only task where we do not use any gold standard data for training. Given the
restricted settings under which we train the model, we make sure that every word
in the augmented data and the test data (from the original data), has its stem present
in the corpus graph C. However 13.81 % of the inflected forms are out of vocabulary
in C. For obtaining the 12,320 augmented sentences, we relied on standard data aug-
mentation approaches followed generally in text classification, Semantic Role labelling
and dependency parsing. In particular, we perform synonym replacement25 of at most
one word per sentence (Zhang, Zhao, and LeCun 2015), such that the stem for new
word is found in DCS. We additionally perform sentence simplifications (Vickrey and
Koller 2008), originally proposed for SRL, and sentence cropping approaches (Sahin
and Steedman 2018) proposed for dependency parsing. In sentence cropping, we make
sure that every cropped sentence still maintains at least one subject, object and verb
and we primarily target cropping of non subject/object words (and their subtrees) in

24 http://sanskrit.uohyd.ac.in/scl/e-readers/shishu/#/home
25 We use the lexical networks, Indowordnet (Kulkarni et al. 2010) and Amarakośa (Nair and Kulkarni 2010)

26

http://sanskrit.uohyd.ac.in/scl/e-readers/shishu/#/home

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

Table 5
Hyperparameter settings for all the EBM models,
based on which the results in Tables 8–15 are
reported. The hyper-parameter settings are tuned
for the task word-segmentation.

System Morphosyntactic
Tasks

Prosodic
Tasks

Hidden
Layer Size 650 400

Learning rate 1× 10−05 1× 10−03

Margin Loss
Discount 0.3 1

Dropout 0.4 0.5

Table 6
Number of textlines used as the train,
development and test splits for the tasks
in this work.

Task Train Dev Test
WS

8,200 2,000
8,925

MP 9576WS+MP
DP 12,320 2,000 1,300WS+MP+DP
SL 10,000 2,000 3,017WS+MP+SL
Prosodification 10,000 2,000 3,017

the sentences. While augmentation may lead to sentence-level semantic shifts, it will
still preserve local syntactic tags (Sahin and Steedman 2018). We altogether obtain a
set of 20,000 augmented sentences. We further apply linguistic constraints based on the
principles of verbal cognition (Bhatta 1990) and Kāraka (Sanskrit specific dependency
analysis) (Kulkarni and Ramakrishnamacharyulu 2013) and filter 12,320 sentences from
the 20,000 augmented sentences. We use the filtered set of sentences as our training data,
and each sentence has an average length of 6.42 words per sentence. This is comparable
to the average number of words in a sentence in the test data, which is 7.03. The test data
is devoid of any augmentations, and is in its original form. We also filter 2,000 sentences
from the remaining sentences (7680 of 20,000) to use as development data.

Syntactic Linearisation and Prosodification We obtain 17,017 pair of verses and their
corresponding anvaya from the epic Rāmāyan. a from S̀rīnivāsa Aiyaṅkār (1910).26 Kr-
ishna et al. (2019), the current state of the art in syntactic linearisation in Sanskrit, use a
test set of 3,017 textlines from this dataset. We use the same test data for all these three
tasks. From the remaining data, we use the 10,000 textlines as training data. Standalone
syntactic linearisation takes a BoW as input and predicts the anvaya. Prosodic lineari-
sation takes a BoW as input and predicts the verse. Joint WS+MP+SL takes a verse as
input and predicts the anvaya.27 We compare our EBM configurations with the SoTA
neural baselines for the standalone tasks. These baselines are provided with additional
data for their training. For syntactic linearisation, we use 95,000 prose order sentences
crawled from Wikipedia by Krishna et al. (2019). Similarly for prosodification, we use
100,000 verses from DCS and Vedabase.28

26 The 17,017 verse-anvaya pairs are filtered from 18,250 verse-anvaya pairs available at
http://bit.ly/ramayanapairs. The rest of them are ignored due to word-level mis-alignments
between verses and their corresponding anvaya.

27 The input, i.e. verse will retain the original written form, including fused word-forms due to sandhi. The
anvaya will be a sequence of segmented words.

28 https://vedabase.io/en/

27

http://bit.ly/ramayanapairs
https://vedabase.io/en/

Computational Linguistics Volume 1, Number 1

4.2 Baselines

Table 7 shows the list of baseline systems and the various configurations of our EBM
framework, along with the tasks for which these systems are used. We provide a brief
description of each of the baseline systems.

4.2.1 Word Segmentation.

SupervisedPCRW (Sup-PCRW) Krishna et al. (2016). Similar to the EBM-framework, the
model uses the graph output from SHR. It treats the problem as an iterative query
expansion problem, where a greedy heuristic approach is used to select candidate nodes
based on the edge weights. The edges are featurised with hand-crafted morphological
features. The feature values are calculated using PCRW (Lao and Cohen 2010),
EdgeGraphCRF (EG-CRF). This is a second order CRF Model (Müller and Behnke 2014;
Ishikawa 2011) which also uses the SHR output graph X as the input to the system.
Every node is represented with fastText (Bojanowski et al. 2017) word embeddings,
trained with inflected forms of the words from the combined dataset of Bhāgavatam
from vedabase and the DCS dataset (Hellwig 2010-2016).29 The edges are featurised
with the PRA vectors. We used 1-slack structured SVM for training. QPBO (Rother et al.
2007) inference approach provided the best results for the model.
Char RNN-CNN Seq-Tagger (rcNN-SS). Hellwig and Nehrdich (2018) propose a sequence
tagger that uses character level recurrences and convolutions to train a Sanskrit word
segmenter. The best performing model of theirs, passes characters of the sequence
through a bidirectional RNN and then performs convolution operations on the resulting
embedding. Additionally shortcut connections (Bishop 1995) are applied both from the
input character embeddings and the RNN output to the resulting embeddings. Lattice-
EBM. This is an energy based sequence labelling model, where the input is a lattice (Wolf
and Woods 1977) similar to that of Kudo (2006). The model can be seen as a special
case of Graph Transformer Networks (LeCun et al. 1998, 2007). In the lattice structure,
the candidate links only to its adjacent nodes in an exhaustive segmentation. We also
generate edge vectors for the dummy nodes that act as the start and end markers in the
lattice. We use the PRA vectors as the edge-vectors for the model. During prediction, we
have to find the best path from the lattice which minimises the sentence score. Here, we
consider two variants of Lattice-EBM. VL-EBM uses the discriminative forward training
approach (Collobert et al. 2011) with the standard hinge loss. The second variant BL-
EBM, uses multi-margin loss (Edunov et al. 2018), instead of the hinge loss. Here, we
employ beam search to generate multiple candidates as required by the loss.
Prim-EBM-P. This is also a configuration of the energy based model, where the model
uses the input graph X from SHR, PRA vectors for the edges and modified Prim’s al-
gorithm as the inference. The inference procedure searches for a Steiner Tree (Takahashi
1980) from the input graph X . Prim’s algorithm acts as an approximation algorithm to
find the Directed Steiner tree (Voss 1993). The Steiner tree essentially spans over a subset
of nodes, and by graph construction it is guaranteed that the inference procedure will
produce an exhaustive segmentation.
Clique-EBM (Cliq-EBM-P/Cliq-EBM-F). This is the proposed EBM configuration for the
word-segmentation (and morphological parsing) problem. Similar to other Prim-EBM-

29 https://vedabase.io/en/library/sb/

28

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

P, the configuration uses the input X obtained from SHR. Here we use our greedy
maximal clique selection heuristic, as shown in Algorithm 1, as the inference procedure.
In Krishna et al. (2018) the configuration used PRA edge vectors, and is denoted as Cliq-
EBM-P. Here, we additionally introduce a variant Cliq-EBM-F which uses FSPG based
edge vectors for the task. The model works exactly the same as Prim-EBM-P but differs
only in the inference procedure used.

4.2.2 Morphological Parsing.

Neural Factorial CRF (FCRF). Malaviya, Gormley, and Neubig (2018) proposed a Facto-
rial CRF model (Sutton, McCallum, and Rohanimanesh 2007) that relies on an LSTM
based sequence model for its feature representation. The model predicts a composite
label for each word in the sequence, where a label is a set of tags, one for each of the
grammatical category. Here, co-temporal factors are defined to capture the dependen-
cies between various tags of the same word. To capture the dependencies across the
words, there exist factors between tags of the same type for the adjacent words, thereby
forming a linear chain.
Sequence Generation Model (SeqGen). The model, proposed in Tkachenko and Sirts (2018)
also treats the label as a composite label. Here, a char-BiLSTM is used to obtain word-
embeddings, which are then passed on to a word-level BiLSTM as the input features
(Lample et al. 2016; Heigold, Neumann, and van Genabith 2017). The model inspired
from seq2seq models, uses an LSTM decoder to predict the grammatical categories one
after the other, based on the previous predictions for each word.
Energy Based and CRF based configurations. All the configurations of the Energy based
models, in addition to Edge Graph CRF, which is used for the word segmentation task
(§4.2.1) are used in the morphological parsing task as well. These models predict all the
morphemes of a given word, including the stem of a word. But the aforementioned
neural baselines only predict the morphological label of a word and not the stem.
In these models, we use segmented sentences obtained from the gold standard data
in DCS, as input to the SHR. SHR does not analyse for sandhi and only performs
morphological analysis of the words involved. This forms the input graph X for these
models.

4.2.3 Dependency Parsing.

Yet Another Parser (YAP). The model is a language agnostic dependency parser for Mor-
phologically rich languages (More et al. 2019). The transition based framework currently
reports the best score for dependency parsing and for the joint task of morphological
analysis and dependency parsing in Hebrew. Further, the framework was experimented
on multiple languages for dependency parsing (Seker, More, and Tsarfaty 2018).
Easy-First Parser (EasyFirst). The model proposed by Goldberg and Elhadad (2010) is
a non-directional greedy search procedure used for dependency parsing. The parsing
procedure is initialised with all the words in a sentence. The system iteratively forms
partial structures by merging existing partial structures, where only the head partial
structure is retained in the list of structures available for merging. The procedure
terminates when there is exactly one structure remaining, which corresponds to the root
of the sentence.
Neural graph based dependency parsers (NeurDP). We experiment with two neural depen-
dency parsers, the deep biaffine attention based model of Dozat and Manning (2017)

29

Computational Linguistics Volume 1, Number 1

and the neural graph based dependency parser based on Kiperwasser and Goldberg
(2016a). Both the models rely on LSTM based feature extractors for the parsing.

EBM Configurations. Our energy based model configurations are basically graph
based parsing framework for dependency parsing. Here, similar to McDonald et al.
(2005b), we use Edmond-Chu-Liu’s algorithm for finding arborescence (directed span-
ning tree) of minimum weight.30 We experiment with three variations: Tree-EBM-P,
Tree-EBM-F and Tree-EBM*-F. Tree-EBM-P uses PRA vectors as the edge vectors, while
Tree-EBM-F uses the edge vectors using FSPG. Here Tree-EBM*-F incorporates the
language specific augmentations as discussed in §3.4. For all our EBM models, the label
prediction is fully integrated with our parsing procedure, similar to Kiperwasser and
Goldberg (2016b).

4.2.4 Syntactic Linearisation and Prosodification.

LSTM Based Linearisation Model (LinLSTM). The model (Schmaltz, Rush, and Shieber
2016) essentially is a neural language model (Bengio et al. 2003) with a beam search
based decoder. First, a language model is learned by feeding an LSTM based neural
network with ground truth sequences, i.e., sequence with desired word order. Beam
search is employed for decoding from the language model. We use a beam size of 512,
as reported in Schmaltz, Rush, and Shieber (2016), for all our experiments. This model
currently reports the best result in the word ordering task for English (Hasler et al. 2017),
even outperforming other syntax based linearisation models.
Seq2Seq Beam Search Optimisation (BSO). This is a seq2seq model (Wiseman and Rush
2016), where the training procedure defines a loss function in terms of errors made dur-
ing beam search. The beam always keeps multiple top-k possible sequence hypotheses
as possible solutions. The loss penalises the function when the gold sequence falls off
the beam during training. The model during inference, is constrained to predict only
from the words which are present in the input at the encoder side. Additionally, the
model is further constrained to predict only from the entries in the input which are yet
to be predicted. BSO has shown to outperform LinLSTM by a huge margin, in English,
when both the models used the same beam size for decoding (Wiseman and Rush 2016).
We use a beam size of 15 and 14 for testing and training respectively, the setting with
the best reported scores in Wiseman and Rush (2016).
kāvya guru. This is a seq2seq model (Krishna et al. 2019) with gated CNNs (Gehring
et al. 2017), using a sequence level loss (Edunov et al. 2018). The model uses a weighted
combination of expected risk minimisation and the token level log likelihood with label
smoothing as loss. Additionally, the model uses two pretraining components. One for
learning task-specific embeddings, formed by a weighted combination of pretrained
word embeddings (Kiela, Wang, and Cho 2018). Second, a component for generating
multiple ordering hypotheses (Wang, Chang, and Mansur 2018) to be used as input
to the seq2seq component. The model currently reports the state of the art results for
syntactic linearisation in Sanskrit.
EBM based Configurations (Beam-EBM-F/ATSP-EBM-F). Here, for both the syntax level
and prosody level linearisation tasks, we use the exact same EBM configurations. The
only difference will be in the input graph representation. For the tasks, we experimented
with two different inference procedures. Horvat and Byrne (2014) proposed to solve the

30 While McDonald et al. (2005b) used the approach to find the maximum weighted arborescence, we use
this to find the minimum weighted arborescence

30

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

task of linearisation as that of solving the Asymmetric Travelling Salesman Problem
(ATSP) over a graph. We incorporate the same as our inference procedure in the ATSP-
EBM-F configuration. Inspired from the works of Schmaltz, Rush, and Shieber (2016)
along with Wiseman and Rush (2016), we use beam search as the approximate inference
in the Beam-EBM-F procedure. We also report the performance score for Beam-EBM*-
F which incorporates the language specific augmentations as discussed in §3.4. This
configuration is used only for the syntactic linearisation task.

4.2.5 Edge Vector Generation.

Path Ranking Algorithm (PRA). In Krishna et al. (2018), the authors use the Path Ranking
Algorithm (PRA) (Lao and Cohen 2010) for learning the feature function. PRA is a 2-
step pipeline approach, where the features are first exhaustively enumerated, and then
filtered in the next step. In PRA, it is possible to have a morphological constraint tuple
ψ of any cardinality. However, since an exhaustive enumeration of all possible features
is required in PRA, the cardinality of the constraint tuples is typically restricted by an
arbitrary upper bound. Krishna et al. (2018) used two different settings, one where the
upper bound was set to 1, i.e. |ψ|≤ 1, and other where the upper bound was set to 2, i.e.
|ψ|≤ 2. The feature selection was performed using recursive feature elimination (Kohavi
and John 1997; Guyon et al. 2002, RFE) and Mutual Information Regression (Kraskov,
Stögbauer, and Grassberger 2004, MIR). These supervised approaches used point-wise
mutual information (PMI) and word-pair co-occurrence probability (Co-Occ) as the la-
bels for the feature selection. Altogether, this resulted in eight different configurations of
feature sets using PRA. Of the eight, the one which used Mutual Information regression
with co-occurrence probability as the label on a set of features with an upper bound of
|ψ|≤ 1 reported the best performance. We use this as our default configuration for the
PRA. The PRA based edge vectors are generated only for morphosyntactic tasks, hence
all the aforementioned settings are valid only for edge vectors used in morphosyntactic
tasks.
Forward Stagewise Path Generation (FSPG). This is the feature learning approach we elab-
orated in §3.2. It does not require exhaustive enumeration of features and uses LARS for
feature selection. Word-pair co-occurrence probability is used as the supervised label for
LARS.

