Random Walks on Graphs

Pawan Goyal

CSE, IITKGP

September 2-4, 2014

Social Networks: underlying data

The underlying data is naturally a graph

Social Networks: underlying data

The underlying data is naturally a graph

- Papers linked by citation

Social Networks: underlying data

The underlying data is naturally a graph

- Papers linked by citation
- Authors linked by co-authorship

Social Networks: underlying data

The underlying data is naturally a graph

- Papers linked by citation
- Authors linked by co-authorship
- Bipartite graph of customers and products

Social Networks: underlying data

The underlying data is naturally a graph

- Papers linked by citation
- Authors linked by co-authorship
- Bipartite graph of customers and products
- Web-graph: who links to whom

Social Networks: underlying data

The underlying data is naturally a graph

- Papers linked by citation
- Authors linked by co-authorship
- Bipartite graph of customers and products
- Web-graph: who links to whom
- Friendship networks: who knows whom

Social Networks: underlying data

The underlying data is naturally a graph

- Papers linked by citation
- Authors linked by co-authorship
- Bipartite graph of customers and products
- Web-graph: who links to whom
- Friendship networks: who knows whom
- Follower-followee network

Social Networks: what we are looking for

Rank nodes for a particular query

- Top k matches for "Social Computing" from Citeseer

Social Networks: what we are looking for

Rank nodes for a particular query

- Top k matches for "Social Computing" from Citeseer
- Who are the most likely co-authors of Manning.

Social Networks: what we are looking for

Rank nodes for a particular query

- Top k matches for "Social Computing" from Citeseer
- Who are the most likely co-authors of Manning.
- Top k book recommendations from Amazon

Social Networks: what we are looking for

Rank nodes for a particular query

- Top k matches for "Social Computing" from Citeseer
- Who are the most likely co-authors of Manning.
- Top k book recommendations from Amazon
- Top k websites for a query

Social Networks: what we are looking for

Rank nodes for a particular query

- Top k matches for "Social Computing" from Citeseer
- Who are the most likely co-authors of Manning.
- Top k book recommendations from Amazon
- Top k websites for a query
- Top k Friend recommendation to X when he joins Facebook

Why Random Walks?

- A wide variety of interesting real world applications can be framed as ranking entities in a graph

Why Random Walks?

- A wide variety of interesting real world applications can be framed as ranking entities in a graph
- A graph-theoretic measure for ranking nodes as well as similarity: for example, two entities are similar, if lots of short paths between them.

Why Random Walks?

- A wide variety of interesting real world applications can be framed as ranking entities in a graph
- A graph-theoretic measure for ranking nodes as well as similarity: for example, two entities are similar, if lots of short paths between them.
- Random walks have proven to be a simple, but powerful mathematical tool for extracting this information.

What is Random Walk?

- Given a graph and a starting point (node), we select a neighbor of it at random, and move to this neighbor

What is Random Walk?

- Given a graph and a starting point (node), we select a neighbor of it at random, and move to this neighbor
- Then we select a neighbor of this node and move to it, and so on

What is Random Walk?

- Given a graph and a starting point (node), we select a neighbor of it at random, and move to this neighbor
- Then we select a neighbor of this node and move to it, and so on
- The (random) sequence of nodes selected this way is a random walk on the graph

Adjacency and Transition Matrix

$n \times n$ Adjacency matrix A

- $A(i, j)$: weight on edge from i to j
- If the graph is undirected $A(i, j)=A(j, i)$, i.e. A is symmetric

Adjacency and Transition Matrix

$n \times n$ Adjacency matrix A

- $A(i, j)$: weight on edge from i to j
- If the graph is undirected $A(i, j)=A(j, i)$, i.e. A is symmetric
$n \times n$ Transition matrix P
- P is row stochastic
- $P(i, j)=$ probability of stepping on node j from node i

Adjacency and Transition Matrix

$n \times n$ Adjacency matrix A

- $A(i, j)$: weight on edge from i to j
- If the graph is undirected $A(i, j)=A(j, i)$, i.e. A is symmetric
$n \times n$ Transition matrix P
- P is row stochastic
- $P(i, j)=$ probability of stepping on node j from node $i=\frac{A(i, j)}{\Sigma_{j} A(i, j)}$

Adjacency and Transition Matrix: Example

0	1	0
0	0	1
1	1	0

Adjacency matrix A

Transition matrix P

What is a random walk?

Probability Distributions

- $x_{t}(i)$: probability that the surfer is at node i at time t

Probability Distributions

- $x_{t}(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i)$:

Probability Distributions

- $x_{t}(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i): \sum_{j}(\text { Probability of being at node } j)^{*} \operatorname{Pr}(j \rightarrow i)=\sum_{j} x_{t}(j)^{*} P(j, i)$

Probability Distributions

- $x_{t}(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i): \sum_{j}(\text { Probability of being at node } j)^{*} \operatorname{Pr}(j \rightarrow i)=\sum_{j} x_{t}(j)^{*} P(j, i)$
- $x_{t+1}=x_{t} P=x_{t-1}^{*} P^{*} P=\ldots=x_{0} P^{t}$

Probability Distributions

- $x_{t}(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i): \sum_{j}(\text { Probability of being at node } j)^{*} \operatorname{Pr}(j \rightarrow i)=\sum_{j} x_{t}(j)^{*} P(j, i)$
- $x_{t+1}=x_{t} P=x_{t-1}^{*} P^{*} P=\ldots=x_{0} P^{t}$
- What if the surfer keeps walking for a long time?