4.3 Results

Hyper-parameters. We report all our experiments based on the hyperparameter set-
tings shown in Table 5. We use separate hyperparameter settings for prosodification,
and a common hyperparameter settings was used for all the morphosyntactic tasks.
Hyperparameter-tuning for morphosyntactic tasks was performed originally on the
word segmentation task. We perform random search for the hyperparameter tuning
and perform 100 iterations each for morphosyntactic and prosodic tasks. The hidden
layer size was varied at a step size of 50, i.e.{50, 100, ...800, 850} for morphosyntactic
tasks and {50, 100, ...500} for prosodification. Margin loss discount, a constant between
0 and 1 multiplied to the margin, and dropout were varied at a step size of 0.1. Simi-
larly, the learning rate was varied in multiples of 0.1 {1× 10−01, 1× 10−02, ...1× 10−07}.
Additionally for each of the morphosyntactic tasks, we change the values of one hyper-
parameter at a time and observe if that leads to any improvement in the results, from
the ones reported in Tables 8–15 for those tasks. We find that increasing the margin
loss discount leads to marginal improvements for the syntactic linearisation task, and

31

Computational Linguistics Volume 1, Number 1

Table 7
Different baseline systems and configurations of EBM used in various tasks. The tick mark (3)
indicates that the system is used for the task as a baseline. Star ([) indicates that the system
reports the best score for the task. The naming for EBM configurations is as follows: The
inference procedure used, the term ‘EBM’ which is followed by the type of the edge vector
generation marked by its first character (PRA/FSPG). Here ‘Tree-EBM*-F’ and ‘Beam-EBM*-F’
are the two EBM configurations with language specific augmentations as described in §3.4

System Tasks

W
S

M
P

D
P

SL W
S+

M
P

W
S+

M
P+

D
P

W
S+

M
P+

SL

PL

EG-CRF 3 3 3
Sup-PCRW (Krishna et al. 2016) 3
rcNN-SS (Hellwig and Nehrdich 2018) 3
FCRF (Malaviya, Gormley, and Neubig 2018) 3
SeqGen (Tkachenko and Sirts 2018) 3
NeurDP (Dozat and Manning 2017) 3
YAP (More et al. 2019) 3
EeasyFirst (Goldberg and Elhadad 2010) 3
LinLSTM (Schmaltz, Rush, and Shieber 2016) 3 3
BSO (Wiseman and Rush 2016) 3 3
kāvya guru (Krishna et al. 2019) 3 3

Energy Based Model (EBM) Configurations

VL-EBM 3 3 3
BL-EBM 3 3 3
Prim-EBM-P 3 3 3 3
Prim-EBM-F [
Tree-EBM-P 3
Tree-EBM-F 3
Tree-EBM*-F [
Cliq-EBM-P 3 3 3
Cliq-EBM-F [[[
Beam-EBM-F 3 [[
Beam-EBM*-F [
ATSP-EBM-F 3 3 3

leads to a 1.2 BLEU improvement when the margin loss discount is 1, i.e. when no
discount is applied. Keeping the hidden layer size to 750 leads to a 0.5 UAS and 0.4
LAS improvement for Tree-EBM*-F for dependency parsing, though no particular trend
could be observed in varying the hidden layer size. Similarly setting the dropout to 0.2
leads to an improvement 0.9 F-Score for the joint WS+MP+DP task.

32

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

Table 8
Word-Segmentation results.

System P R F PM (%)

Sup-PCRW 73.37 82.84 77.82 31.32
EG-CRF 77.66 79.81 78.72 40.46
VL-EBM 84.11 86.94 85.5 56.52
BL-EBM 87.12 87.37 87.24 63.17

Prim-EBM-P 88.79 91.37 90.06 64.22
Cliq-EBM-P 94.48 96.52 95.49 81.57

rcNN-SS 97.15 97.41 97.23 87.75
rcNN-SS-350k 96.83 97.07 96.9 86.59

Cliq-EBM-F 98.04 98.67 98.35 85.25

Table 9
Morphological Parsing results

System P R F

SeqGen 81.79 81.79 81.79
FCRF 80.26 80.26 80.26
EG-CRF 79.48 82.4 80.91
VL-EBM 79.67 79.67 79.67
BL-EBM 81.42 81.42 81.42
Prim-EBM-P 85.11 85.11 85.11
Cliq-EBM-P 93.52 93.52 93.52
Cliq-EBM-F 95.33 95.33 95.33

Table 10
Results for syntactic linearisation

System τ BLEU PM (%)

LinLSTM 61.47 35.51 8.22
BSO 65.38 41.22 12.97
ATSP-EBM-F 72.79 48.03 20.18
Beam-EBM-F 73.62 51.81 25.16
Kāvya Guru 75.58 55.26 26.08
Beam-EBM*-F 78.22 59.38 27.87

Table 11
Results for prosodification

System τ BLEU PM (%)

LinLSTM 42.96 15.42 5.18
BSO 48.28 20.12 6.8
Kāvyaguru 58.27 36.49 12.59
ATSP-EBM-F 63.24 42.86 17.67
Beam-EBM-F 70.4 46.88 21.16

Table 12
Results for dependency parsing

System UAS LAS

EasyFirst 73.23 -
YAP 76.69 73.02
Tree-EBM-P 81.07 77.73
Tree-EBM-F 82.65 79.28
Tree-EBM*-F 85.32 83.93

Table 13
Results for the joint task of Word-Segmentation and
Morphological Parsing

System P R F PM

EG-CRF 76.69 78.74 77.7 31.82
VL-EBM 76.88 74.76 75.8 27.49
BL-EBM 79.41 77.98 78.69 31.57
Prim-EBM-P 82.35 79.74 81.02 32.88
Pipe-Cliq-EBM-P 87.43 84.1 85.73 42.75
Joint-Cliq-EBM-P 91.35 89.57 90.45 55.78
Pipe-Cliq-EBM-F 87.23 85.38 86.29 44.81
Joint-Cliq-EBM-F 94.04 91.47 92.74 58.21

Table 14
Results for the joint task of
word-segmentation, morphological parsing
and dependency parsing

System P R F

Pipe-Prim-EBM-P 69.82 71.95 70.87
Joint-Prim-EBM-P 72.98 74.42 73.69
Pipe-Prim-EBM-F 75.17 76.58 75.87
Joint-Prim-EBM-F 77.65 77.92 77.78
Pipe-Prim-EBM*-F 76.54 77.39 76.96
Joint-Prim-EBM*-F 78.68 79.72 79.2

Table 15
Results for the joint task of
word-segmentation, morphological parsing
and syntactic linearisation.

System LCS BLEU PM (%)

Pipe-ATSP-EBM-F 38.51 32.78 10.14
Pipe-Beam-EBM-F 40.22 33.73 10.37
Pipe-Beam-EBM*-F 42.39 36.12 12.27
Joint-ATSP-EBM-P 46.75 36.67 11.83
Joint-Beam-EBM-P 51.44 40.18 13.92
Joint-ATSP-EBM-F 49.72 38.04 12.53
Joint-Beam-EBM-F 53.82 43.39 16.87
Joint-Beam-EBM*-F 55.06 47.27 18.66

33

Computational Linguistics Volume 1, Number 1

Evaluation Metrics. For the standalone tasks, we report the standard metrics. For de-
pendency parsing, we use unlabelled Attachment Score (UAS) and labelled attachment
scores (LAS). Similarly for linearisation tasks, we follow Krishna et al. (2019) and report
the performance of the systems using BLEU (Papineni et al. 2002), Kendall’s Tau (τ)
score (Lapata 2003) and perfect match score, i.e. the percentage of sentences with exact
match to the input. For word-segmentation (WS), morphological parsing (MP) and the
joint task of WS and MP, we use macro-averaged Precision, Recall and F-Score (Krishna
et al. 2018). We adopt the same metric for the joint task of WS, MP and dependency
parsing. As More et al. (2019) previously noted, the use of standard metrics for depen-
dency parsing, i.e. UAS and LAS, need not be feasible in the joint setting due to the
possibility of structural mismatch between the prediction and the ground-truth. For the
same reason, we do not use the Kendall’s Tau score for reporting the performance of the
joint task of WS, MP and syntactic linearisation. We, instead, use the longest common
sub-sequence ratio for this joint task, along with BLEU and perfect match scores.

Tables 8–12 show the results for each of the five standalone tasks as discussed in
§2.1. In all the tasks, we can find that our models, using the EBM framework, report
the best performance for the tasks. We elaborate the results for each of the tasks and
compare the system performance with the baseline models.

Word Segmentation. Table 8 shows the results for the word segmentation task. The pro-
posed system, Cliq-EBM-F, reports the best score in terms of macro average Precision,
Recall and F-Score for the task. Here rcNN-SS (Hellwig and Nehrdich 2018) scores the
best when it comes to perfect match score. Cliq-EBM-F reports a percentage improve-
ment of 1.15 % over rcNN-SS in F-Score.31 The system named as Cliq-EBM-P was the
system which was proposed in Krishna et al. (2018). Previously, the word-segmentation
systems rcNN-SS and Cliq-EBM-P showed that they both outperform the then state of
the art, a seq2seq model from Reddy et al. (2018). But, a comparison between both these
systems was not available. Here, we find that the rcNN-SS outperforms Cliq-EBM-P
with a percentage improvement of 1.82 % in terms of F-score.31 But, both Cliq-EBM-P
and the best performing model Cliq-EBM-F were trained on 8,200 sentences which is
just about 1.5% of the training data (> 0.55 million) used in rcNN-SS.

All the competing systems for word-segmentation except for rcNN-SS use the
linguistically refined output from SHR as their search space to predict the final solution.
EG-CRF was trained on 10,000 sentences, whereas V-L-EBM and B-L-EBM were trained
on 9,000 sentences after which the models got saturated. The Prim-EBM-P, Cliq-EBM-
P/F all use a training data of 8,200 sentences. Being a second order CRF model (Ishikawa
2011), EdgeGraphCRF does not take the entire sentence context into account. Also,
the QBPO inference does not guarantee prediction of exhaustive segmentation. In fact,
85.16% of the sentences predicted by the model do not correspond to an ‘exhaustive
segmentation’. Prediction of an ‘exhaustive segmentation’ is guaranteed in all our EBM
models (also in supervisedPCRW) by virtue of the inference procedure we use. Cliq-
EBM-P and Cliq-EBM-F differ only in the vector generation module used. Between these
two configurations, the use of FSPG based vectors result a percentage improvement
of about 3 % in the results.31. In the lattice based configurations, V-L-EBM-P and B-L-
EBM-P, the edges are formed only to position wise immediate nodes in an exhaustive
segmentation. Also the inference procedures process the input sequentially, from left-to-

31 Following Dror et al. (2018), we perform pairwise t-tests between the reported scores for these systems,
and find that the scores are statistically significant (p <0.05).

34

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

right. The approach substantially reduces the performance of the system. This justifies
the additional cost incurred due to use of our non-sequential inference procedure.
Similarly, Prim-EBM-P performs substantially worse as compared to Cliq-EBM-P. Here,
the latter considers all the pairwise potentials between the inputs, while the former does
not.

Morphological Parsing. Table 9 shows the results for morphological parsing in Sanskrit.
We find that similar to word segmentation, our proposed EBM configuration, Cliq-
EBM-F provides the state of the art results for morphological parsing. Currently, there
exists no morphological parser that performs both analysis and disambiguation of
morphemes in Sanskrit, leaving aside the Cliq-EBM-P configuration reported in Krishna
et al. (2018). Instead, as baselines, we employ two widely used neural sequence taggers
which reported state of the art results on multiple morphologically rich languages, the
FCRF (Malaviya, Gormley, and Neubig 2018) and SeqGen (Tkachenko and Sirts 2018).
But they predict only the morphological tag of each word. For all the other models we
predict all the morphemes of a word including its stem. All the EBM configurations we
use for morphological parsing, are used for the word-segmentation task as well.

Among the models with a sequential processing of input, SeqGen reports the best F-
Score of 81.79. Our lattice based EBM configuration reports an F-Score of 81.42 %, close
to SeqGen. Cliq-EBM-F, our best preforming model reports a percentage improvement
of 16.55 % over FCRF. All the EBM-Configurations with graph based input represen-
tation and a non-sequential inference procedure in general report a score which is sig-
nificantly greater than the sequential models. Further, Cliq-EBM-F reports a percentage
improvement of about 2 % in comparison to Cliq-EBM-P. All our EBM configurations
used the same amount of training data as used in Word-segmentation, which is less
than 10,000. At the same time, the neural sequence taggers were trained on a dataset of
50,000 sentences. For Morphological parsing in standalone setting, the word-segmented
sequence is used as input. Due to this, the system’s precision will be the same as its
recall for all the systems, except for EG-CRF. For EG-CRF, the QBPO inference it uses
does not guarantee prediction of an exhaustive segmentation, and hence the number of
predictions need not match with the number of words in the ground truth. Hence, the
precision and recall can be different.

Dependency Parsing. Table 12 shows the results for dependency parsing in Sanskrit.
Here, our energy based model configurations outperform the other baseline models
for the task. Among the EBM configurations Tree-EBM*-F reports the best score of
85.32 UAS and 83.9 LAS. Tree-EBM*-F is an EBM configuration where we incorporate
language specific knowledge as constraints, as discussed in Section 3.4. We find that the
configuration reports percentage improvement of 3.23 % from the reported performance
of Tree-EBM-F (UAS of 82.65). Further, we find that the performance improvements in
LAS are much more substantial in Tree-EBM*-F, with 5.86 %, as compared to LAS of
79.28 of Tree-EBM-F. Thus incorporating linguistic constraints in Tree-EBM*-F helped
much more in disambiguating between the edge labels. The highest gain, in absolute
numbers, is shown by karma (object) relation. Tree-EBM*-F gets 1,076 cases of 1,153 cases
correctly, both in terms of predicting the correct head and label, while Tree-EBM-F only
has 861 cases correct. Tree-EBM-F had 292 incorrect predictions for karma relation; in 62
of these cases, a dependent node was assigned an incorrect head with which no relation
is possible in Sanskrit. Such cases would get pruned prior to inference in Tree-EBM*-
F, due to the linguistic information. Four relations, apadāna, prayojanam, tādarthyam and
sampradānam, had less than 50 % recall in Tree-EBM-F, while Tree-EBM*-F has a recall

35

Computational Linguistics Volume 1, Number 1

greater than 50 % for all the 22 relations. The lowest recall in Tree-EBM*-F is 56 % for
tādarthyam. It happens to be the lowest occurring relation with just 25 occurrences, and
had a recall of just 24 % in Tree-EBM-F. Amongst the aforementioned four relations,
prayojanam has the highest occurrence (130), of which the number of correct predictions
increased from 54 to 82 (63.08 %).

YAP (More et al. 2019), reports an UAS of 76.69 and LAS of 73.02, lower than the
least performing EBM configuration, Tree-EBM-P. YAP currently reports the state of the
art score for dependency parsing in Hebrew, outperforming previous models including
Seeker and Çetinoğlu (2015). It may not be fair to compare YAP with Tree-EBM*-F due
to the latter’s advantage in explicit linguistic information. But as a fair comparison of
two language agnostic dependency parsing models, Tree-EBM-F reports a performance
improvement of about 7.77 % as compared to the YAP. We experimented with neural
models for dependency parsing such as Dozat and Manning (2017) and Kiperwasser
and Goldberg (2016a), but both the models had UAS/LAS scores below 50. All of the
models used a training data of 12,000 sentences, as described in §4.1. Given that the
neural models rely on the network architecture for automatic feature extraction, we
hypothesise that the lack of sufficient gold standard training data may have resulted in
their poor performance.

Syntactic Linearisation. Table 10 shows the results for syntactic linearisation. Here, our
model Beam-EBM*-F, a model that incorporates additional linguistic knowledge about
Sanskrit syntax, performs the best in comparison to the other models. The model im-
proves the performance by more than 4 BLEU points (percentage improvement of 7.45
%), in comparison to kāvya guru, the current state of the art for linearisation in Sanskrit.
Altogether we report performance of three different configurations of EBM for the task,
of which kāvya guru outperforms two of the configurations. But, all the neural sequence
generation models including kāvya guru were trained with an additional training data
of 95,000 from Wikipedia amounting to a total of 108,000 training sentences. Our EBM
models were trained only on 10,000 sentences. LinLSTM performed worse when addi-
tional data from Wikipedia was used. Hence we report the score of linLSTM where the
additional data was not used. We experiment with two different inference procedures,
ATSP-EBM-F and Beam-EBM-F. We find that the beam search inference with a beam
size of 128 works the best for the task. Larger beams result in diminishing returns, with
improvements not being significant but incurring computational overheads at the same
time.

Prosodification. Table 11 shows the results for prosodification. Here, we find significant
difference between both the EBM configurations presented and other baselines. kāvya
guru reports the best score among the non-EBM configurations. But, for Beam-EBM-F
the score jumps by about 10 BLEU as compared to kāvya guru. Similarly, kāvya guru per-
forms significantly better than other neural sequence generation models. We observe
that the improvement appeared only after we incorporated prosody information, i.e.,
explicitly incorporating syllable weight information and then filtering the sequence
that adheres to valid patterns of syllable weights. This was incorporated in one of the
pretraining steps used to generate multiple hypotheses for the final seq2seq component
of kāvya guru. The BLEU score improved from 23.16 to 36.49 with this additional infor-
mation. For LinLSTM, filtering sequences with only valid patterns of syllable weights
during its beam decoding did not lead to any improvements. We find that larger beam
sizes with a size of 512, as against 128 for the morphosyntactic task, lead to better results
for this task. Probably, this difference can be attributed to larger path lengths of the final

36

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

solution in a prosody task as compared to a morphosyntactic task due to the graph
construction (Figure 8, merged Nodes). While the EBM configurations were trained on
a dataset of 10,000 verses from Rāmāyan. a, the neural sequence generation models were
trained on a dataset of 110,000 verses. The additional 100,000 verses were taken from
DCS and also from vedabase.

Joint and Pipeline Modelling of tasks. Tables 13–15 show the results for the three joint tasks
we perform using the framework. For all the three tasks, we observe similar trends
to what is observed in the previous research (Seeker and Çetinoğlu 2015; More et al.
2019), that the joint modelling of the tasks outperforms the pipeline based models. In
Table 13 we report the task of joint word segmentation and morphological parsing as
reported in Krishna et al. (2018). The pipeline models perform far inferior than the
corresponding joint models for the task. For Cliq-EBM-F the joint version reports a
percentage improvement of 7.47 % over its pipeline-based counterpart. The pipeline
setting for the task, first makes use of the Cliq-EBM-F word segmentation model to
obtain the word splits, and the predicted words are then passed to SHR to generate the
search space for morphological parsing. We also experimented with a pipeline setting
where word segmentation was performed using rcNN-SS. The setting that used rcNN-
SS for word-segmentation performed inferior to the pipeline setting that uses Cliq-
EBM-F word segmentation model in terms of precision, recall and F-score. However
the former reports a better perfect match score of 45 % against the 44.81 % perfect
match score of the latter. The perfect match score for the joint WS+MP task is less than
that of the standalone word-segmentation task by more than 25 percentage points. We
observe that this is primarily due to syncretism and homonymy, as the system ended
up predicting a different morphological tag or stem even though it predicted the correct
inflected-form in those cases. Table 9 shows the results for morphological parsing when
using gold standard segmented sentence as input.

Similarly, the results for the joint task of word-segmentation, morphological parsing
and dependency parsing are shown in Table 14. It is evident that the pipeline system
performs inferior to the joint modelling. The joint model of Prim-EBM*-F reports an
F-Score of 79.2 as against an F-score of 77.49 for the pipeline model. Table 15 shows
the performance of pipeline and joint models for the joint task of Word-segmentation,
Morphological parsing and Syntactic Linearisation. Here, the pipeline based model of
Prim-EBM*-F is outperformed by the joint model with a significant margin of more
than 11 BLEU points. In the pipeline configurations of both these tasks, we perform
the word-segmentation and morphological parsing jointly using Cliq-EBM-F/P models.
For both the tasks, use of rcNN-SS for segmentation in the pipeline resulted in inferior
performances, as compared to joint modelling of the upstream tasks using EBM.

4.3.1 Training Specifics.

Effect of Feature Function Learning Approach. FSPG, the feature function learning ap-
proach we introduce in this task, consistently outperforms PRA, previously employed
in Krishna et al. (2018), for all the tasks we experimented with.31 Table 16 reports the
Precision, Recall and F-score on the word segmentation task, for all the different feature
sets we learn using FSPG and PRA. We find that the best performing set is using the
FSPG and reports an F-Score of 98.35. Among the eight different configurations for PRA
based vectors (§4.2.5), the best configuration (Table 16, Row 3), by design, considers
a feature space where all the features have |ψ|≤ 1. This implies all the features learnt
will have a constraint tuple of length at most 1. We observe a performance drop when

37

Computational Linguistics Volume 1, Number 1

Table 16
Effect of Feature Selection approach tested on the Word segmentation model

Upper bound on |ψ| Feature Selection Label P R F

1 MIR PMI 92.86 95.27 94.05
2 MIR PMI 82.18 86.17 84.13
1 MIR Co-Occ 94.48 96.52 95.49
2 MIR Co-Occ 93.65 95.52 94.57
1 RFE PMI 80.93 87.65 84.16
2 RFE PMI 84.85 86.90 85.86
1 RFE Co-Occ 83.69 89.11 86.31
2 RFE Co-Occ 86.34 89.47 87.88
- FSPG Co-Occ 98.04 98.67 98.35

we change this setting to |ψ|≤ 2 (Table 16, Row 4). On the contrary, FSPG does not
require any such upper bound on the length of the constraint tuple ψ. This results in
a quite diverse set of features. FSPG has only 54.94 % of its features with a tuple size
|ψ|≤ 1 for the morphosyntactic tasks. Interestingly, 17.06 % of paths have |ψ|≥ 3, and
the longest path was of size 4. In the case of prosody level FSPG features, we find that
all the features have a tuple size |ψ| between three and seven. In fact more than 50 % of
the paths have a tuple size |ψ|≥ 5. Further, we learn feature sets of different sizes using
both FSPG and PRA. For FSPG, we experimented with feature sets of sizes starting
from 300 till 1,000, in step sizes of 50. We find that the model performs the best with
a feature set size of 850 for morphosyntactic tasks, and 500 for the prosody level task.
Similarly, for PRA, we vary the feature set size from 400 to 2000 in steps of 100, and
we achieve the best results for a feature set with a size of 1500. The feature function
learning process takes about 9 to 11 hours when using the PRA approach (Krishna et al.
2018, supplementary). Using FSPG, the time required for feature function learning was
reduced to about 4 hours for morphosyntactic tasks, and 3 hours for the prosody level
tasks. This is primarily due to the use of ‘GreedyTree’ structure in FSPG, which avoids
the need for exhaustive enumeration of all the features which was a bottleneck in PRA.
While feature function learning is a one time process, that happens prior to training, the
feature value computation is performed each time during the inference. Feature value
computation is performed using PCRW, irrespective of the function learning approach
used. However, owing to the lower number of features in the feature set when using
FSPG, a feature vector for morphosyntactic tasks is generated in 38 ms as compared
to 66 ms for PRA. For prosody level tasks the time is about 23 ms (with 500 vector
components).32

Overgeneration of candidates in the input graph X . SHR is used for the generation of the
search space X for the morphosyntactic tasks. For standalone morphological parsing,
we use SHR for performing only the morphological analysis for the words in the
input sequence, and not for the segmentation analysis. To understand the impact of
the quality of the search space generated by SHR on our EBM models, we experiment

32 The vector generation can be performed in parallel, and we use 40 threads in our experiments

38

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

Table 17
Performance of Cliq-EBM with pruned edges in G.

k WS WS+MP

P R F P R F

5 90.46 92.27 91.36 83.52 80.48 81.97
10 92.92 95.07 93.98 85.32 84.4 84.86
15 94.85 96.14 95.49 87.67 86.38 87.02
20 95.23 96.49 95.86 89.25 88.62 88.93

Table 18
Performance of Cliq-EBM-F with
increased number of candidates per
inflected form in the input. First row
(k = 0) shows the MP results on the
original search space.

k
Similar

tags
Disjoint

tags
F-score

0 95.33
2 92.12 93.71
3 91.03 93.08
5 88.89 91.14

with a scenario where we over-generate the possible analyses each word can have in
the search space. For the morphological parsing task, we add additional candidates to
each word such that the added candidate would differ from existing candidates (from
SHR) only in their morphological tags. Further, the morphological tags introduced for
the additional candidates would be the same as the lexical category of the existing
candidates.33 Table 18 shows results of Cliq-EBM-F morphological parsing model in
2 separate settings, namely similar tags and disjoint tags. In similar tags, we add k
additional analyses for each word where the added analysis would differ from an
existing candidate only by one grammatical-category value. If an inflected form has
the tag “nominative|1|masculine" in its analysis, then a newly added candidate would
be “accusative|1|masculine". The latter, similar to former, is a nominal and the latter
differs from the former only in terms of its grammatical-category value, ‘case’. In dis-
joint tags settings, the added nodes will have no grammatical-categories values shared
with any of the candidate analyses. If “nominative|1|masculine" is the only analysis
for an inflected form, then a tag like “accusative|2|neuter" would be an eligible tag
for the disjoint-tags setting. Irrespective of the setting, the tags added are all valid
morphological tags in Sanskrit and of the same lexical category as the candidates. We
show instances with added 2, 3 and 5 analyses per word. The morphological tagging
performance degrades as the number of candidates increase in the search space. More
interestingly, the system has greater difficulty in predicting the correct candidates when
the candidates has similar tags as compared to having additional candidates with
disjoint tags. We add k additional analyses per inflected form in the input, implying
the number of possible candidates in the search space increase by n× k, where n is the
number of words in the input.

Limiting the context by pruning edges in the input graph X . From the tasks of Word-
Segmentation, Morphological Parsing and their joint task formulation, we make two
important observations. In these tasks, the EBM configurations which use inference
procedures with non-sequential processing of input outperforms those which perform
the input sequentially. Between Prim-EBM and Cliq-EBM configurations, the two con-
figurations with non sequential processing, Cliq-EBM which considers pairwise poten-

33 The inflected-form Rāmah. , as per SHR, can be analysed either as a nominal or a verb. So a new added
candidate for the inflected-form would either be a nominal or a verb.

39

Computational Linguistics Volume 1, Number 1

tials between all the pairs of non-conflicting words leads to significant performance
improvements than Prim-EBM. But, to get a better understanding of the impact of pair-
wise potentials between every non-conflicting words, we perform experiments where
the edges are pruned from the original input graph X , if two words are separated by
more than k characters between them.

For any two words appearing in an exhaustive segmentation, we keep an edge
only if both the words overlap within a distance of k characters. We experiment with
k = 5, 10, 15 and 20. Hence, for k = 20, a word will form edges with all the words
that fall within 20 characters to left and 20 characters to right. The average length of
an input sequence in the test data is 40.88 characters. We do not modify our inference
procedure in Cliq-EBM-P other than to take care of the possibility that a clique need not
always be returned. Table 17 shows the results for different values of k. Interestingly, the
results show a monotonic increase with the increase in the context window size, and the
results with the entire context are still better than those with k = 20, even though only
marginally. It is interesting to note that, keeping the entire context does not adversely af-
fect the predictions as none of the pruned models outperform the original configuration
in Cliq-EBM-P. The lattice structure can be seen as an extreme case of pruning. Similarly,
we perform WS using Prim-EBM-P, where the model uses a non-sequential inference.
However, we experiment with a new setting, where we use the same observed variable
X constructed for VL-EBM (i.e. edges exist only between adjacent nodes), instead of the
dense graph structure that is normally used for Prim-EBM-P. The lattice models used
special start and end marker nodes, owing to their sequential inference. These nodes
were removed from Prim-EBM-P. We find that the Prim-EBM-P with modified observed
variable from VL-EBM reports an F-Score of 87.4 for WS. This implies Prim-EBM-P,
when using the observed variable of VL-EBM, outperforms VL-EBM configuration by
more than two points. We find that VL-EBM makes more early mistakes, owing to its
sequential inference, resulting in higher error propagation as compared to Prim-EBM-P.