Probability Distributions

- $x_{t}(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i): \sum_{j}(\text { Probability of being at node } j)^{\star} \operatorname{Pr}(j \rightarrow i)=\sum_{j} x_{t}(j)^{*} P(j, i)$
- $x_{t+1}=x_{t} P=x_{t-1}^{*} P^{*} P=\ldots=x_{0} P^{t}$
- What if the surfer keeps walking for a long time?

Stationary Distribution

Probability Distributions

- $x_{t}(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i): \sum_{j}(\text { Probability of being at node } j)^{\star} \operatorname{Pr}(j \rightarrow i)=\sum_{j} x_{t}(j)^{*} P(j, i)$
- $x_{t+1}=x_{t} P=x_{t-1}^{*} P^{*} P=\ldots=x_{0} P^{t}$
- What if the surfer keeps walking for a long time?

Stationary Distribution

- When the surfer keeps walking for a long time

Probability Distributions

- $x_{t}(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i): \sum_{j}(\text { Probability of being at node } j)^{*} \operatorname{Pr}(j \rightarrow i)=\sum_{j} x_{t}(j)^{*} P(j, i)$
- $x_{t+1}=x_{t} P=x_{t-1}^{*} P^{*} P=\ldots=x_{0} P^{t}$
- What if the surfer keeps walking for a long time?

Stationary Distribution

- When the surfer keeps walking for a long time
- When the distribution does not change anymore, i.e. $x_{T+1}=x_{T}$

Probability Distributions

- $x_{t}(i)$: probability that the surfer is at node i at time t
- $x_{t+1}(i): \sum_{j}(\text { Probability of being at node } j)^{\star} \operatorname{Pr}(j \rightarrow i)=\sum_{j} x_{t}(j)^{*} P(j, i)$
- $x_{t+1}=x_{t} P=x_{t-1}^{*} P^{*} P=\ldots=x_{0} P^{t}$
- What if the surfer keeps walking for a long time?

Stationary Distribution

- When the surfer keeps walking for a long time
- When the distribution does not change anymore, i.e. $x_{T+1}=x_{T}$
- For well-behaved graphs, this does not depend on the start distribution

What is a stationary distribution?

- Stationary distribution at a node is related to the amount of time a random walker spends visiting that node
- Probability distribution at a node can be written as $x_{t+1}=x_{t} P$

What is a stationary distribution?

- Stationary distribution at a node is related to the amount of time a random walker spends visiting that node
- Probability distribution at a node can be written as $x_{t+1}=x_{t} P$
- For the stationary distribution (say v_{0}), we have $v_{0}=v_{0} P$

What is a stationary distribution?

- Stationary distribution at a node is related to the amount of time a random walker spends visiting that node
- Probability distribution at a node can be written as $x_{t+1}=x_{t} P$
- For the stationary distribution (say v_{0}), we have $v_{0}=v_{0} P$
- This is the left eigenvector of the transition matrix

Interesting questions

Does a stationary distribution always exist? Is it unique?
Yes, if the graph is "well-behaved"

Interesting questions

Does a stationary distribution always exist? Is it unique?
Yes, if the graph is "well-behaved"

How fast the random surfer approach this stationary distribution?
Mixing time

Well behaved graphs

Irreducible
 There is a path from every node to every other node.

Well behaved graphs

Irreducible

There is a path from every node to every other node.

Irreducible

Not irreducible

Well behaved graphs

Aperiodic
The GCD of all cycle lengths is 1 . The GCD is also called period.

Well behaved graphs

Aperiodic

The GCD of all cycle lengths is 1 . The GCD is also called period.

Periodicity is 3

Aperiodic

Perron Frobenius Theorem: Implications

Theorem Statement

Let $A=\left(a_{i j}\right)$ be an $n \times n$ positive matrix: $a_{i j}>0 \forall 1 \leq i, j \leq n$. Then

- There is a positive real number r, such that r is an eigenvalue of A and any other eigenvalue is strictly smaller than r in absolute value.

Perron Frobenius Theorem: Implications

Theorem Statement

Let $A=\left(a_{i j}\right)$ be an $n \times n$ positive matrix: $a_{i j}>0 \forall 1 \leq i, j \leq n$. Then

- There is a positive real number r, such that r is an eigenvalue of A and any other eigenvalue is strictly smaller than r in absolute value.