Out of Vocabulary stems and inflected-forms in C. For joint word-segmentation and mor-
phological parsing we use DCS10k as the test data. DCS10k has 8,007 stems of which 514
(6.42 %) are out of vocabulary in C. For such stems in C, we apply add-one smoothing
prior to computation of the co-occurrence probability using PCRW. The model report a
macro averaged F-Score of 92.74. The micro-averaged F-Score for those 514 OOV stems
are 57.98. However, the F-Score quickly picks up even for those stems whose inflections
occur only at most 5 times. 833 in DCS10k occur at most five times in C, and the micro-
averaged F-Score for those is to 72.87. The test set for dependency parsing (DP) has 100
% stem coverage with vocabulary of C. We create 2 synthetic versions of C, where 5 %
and 10 % of stems in the vocabulary of the DP test data are removed from C. Tree-EBM*-
F reports a UAS (LAS) of 84.95 (83.51) when using C with 5 % missing stems. This setting
stands closer to DCS10k in terms of missing stems. Similarly, Tree-EBM*-F reports a UAS
(LAS) of 84.37 (83.04) when using C with 10 % missing stems. Tree-EBM*-F originally
reported a UAS (LAS) of 85.32 (83.93), when using C with 100 % stem coverage. For
a morphologically rich language like Sanskrit, the number of missing inflected-forms
for a stem which is present in the corpus graph vocabulary would be much higher
than missing stems in the vocabulary. The DP test data has 13.81 % of the inflected
forms missing from C. We create a synthetic version of C, where we increase the missing
inflected forms by and 10 %, i.e. to 23.81 %. However, the performance drop is negligible
as it drops from 85.32 to 85.09 UAS and from 83.93 to 83.77 LAS. For this experiment,
we used C with 100 % coverage.

40

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

Table 19
System performance in terms of Recall on the lexical categories (Table 3) for the competing
systems Clique-EBM-P, Cliq-EBM-F and Prim-EBM-P.

Type WS Recall WS + MP Recall

Prim-EBM
-P

Cliq-EBM
-P

Cliq-EBM
-F

Prim-EBM
-P

Cliq-EBM
-P

Cliq-EBM
-F

Nominal 93.06 96.87 98.07 86.14 89.0 91.33
Verb 89.14 95.91 96.84 87.38 94.42 95.14

Participle 87.66 96.42 97.17 87.12 94.71 95.52
Compound 89.35 93.52 95.69 86.01 91.07 92.86
Indeclinable 95.07 97.09 98.26 94.93 96.47 97.95

Morphological class specific assessment. Table 19 presents the micro-averaged recall for the
words grouped based on their inflectional classes (Table 3) for Clique-EBM-F, Clique-
EBM-P and Prim-EBM-P. For word segmentation (WS), the surface-forms belonging to
indeclinables and nominals have the highest recall. In the case of joint word segmenta-
tion and morphological parsing (WS+MP), the recall over nominals (surface-form and
tag) shows the highest decline among the lexical cateogries. This difference in recall for
nominals is mostly arising due to mispredictions in the morphological tag of the word,
rather than the surface-form, i.e., due to syncretism. The entry “compound" in Table 19
shows the recall for the non-final components of a compound, i.e. on those components
where no inflection is applied. This entry was added due to the extensive use of com-
pounds, often with more then two components, in Sanskrit. We find that considering
the pairwise potential between all the words in a sentence in Clique-EBM-P/F led to
improved morphological agreement between the words in comparison to Prim-EBM-P.
The difference is particularly visible in the case of improvements in the verb prediction.
In Prim-EBM-P, the top 5 cases of mispredictions from one morphological class to a
particular wrong class were due to syncretism. In Clique-EBM-P/F such patterns were
not anymore present and more importantly the skewedness in such mispredictions was
considerably reduced.34

Error propagation in the pipeline and joint models for word-segmentation, morphological parsing
and dependency parsing. Table 20 shows the error analysis over the entire test data of
dependency parsing. We analyse the pipeline model and both the Joint models Prim-
EBM-F and Prim-EBM*-F, for the task. As we can expect, the largest gap in errors
between the pipeline model and the joint model is due to the mispredictions in word
segmentation and in morphological parsing. At the same time, the reduction in mis-
predictions in the remaining categories of errors between these models is lower. Now,
among the joint models, Prim-EBM*-F (marked as EBM*) shows considerable reduction
in errors under ‘label mismatch’ category as compared to Prim-EBM-F. Prim-EBM*-F
is the EBM configuration with language specific augmentations as described in §3.4.
Here, ‘Label mismatch’ category specifically looks into those mispredictions that occur
due to the many-to-many mapping between the case markers of the words and the
dependency tags (kāraka). In this category, we consider those mispredictions, where the
gold tag and the mispredicted tag are applicable for the case markers of the words and

34 Please refer to Tables 6 and 7 in the supplementary material of Krishna et al. (2018) for details

41

Computational Linguistics Volume 1, Number 1

Table 20
Error propagation, in terms of the number
of errors, in the pipeline (pipe) and joint
models for Word segmentation (WS),
Morphological parsing (MP) and
dependency parsing.

Prim-EBM-F Pipe Joint

EBM EBM*

WS 425 322 297
MP 703 547 520
Label mismatch 404 372 294
Others 886 827 777
Total Errors 2418 2068 1888

Table 21
Error propagation, in terms of the number of
errors, in the pipeline (pipe) and joint models
for Word segmentation (WS), Morphological
parsing (MP) and syntactic linearisation. Here
Dep. locality denotes dependency locality.

Beam-EBM-F Pipe Joint

EBM EBM*

WS 318 233 204
MP 356 241 226
Dep. Locality 213 197 144
Others 486 408 397
Total Errors 1373 1079 971

hence are more susceptible to be mispredicted. A nominal which is in instrumental case
can be assigned a kartā or a karan. am relation (and rarely a hetuh.). Similarly, amongst
other cases, a nominal in nominative can also be assigned a kartā relation. However,
two nominals, one in instrumental and other in nominative, both together cannot be a
kartā in a sentence. Of the 204 occurrences of karan. am in the test data, 63 of them were
wrongly assigned as kartā. All these 63 cases had more than one prediction of kartā in the
sentences. With Tree-EBM*-F, 56 of the cases were correctly assigned as karan. am, and 7
were wrongly assigned as hetuh. . Such cases have substantially led to reduction in label
mismatch for Tree-EBM*-F. This tag forms the majority contributor to the reduction due
to label mismatch.

Error propagation in the pipeline and joint models for word-segmentation, morphological parsing
and syntactic linearisation. Table 21 shows the performance difference between pipeline
based model and the joint models for the poetry to prose linearisation task. Here,
we perform a qualitative analysis on a sample of 300 sentences of the test data for
linearisation.35 It can be observed that the pipeline model suffers due to errors from the
word-segmentation and morphological parsing. Among the joint models, Beam-EBM*-
F considerably makes less errors in the dependency locality category as compared to the
errors made by Beam-EBM-F. This is due to the language specific augmentations (§3.4)
made to Beam-EBM*-F that mitigate the errors from dependency locality. We observe
that 39.62 % of the reduction in error in this category is achieved specifically in the case
of placement of adjectives near to the word it modifies. The error reduction is primarily
a result of the pruning out candidates with longer dependency lengths and pruning of
candidates with more than 2 violations of weak non-projectivity.

Merging of syllable-level nodes in prosodification. For the graph generation in the prosody
level tasks (§3.1), we define the vertices at a syllable level. At the same time, we have
made a modification by merging the nodes which have only one outgoing edge (Figure

35 We restricted ourselves to a sample of the test data due to the requirement of manual inspection of data to
detect the errors in the ‘dependency locality’ (Gibson et al. 2019) category. One of the authors and two
other annotators with a graduate level degree in Sanskrit linguistics performed this. We filter 300 (× 3, as
there are predictions from three systems to be considered) sentences where at least 2 of the three
annotators agreed on the errors made by the system.

42

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

8). This node merging substantially reduces the number of nodes and edges in the
input graph X , as well as the edge vectors generated. Empirically we find that this
modification results in an overall improvement of system performance. While the best
performing model of ours using the modified structure performs with a BLEU Score of
46.88 and a kendall’s Tau score of 68.4, the original syllable-level representation results
in a BLEU of only 41.93 and a Kendall’s Tau score of 64.21.

Summarily, FSPG significantly and consistently outperforms PRA, in learning effec-
tive feature functions for all the tasks. Our non-sequential method of inference results
in better performance in comparison to the sequential models even for low level tasks
such as word segmentation and morphological parsing. For morphological parsing,
leveraging the pairwise potentials between every connected nodes while making a
prediction results in reduced syncretism. The performance gain of Clique-EBM over
Prim-EBM illustrates the effectiveness of this approach. Joint modelling of the tasks
mitigates the error propagation from upstream tasks, compared to a pipeline based
approach. Language specific augmentations in pruning the search space and filtering
the candidates during inference, reduces errors due to label mismatch and dependency
locality for for dependency parsing and syntactic linearisation, respectively.

4.4 Experiments on Czech

Table 22
Results for the SIGMORPHON 2019 morphological
analysis in context shared task. All the non-EBM
systems were competing systems in the shared
task (McCarthy et al. 2019). SAARLAND-02
corresponds to the CHARLES-SAARLAND-02 in
the shared task and other systems follow the same
naming as in the shared task.

System Lemma
Accuracy

Morph
Accuracy

SAARLAND-02 99.42 98.54
EDINBURGH-02 98.66 93.90
NLPCUBE-01 98.50 95.89
Cliq-EBM-F-PDT 98.16 95.97
Cliq-EBM-F-Xtra 98.94 97.21

Table 23
Results for the Raw2UD task. All the
Non-EBM systems were the competing
systems in the shared task (Zeman et al.
2018). the evaluation metrics UAStok and
LAStok conisders the misalignment due to
segmentation and tokenisation as well.

System UAStok LAStok

HIT-SCIR 93.44 91.68
TurkuNLP 92.57 90.57
Stanford 92.44 90.38
Prim-EBM-F-PDT 92.67 90.88
Prim-EBM-F-Xtra 93.76 92.03

Our proposed structured prediction framework is language agnostic. We show its ef-
fectiveness by training models for morphological parsing and dependency parsing in
Czech, another MRL.

Tasks. We train models in Czech for three tasks, one related to morphological parsing
and two related to dependency parsing. For morphological parsing, we follow the
experimental and evaluation settings of the “morphological analysis and lemmatisation
in context" task conducted as part of the SIGMORPHON 2019 shared task (McCarthy
et al. 2019). The task expects a system to input a sentence and output the lemma and
morphological description, i.e. the morphological tag, for each word in the sentence.
This task is exactly the same as the morphological parsing task we perform for Sanskrit,
and henceforth we refer to this task as morphological parsing. Similarly, for dependency
parsing, we follow the experimental and evaluation settings of the “CoNLL 2018 shared

43

Computational Linguistics Volume 1, Number 1

task on parsing raw text to universal dependencies" (Zeman et al. 2018), henceforth to
be referred to as “Raw2UD". Here, the participants were asked to parse sentences in a
raw text document where no gold-standard pre-processing information (tokenisation,
lemmas, morphology) is available. The participating systems should output the labelled
syntactic dependencies between the words (Zeman et al. 2018). To enable the partici-
pants to focus only on selected parts of the pipeline, predictions from a baseline system
was provided for each prepossessing step (Straka and Straková 2017). We make use of
the tokenisation output from Straka and Straková (2017) and feed it to a morphological
analyser, whose output is then provided as input to our joint morphological and depen-
dency parsing model, Prim-EBM-F. Finally, we also perform the standalone dependency
parsing task, where sentences with gold tokenisation and morphological description are
provided as input.

Data. Both the shared tasks use treebanks from Universal Dependencies (Nivre et al.
2018, UD). While the morphological parsing task (McCarthy et al. 2019) used the UD
version 2.336 and Raw2UD (Zeman et al. 2018) used the UD version 2.237. We perform
our experiments on Czech, specifically on the Czech-PDT treebank available as part
of UD. However, the train, dev and test splits provided for both these shared tasks
differ. We use the corresponding splits used in the shared tasks for reporting our model
performances, such that our models are comparable with the models submitted as part
of shared task. For the dependency parsing (with gold tokenisation and morphology),
we use the train, test and dev split of Czech-PDT in UD version 2.2. A morphologically-
tagged corpus is required for the construction of the corpus graph CCzech, which is
used for generating the edge vectors. First, we construct CCzech by only using the
sentences from the PDT training data split.38 We expand CCzech by using one million raw
sentences randomly sampled from the common crawl corpus. The relevant tokenisation
and morphological information, for these sentences, required to construct CCzech was
predicted using UDPipe (Zeman et al. 2018). The organisers of Raw2UD had already
provided this data as part of the shared task.

Evaluation Metrics. McCarthy et al. (2019) report the performance of the participating
systems based on Lemma accuracy, Lemma edit distance, tag accuracy and tag F1-
score. Here, lemma accuracy and tag accuracy report a 0/1 accuracy of the predicted
lemma and morphological information, respectively, micro averaged at the corpus level
(McCarthy et al. 2019).39 The lemma edit-distance and tag f1-score were used to give
partial credits to the systems, if they predict a part of the solution correctly. Since
our system’s predictions are basically selections of candidates from a morphological
analyser and not exactly character wise or grammatical category wise prediction, we use
only the tag and lemma accuracy as evaluation metrics. For Raw2UD we use the official
evaluation script used in the shared task. From the evaluation, we report the UAS and
LAS scores. However, these UAS and LAS scores take the possible misalignment of the
tokens in the prediction and in the ground truth, due to tokenisation errors, also into
consideration. For such misaligned tokens, the predictions is considered to be invalid.
To avoid confusions with our previously defined UAS/LAS metric we would mark

36 https://github.com/sigmorphon/2019
37 https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2837
38 For each model, we used the corresponding training data split from the shared-task. For Raw2Ud the

training set has 68.496 sentences while MP has 70,331 sentences in the training set.
39 https://sigmorphon.github.io/sharedtasks/2019/task2/

44

https://github.com/sigmorphon/2019
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2837
https://sigmorphon.github.io/sharedtasks/2019/task2/

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

them with UAStok and LAStok. For standalone dependency parsing, we use UAS and
LAS as evaluation metrics.

Models. For the morphological parsing task, we use the Cliq-EBM-F model, i.e. the
one that uses the maximal clique search as inference and FSPG for the edge vector
generation. We use 2 variants, Cliq-EBM-F-Xtra and Cliq-EBM-F-PDT, where the former
uses one million sentences from common-crawl and training data from PDT treebank
for the corpus graph construction, whereas the latter only uses the PDT training data for
the corpus graph construction. We consider three systems from McCarthy et al. (2019)
as baselines for the task. The systems are CHARLES-SAARLAND-02 (Kondratyuk
2019), NLPCUBE-01 (Boros, Dumitrescu, and Burtica 2018) and EDINBURGH-02 (Mc-
Carthy et al. 2019).40 Here, CHARLES-SAARLAND-02, henceforth to be referred to
as SAARLAND-02, uses 2 separate word-level bidirectional residual LSTM decoders
for the lemma and morphological tag prediction tasks. The model uses a common
encoder and a separate attention layer for both the tasks. The encoder representations
use multi-lingual BERT embeddings fine-tuned on a concatenation of all the available
languages. This model achieved the best overall results for the task (In terms of Morph
accuracy and F1-score) and also in the Czech-PDT treebank. Similarly NLPCUBE-01 and
Edinburgh-02 achieved the third best scores for Czech-PDT treebank in terms of lemma
accuracy and tag accuracy, respectively.41 Edinburgh-02 is a character-level LSTM
encoder-decoder model, while NLPCUBE-01 is a pipeline model that uses an encoder-
decoder model for lemmatisation and a LSTM based sequence tagger for morphological
tagging. Both these models use the same set of input features, which is a concatenation
of character-level embeddings, word embeddings and fasttext embeddings. These two
models do not use any external resources and their models are trained using resources
provided in the shared task.

For dependency parsing we train the Tree-EBM-F model, and for the Raw2UD task
we use the Prim-EBM-F model. Tree-EBM-F uses the exact search Edmonds-Chu-Liu
algorithm and Prim-EBM-F uses the approximate algorithm for maximal spanning tree
as the inferences, respectively. The Raw2UD task is similar to the joint MP and DP
task, where the search space considers all the possible morphological analyses for a
given word and hence the Prim-EBM-F model searches for a maximal spanning tree.
Similar to morphological parsing task, we report scores for 2 variants of Prim-EBM-F
for the Raw2UD task as well, Priim-EBM-F-PDT and Prim-EBM-F-Xtra. We consider the
three systems HIT-SCIR (Che et al. 2018), TurkuNLP (Kanerva et al. 2018) and Stanford
(Qi et al. 2018). These systems achieved first, second and third positions in Czech-
PDT treebank based on LAStok metric. All the three systems use the neural biaffine
parser proposed by Dozat and Manning (2017) with minor modifications. Che et al.
(2018) makes use of ELMO embeddings trained on 20 million words from the common-
crawl Czech corpus. TurkuNLP and Stanford use pretrained word2vec embeddings
trained on the common-crawl corpus (Ginter et al. 2017). All the models for Czech
use MorphoDita (Straková, Straka, and Hajič 2014) as the morphological analyser, i.e.
the graph-generator. For dependency parsing task we use Stanza (Qi et al. 2020), an

40 NLPCUBE-01 and EDINBURGH-02 did not publish their findings as separate papers, and hence their
results can be found in McCarthy et al. (2019).

41 We do not include, UFAL-Prague-01 (Straka, Straková, and Hajic 2019) the second best system as it also
uses BERT based pretraining similar to SAARLAND-02.

45

Computational Linguistics Volume 1, Number 1

extended version of Qi et al. (2018) and UDPipe (Straka and Straková 2017) as the
baselines.

Results. Table 22 shows the result for the morphological parsing task. Our model Cliq-
EBM-F-Xtra stands third in terms of lemma accuracy and tag accuracy in comparison to
all the participating systems in the shared task (McCarthy et al. 2019). The first two
systems in the shared task, SAARLAND-02 and UFAL-PRAGUE-01, greatly benefit
from the fine tuning and pretraining, respectively, on the multilingual contextualised
BERT embeddings. Among the systems that use no external resources other than the
training data, our model Cliq-EBM-F-PDT scores the highest in terms of tag accuracy,
followed by NLPCUBE-01 and EDINGBURGH-02, respectively. Our morphological
analyser identifies 99.74 % of the lemma in the test data for the shared task. Similarly,
99.45 % of the morphological tags were identified by our morphological analyser.

Table 23 shows the results for the Raw2UD task. Our system Prim-EBM-F-Xtra
achieves the best result, outperforming all the models in the shared task. Similarly,
for the dependency parsing task, Stanza (Qi et al. 2020) reports 93.73 UAS and 92.19
LAS on the Czech-PDT treebank. UDPipe reports 90.3 UAS 88.2 LAS. Our proposed
model Tree-EBM-F-Xtra reports 95.84 UAS and 93.67 LAS. Tree-EBM-F-PDT reports a
UAS of 94.38 and LAS of 91.28 . Here, both Tree-EBM-F-Xtra reports the best score,
outperforming all the baselines. Tree-EBM-F-PDT, the model with no external resources
other than than the training data, outperforms both the neural baseline models in terms
of UAS. Overall, we find that our EBM models achieve competitive results in all the
three tasks, outperforming all the baselines in two of the three tasks.

5. Discussion

Our EBM framework consists of 3 components, namely, a graph generator, an edge
vector generator, and a structured prediction model. All the three components act as
a pipeline, where the edge vector generator obtains its input from graph generator,
and the structured prediction model obtains its inputs from both the other components.
This separation of the tasks becomes beneficial at multiple steps. First, we have limited
data for both the syntax level tasks, dependency parsing and syntactic linearisation,
in Sanskrit. As demonstrated, the feature function we use substantially reduces the
task-specific training data requirements. Second, our edge vectors are task agnostic42,
thereby enabling the use of the same feature vectors for standalone and joint formula-
tion of multiple tasks. Finally, such a separation enables to plug and play multiple third
party external tools as the graph generator to our framework. For instance, while SHR
was the graph generator module for Sanskrit, MorphoDita was used for Czech, and
both of these are external tools developed independent of our framework.

Our feature function learning approach using FSPG can be seen as a pretraining
approach, similar to the learning of word-embeddings or network embeddings. In
information networks terminology, the corpus graph we construct is an instance of
a Heterogeneous Information network (Sun 2010), where our corpus graph contains
nodes of different types. The typed paths we learn are metapaths and we use random
walk based inference to compute a scalar feature value. A major novelty of our work is
the automated generation and filtering of the typed paths which compute the strength

42 Our vectors need not necessarily be domain-agnostic as we use different edge vectors for
morphosyntactic and prosodic tasks

46

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

of association between 2 nodes under diverse constraints. A large number of neural
embedding approaches are either intended for homogeneous information networks, or
are used to learn embeddings for only one metapath at a time (Dong, Chawla, and
Swami 2017). Recently graph neural networks were introduced for learning network
embeddings using metapaths. These approaches generally tend to use limited number
of metapaths, ranging from two to six (Cen et al. 2019; Fu et al. 2020). Most importantly,
these approaches still assume the metapaths are hand-crafted, while we automate the
identification of relevant metapaths.

An immediate future work would be the extension of the proposed framework
to perform downstream semantic tasks such as semantic role labelling. The tagging
scheme that we used for the dependency analysis is based on the kāraka theory, and the
relations as per kāraka theory are known to be of syntactic-semantic in nature (Bharati
and Sangal 1993). This was a conscious design decision we made, which leaves us with
a potential scope for expanding the framework for a semantic labelling task. Given the
link between the case markers to kāraka tags as per traditional Sanskrit grammar, we
hypothesise that modelling of semantic labelling tasks such as Semantic role labelling
might benefit from jointly modelling it with its preliminary tasks. However task-specific
labelled data for such tasks are scarce or non-existent in Sanskrit. Even for syntax level
tasks, such as DP and SL, we observed that we have limited availability for task-specific
labelled data and this gets worse for tasks further down the processing pipeline for San-
skrit. For all the tasks we experimented with the framework, the models used relatively
limited amount of task-specific labelled data for Sanskrit, in comparison to other neural
baselines. However, this is enabled due to the availability of a morphologically tagged
corpus, DCS and the use of SHR, a lexicon driven shallow parser. SHR is beneficial
to our framework in multiple ways. One, its efficient implementation coupled with a
wide coverage lexicon, enables to exhaustively enumerate various possible word splits
for a given sequences. Two, the morphological analysis provided by SHR can be quite
detailed. This may involve additional information about derivational nouns, currently
restricted to nominals derived from verbs. A nominal derived from verb, when derived
from specific derivational affixes, may act as verbal head to other words in Sanskrit.43

Three, it can also encode additional morpho–syntactic information, in addition to the
grammatical categories for several words, particularly verbs.44 Four, it may generate
only those inflected forms where the morphemes involved in the creation of the form are
compatible to each other as per rules of Sanskrit thereby avoiding overgeneration of can-
didates. To elaborate, preverbs are applied to a root or the stem of a derivational noun
(derived from verb), only after checking their mutual compatibility. Similarly, a form
“ambarah. " will be invalid as per SHR because the stem “ambara" can form inflections
only for forms in neuter gender. However the compound “pı̄tāmbarah. " with component
stems pı̄ta and ambara is allowed.45 This is because pı̄tāmbarah. is an exocentric compound
(bahuvrīhi), and an inflection in masculine gender is possible for the compound.

Our EBM framework is language-agnostic in general as evidenced from our exper-
iments in Sanskrit and Czech. Using our framework, we can train models for another
language, say for morphosyntactic tasks, provided we have access to a morphological
dictionary or a morphological analyser for the language. Further, we also need access
to a morphologically tagged corpus to build our corpus graph for feature function

43 We mention such a case in footnote 20
44 We mention such a case in footnote 21
45 SHR analysis available at https://bit.ly/pitambara

47

https://bit.ly/pitambara

Computational Linguistics Volume 1, Number 1

learning. It needs to be noted that a shallow parser like SHR might not be readily avail-
able for several languages. However, this necessarily need not limit the functionality
of our framework. We successfully trained highly competitive models in Czech using
the MorphoDita morphological dictionary (Straková, Straka, and Hajič 2014), which is
limited in its functionality as compared to SHR. Further, we successfully constructed the
corpus graph for Czech using 1 million raw sentences with predicted morphological
information, along with 70,000 gold standard morphologically tagged sentences. For
Sanskrit, we used 350,000 morphologically tagged textlines from DCS. For the learning
of feature functions, the only domain knowledge we require is the knowledge of gram-
matical categories and what combinations of grammatical categories can form a lexical
category in the language. This information is used to define the types in the corpus
graph, and the typed paths (features) are automatically learned using FSPG. Probably
the most linguistically involved part of our framework is the use of constraints to prune
the candidates in the search space which we use for Sanskrit (in models marked with
a ‘*’). However, this is an optional component, and we show that highly competitive
models can be trained, even without incorporating any such linguistic constraints, for
both Sanskrit and Czech.

We assume that the framework can be potentially useful for processing texts in
other free word order languages as well, as we demonstrated for Sanskrit and Czech.
However, when extending the framework for a new language, one needs to keep in
mind that the framework uses non-sequential processing of input even for low level
tasks such as word segmentation and morphological parsing. Further, we construct
dense graph structures as input. This makes the inference computationally costly. These
design decisions were made considering the relatively free word order nature of sen-
tences in Sanskrit, especially for verses. Owing to the computationally costly inference,
our framework may not be well suited for languages that tend to follow a relatively
fixed word ordering in their sentence constructions. Efficient and exact inferences that
perform sequential processing of the input are available for such languages. More im-
portantly, using our current input graph construction approach might result in ignoring
valuable grammatical information encoded using word order in such languages.

6. Related Work

The last couple of decades have shown considerable interests in computational process-
ing of Sanskrit texts, though mostly centred around formal language theory (Kiparsky
2009; Goyal and Huet 2016; Hyman 2009) and rule based systems (Kulkarni 2013;
Kulkarni et al. 2015; Goyal et al. 2012). Due to the low-resource nature of the lan-
guage, attempts for developing data driven models for processing Sanskrit texts has
been less common, with a possible exception for the task of word-segmentation. While
early models for segmentation (Natarajan and Charniak 2011; Mittal 2010) focused on
shorter sequences, typically with one or two split points, Krishna et al. (2016) proposed
a segmentation model that deals with sentence level inputs. Their model, similar to
ours, use the search space from the Sanskrit Heritage Reader (Goyal and Huet 2016)
and treats the problem as an iterative query expansion task. Hellwig (2015) was the
first to pose the problem as a neural sequence labelling task, and later a considerably
improved sequence labeller was presented in Hellwig and Nehrdich (2018). In Hellwig
and Nehrdich (2018), the architecture incorporated recurrent and convolutional neural
units, in addition to the use of shortcut connections. Both Reddy et al. (2018) and
Aralikatte et al. (2018) proposed seq2seq models for the task. Aralikatte et al. (2018)
considered the word segmentation as a multitask problem, using a common encoder

48

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

with two decoders, where one decoder predicts the split location and the other is used
to generate the characters in the split word.

Both word-segmentation and morphological parsing are low-level, yet non-trivial
tasks for multiple languages and are extensively researched in NLP. Traditionally,
solutions for these tasks were proposed using (Probabilistic/Weighted) Finite state
transducers (Kaplan and Kay 1981; Sproat et al. 1996; Mohri 1997; Beesley and Kart-
tunen 2003) and using unsupervised pattern discovery approaches (Goldsmith 2001;
Argamon et al. 2004; Johnson and Goldwater 2009). Broadly these approaches could be
categorised as lexicon driven (Huet 2003; Chen and Liu 1992), purely statistical (Eisner
2002; Sproat et al. 1994) or both (Sproat et al. 1996). Sequence labelling approaches such
as HMMs (Hakkani-Tur, Oflazer, and Tur 2000) and CRFs (Smith, Smith, and Tromble
2005; Xue 2003) were later proposed for these tasks. Further, lattice parsing based
approaches, where the input search space was represented as word-level lattices, were
incorporated into CRFs (Smith, Smith, and Tromble 2005) for joint modelling of these
tasks (Kudo, Yamamoto, and Matsumoto 2004). Neural sequence labelling approaches
currently achieve state of the art performance in word-segmentation, especially for
Chinese, Korean, Japanese etc. (Wang, Voigt, and Manning 2014; Shao, Hardmeier,
and Nivre 2018). Similarly, higher-order CRFs (Müller, Schmid, and Schütze 2013)
and neural morphological taggers (Malaviya, Gormley, and Neubig 2018; Tkachenko
and Sirts 2018) are widely used for morphological parsing. Interestingly, lattice based
structures and lattice-parsing techniques remain hugely popular for word segmentation
(Yang, Zhang, and Liang 2019) and in morphological parsing of morphologically rich
languages (Seeker and Çetinoğlu 2015; More 2016; More et al. 2019).

Transition based approaches (Kübler, McDonald, and Nivre 2009) and graph based
approaches (McDonald et al. 2005b) are primarily two approaches adopted for DP.
Majority of the methods proposed for joint morphosyntactic parsing also fall into
one of these categories. Such approaches have proven to be effective for a host of
morphologically rich languages such as Hebrew, Turkish, Czech, Finnish, Arabic, etc.
(Cohen and Smith 2007; Goldberg and Tsarfaty 2008; Bohnet et al. 2013). Hatori et al.
(2012) formulated the problem of joint word segmentation, POS tagging and DP in
Chinese using a transition based framework. Seeker and Çetinoğlu (2015) performed the
joint morphological segmentation and analysis along with DP for Hebrew and Turkish.
The approach constructs a sentence level graph with word level morphological lattices
and performs a dual decomposition wherein the predicted dependency tree and the
morphological paths need to be arrived at an agreement for the final solution. Recently,
More et al. (2019) proposed a transition based framework (Zhang and Clark 2011),
which encompasses a joint transition system, training objective and inference for the
morphological processing and syntactic parsing tasks. The system outperforms their
previous standalone transition based system for morphological analysis (More and
Tsarfaty 2016), emphasising on their benefits of joint morphosyntactic parsing.

For dependency parsing, Kiperwasser and Goldberg (2016a) proposed to replace
the traditional feature engineering approach with vector representations of tokens ob-
tained from BiLSTM based neural architectures. Several neural parsing models have
extended this idea (Kuncoro et al. 2017; Dozat and Manning 2017) and report competi-
tive results for languages such as English. Nevertheless these models have shown to be
of limited effectiveness as compared to feature engineered models for Morphologically
rich languages (More et al. 2019). In our framework, we do not use any hand-crafted
features. Instead, we automate the learning of the feature function and formulate it as
learning of horn clauses (Lao and Cohen 2010; Gardner and Mitchell 2015). The task of
obtaining the features for the edge vector is similar to obtaining a distributional compo-

49

Computational Linguistics Volume 1, Number 1

sition between two words (Weir et al. 2016). Our work, stands close to the attempts such
as algebraic formulation for feature extraction by Srikumar (2017) or the Monte Carlo
Tree Search based feature selection approach by Gaudel and Sebag (2010). In Krishna
et al. (2018) we used the Path ranking algorithm (Lao and Cohen 2010), a random walk
based approach for learning horn clause across a heterogeneous information network
(HIN). The type of horn clauses mentioned in PRA is widely known as metapaths (Sun
2010) in HINs (Shi et al. 2017). Traditionally metapaths, like feature engineering, were
manually constructed. But, recent approaches such as PRA and FSPG (Meng et al. 2015)
automate the generation of metapaths.

Word linearisation has been used in various Natural Language Generation tasks for
the past 3 decades. Linearisation tasks are generally solved by incorporating syntactic
information (He et al. 2009), semantic information (Puduppully, Zhang, and Shrivastava
2017) or by using language models (Hasler et al. 2017, LM). Syntactic linearisation can
further be categorised into full tree linearisaton (Zhang and Clark 2015; He et al. 2009)
or partial tree linearisation (Zhang 2013) depending on the amount of syntactic infor-
mation used in the method. In LM based linearisation approaches purely distributional
information is used for the task. Recently, such approaches have shown to outperform
syntax based linearisation approaches in English (Schmaltz, Rush, and Shieber 2016;
Wiseman and Rush 2016). Similar to Wiseman and Rush (2016), Krishna et al. (2019) pro-
pose a seq2seq model for syntactic linearisation in Sanskrit. The sequence level model,
along with two of its accompanying pretraining steps, have shown to outperform other
linearisation models, which were originally proposed for English.

7. Conclusion

Our work presents a generic search based structured prediction framework for numer-
ous structured prediction tasks in Sanskrit. As shown by our additional experiments in
Czech, in addition to the experiments in Sanskrit, our framework is language agnostic.
In Czech, we outperform all the participating systems in Zeman et al. (2018) and we
report the third best score in McCarthy et al. (2019). In Sanskrit, we either achieve state
of the art results or ours is the only data driven model for all the tasks we experiment
with. In fact, we introduce the task of prosodification. The framework, though language-
agnostic, it still enables to encode language specific constraints which helps to prune the
input search space as well as to filter the candidates during inference. It also facilitates
joint modelling of multiple tasks, which we plan to extend to further downstream
semantic tasks as well. But more importantly, we achieve substantial reduction in task
specific training data requirements for all the tasks by incorporating rich linguistic
information, both in the form of pruning the search space as well as in designing our
feature function. This is particularly important for a low resource language like Sanskrit.
Another novel aspect in this work is the automated learning of feature function. For one,
this shifts the burden of designing effective features for each task from human domain
experts and automates it. The only domain information required here is to define the
literals required for the generation of horn clauses. This makes it adaptable to different
scenarios, as witnessed in the case of morphosyntactic and prosodic tasks in our case.
The use of FSPG based feature generation not only improved the system performance
but it also substantially reduced the time taken, as this does not require an exhaustive
enumeration of the features.

50

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

Acknowledgements

We are grateful to Oliver Hellwig for providing the DCS Corpus, Amba Kulkarni for
providing the STBC corpus, Anupama Ryali for providing the S̀is̀upālavadha corpus,
and Gérard Huet for providing the Sanskrit Heritage Engine, to be installed at local
systems. We extend our gratitude to Amba Kulkarni, Peter Scharf, Gérard Huet and
Rogers Mathew for their helpful comments and discussions regarding the work. We
thank the anonymous reviewers for their constructive and helpful comments, which
greatly improved the article.

References
S̀rīnivāsa Aiyaṅkār. 1910. The Ramayana of

Valmiki. Madras : Little Flower Co.
Altun, Yasemin, Mark Johnson, and Thomas

Hofmann. 2003. Investigating loss
functions and optimization methods for
discriminative learning of label sequences.
In Proceedings of the 2003 Conference on
Empirical Methods in Natural Language
Processing, pages 145–152, Association for
Computational Linguistics, Sapporo,
Japan.

Apte, Vaman Shivaram. 1965. The practical
Sanskrit-English dictionary: containing
appendices on Sanskrit prosody and important
literary and geographical names of ancient
India. Motilal Banarsidass Publications.

Aralikatte, Rahul, Neelamadhav Gantayat,
Naveen Panwar, Anush Sankaran, and
Senthil Mani. 2018. Sanskrit sandhi
splitting using seq2(seq)2. In Proceedings of
the 2018 Conference on Empirical Methods in
Natural Language Processing, pages
4909–4914, Association for Computational
Linguistics, Brussels, Belgium.

Argamon, Shlomo, Navot Akiva, Amihood
Amir, and Oren Kapah. 2004. Efficient
unsupervised recursive word
segmentation using minimum description
length. In Proceedings of Coling 2004, pages
1058–1064, COLING, Geneva,
Switzerland.

Beesley, K.R. and L. Karttunen. 2003. Finite
State Morphology. Number v. 1 in CSLI
studies in computational linguistics:
Center for the Study of Language and
Information. CSLI Publications.

Belanger, David. 2017. Deep Energy-Based
Models for Structured Prediction. Ph.D.
thesis, University of Massachusetts
Amherst.

Belanger, David, Bishan Yang, and Andrew
McCallum. 2017. End-to-end learning for
structured prediction energy networks. In
Proceedings of the 34th International
Conference on Machine Learning-Volume 70,
pages 429–439, JMLR. org.

Bengio, Yoshua, Réjean Ducharme, Pascal
Vincent, and Christian Jauvin. 2003. A
neural probabilistic language model.
Journal of machine learning research,
3(Feb):1137–1155.

Bharati, Akshar and Rajeev Sangal. 1993.
Parsing free word order languages in the
paninian framework. In 31st Annual
Meeting of the Association for Computational
Linguistics, pages 105–111, Association for
Computational Linguistics, Columbus,
Ohio, USA.

Bhatta, Vinayak P. 1990. Theory of verbal
cognition (Śābdabodha). Bulletin of the
Deccan College Research Institute, 49:59–74.

Bishop, Christopher M. 1995. Neural
Networks for Pattern Recognition. Oxford
University Press, Inc., New York, NY,
USA.

Bohnet, Bernd. 2010. Top accuracy and fast
dependency parsing is not a contradiction.
In Proceedings of the 23rd International
Conference on Computational Linguistics
(Coling 2010), pages 89–97, Coling 2010
Organizing Committee, Beijing, China.

Bohnet, Bernd, Joakim Nivre, Igor
Boguslavsky, Richárd Farkas, Filip Ginter,
and Jan Hajič. 2013. Joint morphological
and syntactic analysis for richly inflected
languages. Transactions of the Association
for Computational Linguistics, 1:415–428.

Bojanowski, Piotr, Edouard Grave, Armand
Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword
information. Transactions of the Association
for Computational Linguistics, 5:135–146.

Boros, Tiberiu, Stefan Daniel Dumitrescu,
and Ruxandra Burtica. 2018. NLP-cube:
End-to-end raw text processing with
neural networks. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal
Dependencies, pages 171–179, Association
for Computational Linguistics, Brussels,
Belgium.

Bron, Coen and Joep Kerbosch. 1973.
Algorithm 457: finding all cliques of an

51

Computational Linguistics Volume 1, Number 1

undirected graph. Communications of the
ACM, 16(9):575–577.

Carreras, Xavier. 2007. Experiments with a
higher-order projective dependency
parser. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural
Language Processing and Computational
Natural Language Learning
(EMNLP-CoNLL), pages 957–961,
Association for Computational
Linguistics, Prague, Czech Republic.

Cen, Yukuo, Xu Zou, Jianwei Zhang,
Hongxia Yang, Jingren Zhou, and Jie Tang.
2019. Representation learning for
attributed multiplex heterogeneous
network. In Proceedings of the 25th ACM
SIGKDD International Conference on
Knowledge Discovery amp; Data Mining,
KDD ’19, page 1358–1368, Association for
Computing Machinery, New York, NY,
USA.

Che, Wanxiang, Yijia Liu, Yuxuan Wang,
Bo Zheng, and Ting Liu. 2018. Towards
better UD parsing: Deep contextualized
word embeddings, ensemble, and
treebank concatenation. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal
Dependencies, pages 55–64, Association for
Computational Linguistics, Brussels,
Belgium.

Chen, Keh-Jiann and Shing-Huan Liu. 1992.
Word identification for mandarin chinese
sentences. In Proceedings of the 14th
conference on Computational
linguistics-Volume 1, pages 101–107,
Association for Computational
Linguistics.

Chu, Yoeng-Jin and T H Liu. 1965. On the
shortest arborescence of a directed graph.
Scientia Sinica, 14:1396–1400.

Cohen, Shay B. and Noah A. Smith. 2007.
Joint morphological and syntactic
disambiguation. In Proceedings of the 2007
Joint Conference on Empirical Methods in
Natural Language Processing and
Computational Natural Language Learning
(EMNLP-CoNLL), pages 208–217,
Association for Computational
Linguistics, Prague, Czech Republic.

Collobert, Ronan, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. 2011. Natural language
processing (almost) from scratch. J. Mach.
Learn. Res., 12:2493–2537.

Coulson, Michael. 1976. Sanskrit: An
Introduction to the Classical Language. Teach
yourself books. Hodder and Stoughton.

Das, Monali. 2017. Discourse analysis of
sanskrit texts: first attempt towards
computational processing. Ph.D. thesis,
University of Hyderabad, Hyderabad.

Dong, Yuxiao, Nitesh V Chawla, and
Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for
heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD international
conference on knowledge discovery and data
mining, pages 135–144.

Doppa, Janardhan Rao, Alan Fern, and
Prasad Tadepalli. 2014. Hc-search: a
learning framework for search-based
structured prediction. Journal of Artificial
Intelligence Research, 50(1):369–407.

Dozat, Timothy and Christopher D.
Manning. 2017. Deep biaffine attention for
neural dependency parsing. In 5th
International Conference on Learning
Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track
Proceedings.

Dror, Rotem, Gili Baumer, Segev Shlomov,
and Roi Reichart. 2018. The hitchhiker’s
guide to testing statistical significance in
natural language processing. In
Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 1383–1392,
Association for Computational
Linguistics, Melbourne, Australia.

Edmonds, Jack. 1967. Optimum branchings.
Journal of Research of the national Bureau of
Standards B, 71(4):233–240.

Edunov, Sergey, Myle Ott, Michael Auli,
David Grangier, and Marc’Aurelio
Ranzato. 2018. Classical structured
prediction losses for sequence to sequence
learning. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1
(Long Papers), pages 355–364, Association
for Computational Linguistics.

Efron, Bradley, Trevor Hastie, Iain Johnstone,
Robert Tibshirani, et al. 2004. Least angle
regression. The Annals of statistics,
32(2):407–499.

Eisner, Jason. 2002. Parameter estimation for
probabilistic finite-state transducers. In
Proceedings of 40th Annual Meeting of the
Association for Computational Linguistics,
pages 1–8, Association for Computational
Linguistics, Philadelphia, Pennsylvania,
USA.

Fu, Xinyu, Jiani Zhang, Ziqiao Meng, and
Irwin King. 2020. Magnn: Metapath
aggregated graph neural network for

52

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

heterogeneous graph embedding. In
Proceedings of The Web Conference 2020,
WWW ’20, page 2331–2341, Association
for Computing Machinery, New York, NY,
USA.

Gardner, Matt and Tom Mitchell. 2015.
Efficient and expressive knowledge base
completion using subgraph feature
extraction. In Proceedings of the 2015
Conference on Empirical Methods in Natural
Language Processing, pages 1488–1498,
Association for Computational
Linguistics, Lisbon, Portugal.

Gardner, Matt, Partha Talukdar, and Tom
Mitchell. 2015. Combining vector space
embeddings with symbolic logical
inference over open-domain text. In 2015
aaai spring symposium series, pages 61–65.

Gaudel, Romaric and Michele Sebag. 2010.
Feature selection as a one-player game. In
International Conference on Machine
Learning, pages 359–366.

Gehring, Jonas, Michael Auli, David
Grangier, Denis Yarats, and Yann N.
Dauphin. 2017. Convolutional sequence to
sequence learning. volume 70 of
Proceedings of Machine Learning Research,
pages 1243–1252, PMLR, International
Convention Centre, Sydney, Australia.

Gibson, Edward. 1998. Linguistic
complexity: locality of syntactic
dependencies. Cognition, 68(1):1 – 76.

Gibson, Edward, Richard Futrell, Steven T.
Piandadosi, Isabelle Dautriche, Kyle
Mahowald, Leon Bergen, and Roger Levy.
2019. How efficiency shapes human
language. Trends in Cognitive Sciences,
23(5):389 – 407.

Gibson, Edward, Steven T Piantadosi,
Kimberly Brink, Leon Bergen, Eunice Lim,
and Rebecca Saxe. 2013. A noisy-channel
account of crosslinguistic word-order
variation. Psychological science,
24(7):1079–1088.

Gildea, Daniel and David Temperley. 2010.
Do grammars minimize dependency
length? Cognitive Science, 34(2):286–310.

Gillon, Brendan and Benjamin Shaer. 2005.
Classical sanskrit,‘wild trees’, and the
properties of free word order languages.
Universal grammar in the reconstruction of
ancient languages, pages 457–494.

Ginter, Filip, Jan Hajič, Juhani Luotolahti,
Milan Straka, and Daniel Zeman. 2017.
CoNLL 2017 shared task - automatically
annotated raw texts and word
embeddings. LINDAT/CLARIAH-CZ
digital library at the Institute of Formal
and Applied Linguistics (ÚFAL), Faculty

of Mathematics and Physics, Charles
University.

Goldberg, Yoav and Michael Elhadad. 2010.
An efficient algorithm for easy-first
non-directional dependency parsing. In
Human Language Technologies: The 2010
Annual Conference of the North American
Chapter of the Association for Computational
Linguistics, pages 742–750, Association for
Computational Linguistics, Los Angeles,
California.

Goldberg, Yoav and Reut Tsarfaty. 2008. A
single generative model for joint
morphological segmentation and syntactic
parsing. In Proceedings of ACL-08: HLT,
pages 371–379, Association for
Computational Linguistics, Columbus,
Ohio.

Goldsmith, John. 2001. Unsupervised
learning of the morphology of a natural
language. Computational Linguistics,
27(2):153–198.

Goyal, Pawan and Gerard Huet. 2016.
Design and analysis of a lean interface for
sanskrit corpus annotation. Journal of
Language Modelling, 4(2):145–182.

Goyal, Pawan, Gérard Huet, Amba Kulkarni,
Peter Scharf, and Ralph Bunker. 2012. A
distributed platform for sanskrit
processing. In Proceedings of COLING 2012,
pages 1011–1028, The COLING 2012
Organizing Committee.

Guyon, Isabelle, Jason Weston, Stephen
Barnhill, and Vladimir Vapnik. 2002. Gene
selection for cancer classification using
support vector machines. Machine
learning, 46(1-3):389–422.

Hakkani-Tur, Diiek Z., Kemal Oflazer, and
Gokhan Tur. 2000. Statistical
morphological disambiguation for
agglutinative languages. In COLING 2000
Volume 1: The 18th International Conference
on Computational Linguistics.

Hasler, Eva, Felix Stahlberg, Marcus Tomalin,
Adria de Gispert, and Bill Byrne. 2017. A
comparison of neural models for word
ordering. In Proceedings of the 10th
International Conference on Natural
Language Generation, pages 208–212.

Hatori, Jun, Takuya Matsuzaki, Yusuke
Miyao, and Jun’ichi Tsujii. 2012.
Incremental joint approach to word
segmentation, pos tagging, and
dependency parsing in chinese. In
Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 1045–1053,
Association for Computational
Linguistics, Jeju Island, Korea.

53

Computational Linguistics Volume 1, Number 1

He, Wei, Haifeng Wang, Yuqing Guo, and
Ting Liu. 2009. Dependency based chinese
sentence realization. In Proceedings of the
Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint
Conference on Natural Language Processing of
the AFNLP, pages 809–816, Association for
Computational Linguistics, Suntec,
Singapore.

Heigold, Georg, Guenter Neumann, and
Josef van Genabith. 2017. An extensive
empirical evaluation of character-based
morphological tagging for 14 languages.
In Proceedings of the 15th Conference of the
European Chapter of the Association for
Computational Linguistics: Volume 1, Long
Papers, volume 1, pages 505–513.

Hellwig, Oliver. 2010-2016. DCS - The Digital
Corpus of Sanskrit. Berlin.

Hellwig, Oliver. 2015. Using recurrent neural
networks for joint compound splitting and
sandhi resolution in sanskrit. In
Proceedings of the 7th Language Technology
Conference, pages 289–29.

Hellwig, Oliver and Sebastian Nehrdich.
2018. Sanskrit word segmentation using
character-level recurrent and
convolutional neural networks. In
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 2754–2763, Association
for Computational Linguistics.

Hirakawa, H. Semantic dependency analysis
method for japanese based on optimum
tree search algorithm. Proceedings of the
PACLING2001, pages 117–126.

Hock, Hans Henrich. 2015. Some issues in
sanskrit syntax. In Peter Scharf, editor,
Sanskrit syntax. Sanskrit Library,
Université Paris Diderot, pages 1–52.

Horvat, Matic and William Byrne. 2014. A
graph-based approach to string
regeneration. In Proceedings of the Student
Research Workshop at the 14th Conference of
the European Chapter of the Association for
Computational Linguistics, pages 85–95,
Association for Computational
Linguistics, Gothenburg, Sweden.

Huet, Gérard. 2003. Zen and the art of
symbolic computing: Light and fast
applicative algorithms for computational
linguistics. In Practical Aspects of
Declarative Languages, pages 17–18,
Springer Berlin Heidelberg, Berlin,
Heidelberg.

Huet, Gérard. 2005. A functional toolkit for
morphological and phonological
processing, application to a Sanskrit
tagger. Journal of Functional Programming,

15(4):573–614.
Huet, Gérard and Amba Kulkarni. 2014.

Sanskrit linguistics web services. In
Proceedings of COLING 2014, the 25th
International Conference on Computational
Linguistics: System Demonstrations, pages
48–51, Dublin City University and
Association for Computational
Linguistics, Dublin, Ireland.

Hyman, Malcolm D. 2009. Sanskrit
computational linguistics.
Springer-Verlag, Berlin, Heidelberg,
chapter From PāNinian Sandhi to Finite
State Calculus, pages 253–265.

Ishikawa, Hiroshi. 2011. Transformation of
general binary mrf minimization to the
first-order case. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
33(6):1234–1249.

Johnson, Mark and Sharon Goldwater. 2009.
Improving nonparameteric Bayesian
inference: experiments on unsupervised
word segmentation with adaptor
grammars. In Proceedings of Human
Language Technologies: The 2009 Annual
Conference of the North American Chapter of
the Association for Computational Linguistics,
pages 317–325, Association for
Computational Linguistics, Boulder,
Colorado.

Kanerva, Jenna, Filip Ginter, Niko Miekka,
Akseli Leino, and Tapio Salakoski. 2018.
Turku neural parser pipeline: An
end-to-end system for the CoNLL 2018
shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, pages
133–142, Association for Computational
Linguistics, Brussels, Belgium.

Kaplan, Ronald M and Martin Kay. 1981.
Phonological rules and finite-state
transducers. In Linguistic Society of America
Meeting Handbook, Fifty-Sixth Annual
Meeting, pages 27–30.

Kiela, Douwe, Changhan Wang, and
Kyunghyun Cho. 2018. Dynamic
meta-embeddings for improved sentence
representations. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 1466–1477,
Association for Computational
Linguistics.

Kiparsky, P. and J. F. Staal. 1969. Syntactic
and semantic relations in pāini.
Foundations of Language, 5(1):83–117.

Kiparsky, Paul. 1995. Pāinian linguistics. In
Concise History of the Language Sciences.
Elsevier, pages 59–65.

54

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

Kiparsky, Paul. 2009. On the architecture of
pāini’s grammar. In Sanskrit Computational
Linguistics, pages 33–94, Springer Berlin
Heidelberg, Berlin, Heidelberg.

Kiperwasser, Eliyahu and Yoav Goldberg.
2016a. Simple and accurate dependency
parsing using bidirectional lstm feature
representations. Transactions of the
Association for Computational Linguistics,
4:313–327.

Kiperwasser, Eliyahu and Yoav Goldberg.
2016b. Simple and accurate dependency
parsing using bidirectional LSTM feature
representations. Transactions of the
Association for Computational Linguistics,
4:313–327.

Kohavi, Ron and George H John. 1997.
Wrappers for feature subset selection.
Artificial intelligence, 97(1-2):273–324.

Kondratyuk, Dan. 2019. Cross-lingual
lemmatization and morphology tagging
with two-stage multilingual BERT
fine-tuning. In Proceedings of the 16th
Workshop on Computational Research in
Phonetics, Phonology, and Morphology, pages
12–18, Association for Computational
Linguistics, Florence, Italy.

Kraskov, Alexander, Harald Stögbauer, and
Peter Grassberger. 2004. Estimating
mutual information. Physical review E,
69(6):69–85.

Krishna, Amrith, Bishal Santra, Sasi Prasanth
Bandaru, Gaurav Sahu, Vishnu Dutt
Sharma, Pavankumar Satuluri, and Pawan
Goyal. 2018. Free as in free word order:
An energy based model for word
segmentation and morphological tagging
in sanskrit. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 2550–2561,
Association for Computational
Linguistics.

Krishna, Amrith, Bishal Santra, Pavankumar
Satuluri, Sasi Prasanth Bandaru, Bhumi
Faldu, Yajuvendra Singh, and Pawan
Goyal. 2016. Word segmentation in
sanskrit using path constrained random
walks. In Proceedings of COLING 2016, the
26th International Conference on
Computational Linguistics: Technical Papers,
pages 494–504, The COLING 2016
Organizing Committee.

Krishna, Amrith, Pavan Kumar Satuluri, and
Pawan Goyal. 2017. A dataset for sanskrit
word segmentation. In Proceedings of the
Joint SIGHUM Workshop on Computational
Linguistics for Cultural Heritage, Social
Sciences, Humanities and Literature, pages
105–114, Association for Computational

Linguistics, Vancouver, Canada.
Krishna, Amrith, Vishnu Sharma, Bishal

Santra, Aishik Chakraborty, Pavankumar
Satuluri, and Pawan Goyal. 2019. Poetry
to prose conversion in Sanskrit as a
linearisation task: A case for low-resource
languages. In Proceedings of the 57th
Annual Meeting of the Association for
Computational Linguistics, pages 1160–1166,
Association for Computational
Linguistics, Florence, Italy.

Kübler, Sandra, Ryan McDonald, and Joakim
Nivre. 2009. Dependency parsing.
Synthesis Lectures on Human Language
Technologies, 1(1):1–127.

Kudo, Taku. 2006. Mecab: Yet another
part-of-speech and morphological
analyzer. http://mecab. sourceforge. jp.

Kudo, Taku, Kaoru Yamamoto, and Yuji
Matsumoto. 2004. Applying conditional
random fields to japanese morphological
analysis. In Proceedings of EMNLP 2004,
pages 230–237, Association for
Computational Linguistics, Barcelona,
Spain.

Kulkarni, Amba. 2013. A deterministic
dependency parser with dynamic
programming for sanskrit. In Proceedings
of the Second International Conference on
Dependency Linguistics (DepLing 2013),
pages 157–166.

Kulkarni, Amba, Sheetal Pokar, and
Devanand Shukl. 2010. Designing a
constraint based parser for sanskrit. In
International Sanskrit Computational
Linguistics Symposium, pages 70–90,
Springer.

Kulkarni, Amba and
KV Ramakrishnamacharyulu. 2013.
Parsing sanskrit texts: Some relation
specific issues. In Proceedings of the 5th
International Sanskrit Computational
Linguistics Symposium. DK Printworld (P)
Ltd.

Kulkarni, Amba and Dipti Sharma. 2019.
Pāinian syntactico-semantic relation
labels. In Proceedings of the Fifth
International Conference on Dependency
Linguistics (Depling, SyntaxFest 2019),
pages 198–208, Association for
Computational Linguistics, Paris, France.

Kulkarni, Amba, Preethi Shukla,
Pavankumar Satuluri, and Devanand
Shukl. 2015. How Free is free Word Order
in Sanskrit. In The Sanskrit Library, USA,
pages 269–304.

Kulkarni, Malhar, Chaitali Dangarikar,
Irawati Kulkarni, Abhishek Nanda, and
Pushpak Bhattacharyya. 2010. Introducing

55

Computational Linguistics Volume 1, Number 1

sanskrit wordnet. In Proceedings on the 5th
global wordnet conference (GWC 2010), pages
287–294, Association for Computational
Linguistics, Mumbai, India.

Kuncoro, Adhiguna, Miguel Ballesteros,
Lingpeng Kong, Chris Dyer, Graham
Neubig, and Noah A. Smith. 2017. What
do recurrent neural network grammars
learn about syntax? In Proceedings of the
15th Conference of the European Chapter of
the Association for Computational Linguistics:
Volume 1, Long Papers, pages 1249–1258,
Association for Computational
Linguistics, Valencia, Spain.

Lample, Guillaume, Miguel Ballesteros,
Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. 2016. Neural
architectures for named entity recognition.
In Proceedings of NAACL-HLT, pages
260–270.

Lao, Ni and William W. Cohen. 2010.
Relational retrieval using a combination of
path-constrained random walks. Mach.
Learn., 81(1):53–67.

Lapata, Mirella. 2003. Probabilistic text
structuring: Experiments with sentence
ordering. In Proceedings of the 41st Annual
Meeting of the Association for Computational
Linguistics, pages 545–552, Association for
Computational Linguistics, Sapporo,
Japan.

LeCun, Yann, Léon Bottou, Yoshua Bengio,
and Patrick Haffner. 1998. Gradient-based
learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Yann, Sumit Chopra, Raia Hadsell,
Marc’Aurelio Ranzato, and Fu-Jie Huang.
2006. A tutorial on energy-based learning.
In Predicting Structured Data, pages
191–241, MIT Press.

LeCun, Yann, Sumit Chopra, Marc’Aurelio
Ranzato, and Fu-Jie Huang. 2007.
Energy-based models in document
recognition and computer vision. In
Proceedings of International Conference on
Document Analysis and Recognition
(ICDAR), pages 337–341, IEEE Computer
Society, Curitiba, Paraná, Brazil.

Liu, Yijia, Yue Zhang, Wanxiang Che, and
Bing Qin. 2015. Transition-based syntactic
linearization. In Proceedings of the 2015
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, pages
113–122, Association for Computational
Linguistics, Denver, Colorado.

Malaviya, Chaitanya, Matthew R. Gormley,
and Graham Neubig. 2018. Neural factor
graph models for cross-lingual

morphological tagging. In Proceedings of
the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1:
Long Papers), pages 2653–2663, Association
for Computational Linguistics.

Matthews, P.H. 2007. The Concise Oxford
Dictionary of Linguistics. Oxford Paperback
Reference. OUP Oxford.

McCarthy, Arya D., Ekaterina Vylomova,
Shijie Wu, Chaitanya Malaviya, Lawrence
Wolf-Sonkin, Garrett Nicolai, Christo
Kirov, Miikka Silfverberg, Sabrina J.
Mielke, Jeffrey Heinz, Ryan Cotterell, and
Mans Hulden. 2019. The SIGMORPHON
2019 shared task: Morphological analysis
in context and cross-lingual transfer for
inflection. In Proceedings of the 16th
Workshop on Computational Research in
Phonetics, Phonology, and Morphology, pages
229–244, Association for Computational
Linguistics, Florence, Italy.

McDonald, Ryan, Fernando Pereira, Seth
Kulick, Scott Winters, Yang Jin, and Pete
White. 2005a. Simple algorithms for
complex relation extraction with
applications to biomedical ie. In
Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics
(ACL’05), pages 491–498, Association for
Computational Linguistics.

McDonald, Ryan, Fernando Pereira, Kiril
Ribarov, and Jan Hajic. 2005b.
Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of
Human Language Technology Conference and
Conference on Empirical Methods in Natural
Language Processing, pages 523–530,
Association for Computational
Linguistics, Vancouver, British Columbia,
Canada.

Melnad, Keshav S, Pawan Goyal, and Peter
Scharf. 2015. Meter identification of
sanskrit verse. In Peter Scharf, editor,
Sanskrit syntax. Sanskrit Library,
Université Paris Diderot, pages 325–346.

Meng, Changping, Reynold Cheng, Silviu
Maniu, Pierre Senellart, and Wangda
Zhang. 2015. Discovering meta-paths in
large heterogeneous information
networks. In Proceedings of the 24th
International Conference on World Wide Web,
WWW ’15, pages 754–764, International
World Wide Web Conferences Steering
Committee, Republic and Canton of
Geneva, Switzerland.

Mittal, Vipul. 2010. Automatic sanskrit
segmentizer using finite state transducers.
In Proceedings of the ACL 2010 Student
Research Workshop, pages 85–90,

56

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

Association for Computational
Linguistics.

Mohri, Mehryar. 1997. Finite-state
transducers in language and speech
processing. Computational Linguistics,
23(2):269–311.

More, Amir. 2016. Joint morpho-syntactic
processing of morphologically rich
languages in a transition-based
framework. Master’s thesis, The
Interdisciplinary Center, Herzliya, Israel.

More, Amir, Amit Seker, Victoria Basmova,
and Reut Tsarfaty. 2019. Joint
transition-based models for
morpho-syntactic parsing: Parsing
strategies for MRLs and a case study from
modern Hebrew. Transactions of the
Association for Computational Linguistics,
7:33–48.

More, Amir and Reut Tsarfaty. 2016.
Data-driven morphological analysis and
disambiguation for morphologically rich
languages and universal dependencies. In
Proceedings of COLING 2016, the 26th
International Conference on Computational
Linguistics: Technical Papers, pages 337–348,
The COLING 2016 Organizing Committee,
Osaka, Japan.

Müller, Andreas C and Sven Behnke. 2014.
Pystruct: learning structured prediction in
python. Journal of Machine Learning
Research, 15(1):2055–2060.

Müller, Thomas, Helmut Schmid, and
Hinrich Schütze. 2013. Efficient
higher-order crfs for morphological
tagging. In Proceedings of the 2013
Conference on Empirical Methods in Natural
Language Processing, pages 322–332.

Nair, Sivaja S. and Amba Kulkarni. 2010. The
knowledge structure in amarakośa. In
Sanskrit Computational Linguistics, pages
173–189, Springer Berlin Heidelberg,
Berlin, Heidelberg.

Natarajan, Abhiram and Eugene Charniak.
2011. S3-statistical sam. dhi splitting. In
Proceedings of the 5th International Joint
Conference on Natural Language Processing,
pages 301–308, Association for
Computational Linguistics.

Nichols, Johanna. 1986. Head-marking and
dependent-marking grammar. Language,
62(1):56–119.

Nivre, Joakim, Mitchell Abrams, Željko Agić,
Lars Ahrenberg, and Lene Antonsen et al.
2018. Universal dependencies 2.3.
LINDAT/CLARIAH-CZ digital library at
the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles

University.
Papineni, Kishore, Salim Roukos, Todd

Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of
machine translation. In Proceedings of 40th
Annual Meeting of the Association for
Computational Linguistics, pages 311–318,
Association for Computational
Linguistics, Philadelphia, Pennsylvania,
USA.

Pollock, Sheldon. 2003. Sanskrit literary
culture from the inside out. In Literary
cultures in history: Reconstructions from
South Asia. University of California Press
Berkeley, pages 39–130.

Puduppully, Ratish, Yue Zhang, and Manish
Shrivastava. 2017. Transition-based deep
input linearization. In Proceedings of the
15th Conference of the European Chapter of
the Association for Computational Linguistics:
Volume 1, Long Papers, pages 643–654,
Association for Computational
Linguistics, Valencia, Spain.

Qi, Peng, Timothy Dozat, Yuhao Zhang, and
Christopher D. Manning. 2018. Universal
dependency parsing from scratch. In
Proceedings of the CoNLL 2018 Shared Task:
Multilingual Parsing from Raw Text to
Universal Dependencies, pages 160–170,
Association for Computational
Linguistics, Brussels, Belgium.

Qi, Peng, Yuhao Zhang, Yuhui Zhang, Jason
Bolton, and Christopher D. Manning.
2020. Stanza: A python natural language
processing toolkit for many human
languages. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics: System Demonstrations, pages
101–108, Association for Computational
Linguistics, Online.

Ramkrishnamacharyulu, KV. 2009.
Annotating sanskrit texts based on
śābdabodha systems. In International
Sanskrit Computational Linguistics
Symposium, pages 26–39, Springer.

Ratliff, Nathan D, J Andrew Bagnell, and
Martin A Zinkevich. 2007. (online)
subgradient methods for structured
prediction. In Proceedings of the Eleventh
International Conference on Artificial
Intelligence and Statistics (AIStats), pages
380–387, JMLR.org, San Juan, Puerto Rico.

Reddy, Vikas, Amrith Krishna, Vishnu
Sharma, Prateek Gupta, Vineeth M R, and
Pawan Goyal. 2018. Building a Word
Segmenter for Sanskrit Overnight. In
Proceedings of the Eleventh International
Conference on Language Resources and
Evaluation (LREC 2018), pages 1666–1671,

57

Computational Linguistics Volume 1, Number 1

European Language Resources
Association (ELRA), Miyazaki, Japan.

Rother, Carsten, Vladimir Kolmogorov,
Victor Lempitsky, and Martin Szummer.
2007. Optimizing binary mrfs via
extended roof duality. In 2007 IEEE
Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2007),
pages 1–8, IEEE Computer Society,
Minneapolis, Minnesota, USA.

Sahin, Gozde Gul and Mark Steedman. 2018.
Data augmentation via dependency tree
morphing for low-resource languages. In
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 5004–5009, Association
for Computational Linguistics, Brussels,
Belgium.

Scharf, Peter, Anuja Ajotikar, Sampada
Savardekar, and Pawan Goyal. 2015.
Distinctive features of poetic syntax
preliminary results. Sanskrit syntax, pages
305–324.

Scharf, Peter M. 2013. Linguistics in india.
The Oxford handbook of the history of
linguistics, pages 227–257.

Schaufele, Steven William. 1991. Free
word-order syntax: The challenge from Vedic
Sanskrit to contemporary formal syntactic
theory. Ph.D. thesis, University of Illinois
at Urbana-Champaign.

Schmaltz, Allen, Alexander M. Rush, and
Stuart Shieber. 2016. Word ordering
without syntax. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing, pages 2319–2324,
Association for Computational
Linguistics, Austin, Texas.

Seeker, Wolfgang and Özlem Çetinoğlu.
2015. A graph-based lattice dependency
parser for joint morphological
segmentation and syntactic analysis.
Transactions of the Association for
Computational Linguistics, 3:359–373.

Seeker, Wolfgang and Jonas Kuhn. 2013.
Morphological and syntactic case in
statistical dependency parsing.
Computational Linguistics, 39(1):23–55.

Seker, Amit, Amir More, and Reut Tsarfaty.
2018. Universal morpho-syntactic parsing
and the contribution of lexica: Analyzing
the ONLP lab submission to the CoNLL
2018 shared task. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal
Dependencies, pages 208–215, Association
for Computational Linguistics, Brussels,
Belgium.

Shao, Yan, Christian Hardmeier, and Joakim
Nivre. 2018. Universal word
segmentation: Implementation and
interpretation. Transactions of the
Association for Computational Linguistics,
6:421–435.

Shi, Chuan, Yitong Li, Jiawei Zhang, Yizhou
Sun, and S Yu Philip. 2017. A survey of
heterogeneous information network
analysis. IEEE Transactions on Knowledge
and Data Engineering, 29(1):17–37.

Smith, Noah A., David A. Smith, and Roy W.
Tromble. 2005. Context-based
morphological disambiguation with
random fields. In Proceedings of Human
Language Technology Conference and
Conference on Empirical Methods in Natural
Language Processing, pages 475–482,
Association for Computational
Linguistics, Vancouver, British Columbia,
Canada.

Socher, Richard, Christopher D Manning,
and Andrew Y Ng. 2010. Learning
continuous phrase representations and
syntactic parsing with recursive neural
networks. In Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature
Learning Workshop, pages 1–9.

Sproat, Richard, Chilin Shih, William Gale,
and Nancy Chang. 1994. A stochastic
finite-state word-segmentation algorithm
for chinese. In Proceedings of the 32nd
Annual Meeting of the Association for
Computational Linguistics, pages 66–73,
Association for Computational
Linguistics, Las Cruces, New Mexico,
USA.

Sproat, Richard W., Chilin Shih, William
Gale, and Nancy Chang. 1996. A
stochastic finite-state word-segmentation
algorithm for Chinese. Computational
Linguistics, 22(3):377–404.

Srikumar, Vivek. 2017. An algebra for feature
extraction. In Proceedings of the 55th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages
1891–1900, Association for Computational
Linguistics, Vancouver, Canada.

Staal, F. 2008. Discovering the Vedas: Origins,
Mantras, Rituals, Insights. Penguin books.
Penguin Books.

Staal, Johan Frederik. 1967. Word order in
Sanskrit and universal grammar, volume 5 of
Foundations of Language Supplementary
Series. Springer Science & Business Media.

Straka, Milan and Jana Straková. 2017.
Tokenizing, pos tagging, lemmatizing and
parsing ud 2.0 with udpipe. In Proceedings
of the CoNLL 2017 Shared Task: Multilingual

58

Amrith Krishna A Graph Based Framework for Structured Prediction Tasks in Sanskrit

Parsing from Raw Text to Universal
Dependencies, pages 88–99, Association for
Computational Linguistics, Vancouver,
Canada.

Straka, Milan, Jana Straková, and Jan Hajic.
2019. UDPipe at SIGMORPHON 2019:
Contextualized embeddings,
regularization with morphological
categories, corpora merging. In Proceedings
of the 16th Workshop on Computational
Research in Phonetics, Phonology, and
Morphology, pages 95–103, Association for
Computational Linguistics, Florence, Italy.

Straková, Jana, Milan Straka, and Jan Hajič.
2014. Open-source tools for morphology,
lemmatization, POS tagging and named
entity recognition. In Proceedings of 52nd
Annual Meeting of the Association for
Computational Linguistics: System
Demonstrations, pages 13–18, Association
for Computational Linguistics, Baltimore,
Maryland.

Sun, Weiwei. 2010. Word-based and
character-based word segmentation
models: Comparison and combination. In
Coling 2010: Posters, pages 1211–1219,
Coling 2010 Organizing Committee,
Beijing, China.

Sutton, Charles, Andrew McCallum, and
Khashayar Rohanimanesh. 2007. Dynamic
conditional random fields: Factorized
probabilistic models for labeling and
segmenting sequence data. Journal of
Machine Learning Research, 8(Mar):693–723.

Takahashi, Hiromitsu. 1980. An approximate
solution for steiner problem in graphs.
Math. Japonica, 24(6):573–577.

Taskar, Ben, Carlos Guestrin, and Daphne
Koller. 2003. Max-margin markov
networks. In Proceedings of the 16th
International Conference on Neural
Information Processing Systems, NIPS’03,
pages 25–32, MIT Press, Cambridge, MA,
USA.

Tkachenko, Alexander and Kairit Sirts. 2018.
Modeling composite labels for neural
morphological tagging. In Proceedings of
the 22nd Conference on Computational
Natural Language Learning, pages 368–379,
Association for Computational
Linguistics.

Tomita, Etsuji, Akira Tanaka, and Haruhisa
Takahashi. 2006. The worst-case time
complexity for generating all maximal
cliques and computational experiments.
Theoretical Computer Science, 363(1):28–42.

Tsarfaty, Reut. 2006. Integrated
morphological and syntactic
disambiguation for modern hebrew. In

Proceedings of the 21st International
Conference on Computational Linguistics and
44th Annual Meeting of the Association for
Computational Linguistics: Student Research
Workshop, COLING ACL ’06, pages 49–54,
Association for Computational
Linguistics, Stroudsburg, PA, USA.

Tsarfaty, Reut, Khalil Sima’an, and Remko
Scha. 2009. An alternative to head-driven
approaches for parsing a (relatively) free
word-order language. In Proceedings of the
2009 Conference on Empirical Methods in
Natural Language Processing, pages
842–851, Association for Computational
Linguistics.

Tubb, Garry and Emery Boose. 2007.
Scholastic Sanskrit: A Handbook for Students.
Treasury of the Indic sciences. American
Institute of Buddhist Studies, Center for
Buddhist Studies and Tibet House,
Columbia University.

Vickrey, David and Daphne Koller. 2008.
Sentence simplification for semantic role
labeling. In Proceedings of ACL-08: HLT,
pages 344–352, Association for
Computational Linguistics, Columbus,
Ohio.

Voss, Stefan. 1993. Worst-case performance
of some heuristics for steiner’s problem in
directed graphs. Information Processing
Letters, 48(2):99–105.

Wang, Mengqiu, Rob Voigt, and
Christopher D Manning. 2014. Two knives
cut better than one: Chinese word
segmentation with dual decomposition. In
ACL (2), pages 193–198.

Wang, Wenhui, Baobao Chang, and Mairgup
Mansur. 2018. Improved dependency
parsing using implicit word connections
learned from unlabeled data. In
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 2857–2863, Association
for Computational Linguistics.

Weir, David, Julie Weeds, Jeremy Reffin, and
Thomas Kober. 2016. Aligning packed
dependency trees: A theory of
composition for distributional semantics.
Computational Linguistics, 42(4):727–761.

Wiseman, Sam and Alexander M. Rush. 2016.
Sequence-to-sequence learning as
beam-search optimization. In Proceedings
of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages
1296–1306, Association for Computational
Linguistics, Austin, Texas.

Wolf, J. and W. Woods. 1977. The hwim
speech understanding system. In ICASSP
’77. IEEE International Conference on

59

Computational Linguistics Volume 1, Number 1

Acoustics, Speech, and Signal Processing,
volume 2, pages 784–787.

Xue, Nianwen. 2003. Chinese word
segmentation as character tagging.
Computational Linguistics and Chinese
Language Processing, 8(1):29–48.

Yang, Jie, Yue Zhang, and Shuailong Liang.
2019. Subword encoding in lattice LSTM
for Chinese word segmentation. In
Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short
Papers), pages 2720–2725, Association for
Computational Linguistics, Minneapolis,
Minnesota.

Zeman, Daniel, Jan Hajič, Martin Popel,
Martin Potthast, Milan Straka, Filip Ginter,
Joakim Nivre, and Slav Petrov. 2018.
CoNLL 2018 shared task: Multilingual
parsing from raw text to universal
dependencies. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, pages
1–21, Association for Computational
Linguistics, Brussels, Belgium.

Zhang, Xiang, Junbo Zhao, and Yann LeCun.
2015. Character-level convolutional
networks for text classification. In
Advances in neural information processing
systems, pages 649–657.

Zhang, Yue. 2013. Partial-tree linearization:
Generalized word ordering for text
synthesis. In IJCAI, pages 2232–2238.

Zhang, Yue and Stephen Clark. 2011.
Syntactic processing using the generalized
perceptron and beam search.
Computational Linguistics, 37(1):105–151.

Zhang, Yue and Stephen Clark. 2015.
Discriminative syntax-based word
ordering for text generation. Computational
Linguistics, 41(3):503–538.

Zhang, Yue and Jie Yang. 2018. Chinese NER
using lattice LSTM. In Proceedings of the
56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 1554–1564, Association for
Computational Linguistics, Melbourne,
Australia.

60

61

	Introduction
	Computational Processing of Texts in Sanskrit and its Challenges
	Tasks

	Energy Based Framework for Structured prediction in Sanskrit
	Graph Generator
	Edge Vector Generator
	Inference Procedure
	Design Decisions

	Experiments
	Dataset
	Baselines
	Results
	Experiments on Czech

	Discussion
	Related Work
	Conclusion