Markov Chain: irreducible and aperiodic

- For any matrix A with eigenvalue $\sigma,|\sigma| \leq \max _{i} \sum_{j}\left|A_{i j}\right|$.
- Since P is row stochastic, the largest eigenvalue of the transition matrix will be equal to 1 and all other eigenvalues will be strictly less than 1

Perron Frobenius Theorem: Implications

Theorem Statement

Let $A=\left(a_{i j}\right)$ be an $n \times n$ positive matrix: $a_{i j}>0 \forall 1 \leq i, j \leq n$. Then

- There is a positive real number r, such that r is an eigenvalue of A and any other eigenvalue is strictly smaller than r in absolute value.

Markov Chain: irreducible and aperiodic

- For any matrix A with eigenvalue $\sigma,|\sigma| \leq \max _{i} \sum_{j}\left|A_{i j}\right|$.
- Since P is row stochastic, the largest eigenvalue of the transition matrix will be equal to 1 and all other eigenvalues will be strictly less than 1
- Let the eigenvalues of P be $\left\{\sigma_{i} \mid i=0: n-1\right\}$ in non-decreasing order of σ_{i}
- $\sigma_{0}=1>\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{n}$

Perron Frobenius Theorem: Implications

- $v_{0}=v_{0} P$ (unique for a well-behaved graph)

Perron Frobenius Theorem: Implications

- $v_{0}=v_{0} P$ (unique for a well-behaved graph)
- Let x be an arbitrary initial distribution

$$
x=\sum_{i=1}^{n} a_{i} u_{i}
$$

Perron Frobenius Theorem: Implications

- $v_{0}=v_{0} P$ (unique for a well-behaved graph)
- Let x be an arbitrary initial distribution

$$
x=\sum_{i=1}^{n} a_{i} u_{i}
$$

- $x P=\sum_{i=1}^{n} a_{i}\left(u_{i} P\right)$

Perron Frobenius Theorem: Implications

- $v_{0}=v_{0} P$ (unique for a well-behaved graph)
- Let x be an arbitrary initial distribution

$$
x=\sum_{i=1}^{n} a_{i} u_{i}
$$

- $x P=\sum_{i=1}^{n} a_{i}\left(u_{i} P\right)$
$-\sum_{i=1}^{n} a_{i}\left(\sigma_{i} u_{i}\right)$

Perron Frobenius Theorem: Implications

- $v_{0}=v_{0} P$ (unique for a well-behaved graph)
- Let x be an arbitrary initial distribution

$$
x=\sum_{i=1}^{n} a_{i} u_{i}
$$

- $x P=\sum_{i=1}^{n} a_{i}\left(u_{i} P\right)$
$-\sum_{i=1}^{n} a_{i}\left(\sigma_{i} u_{i}\right)$
- Similarly, $x P^{k}=\sum_{i=1}^{n} a_{i}\left(\sigma_{i}{ }^{k} u_{i}\right)$

Perron Frobenius Theorem: Implications

- $v_{0}=v_{0} P$ (unique for a well-behaved graph)
- Let x be an arbitrary initial distribution

$$
x=\sum_{i=1}^{n} a_{i} u_{i}
$$

- $x P=\sum_{i=1}^{n} a_{i}\left(u_{i} P\right)$
$\bullet=\sum_{i=1}^{n} a_{i}\left(\sigma_{i} u_{i}\right)$
- Similarly, $x P^{k}=\sum_{i=1}^{n} a_{i}\left(\sigma_{i}{ }^{k} u_{i}\right)$
- $x P P P \ldots P=x P^{k}$ tends to v_{0} as k goes to infinity.

Perron Frobenius Theorem: Implications

$$
x P^{k}=\sigma_{1}^{k}\left\{a_{1} u_{1}+a_{2}\left(\frac{\sigma_{2}}{\sigma_{1}}\right)^{k} u_{2}+\ldots+a_{n}\left(\frac{\sigma_{n}}{\sigma_{1}}\right)^{k} u_{n}\right\}
$$

Perron Frobenius Theorem: Implications

$x P^{k}=\sigma_{1}^{k}\left\{a_{1} u_{1}+a_{2}\left(\frac{\sigma_{2}}{\sigma_{1}}\right)^{k} u_{2}+\ldots+a_{n}\left(\frac{\sigma_{n}}{\sigma_{1}}\right)^{k} u_{n}\right\}$
$u_{1}=v_{0}$, thus $x P^{k}$ approaches to v_{0} as k goes to infinity with a speed in the order of σ_{2} / σ_{1} exponentially.

Perron Frobenius Theorem: Implications

$x P^{k}=\sigma_{1}^{k}\left\{a_{1} u_{1}+a_{2}\left(\frac{\sigma_{2}}{\sigma_{1}}\right)^{k} u_{2}+\ldots+a_{n}\left(\frac{\sigma_{n}}{\sigma_{1}}\right)^{k} u_{n}\right\}$
$u_{1}=v_{0}$, thus $x P^{k}$ approaches to v_{0} as k goes to infinity with a speed in the order of σ_{2} / σ_{1} exponentially.

Show that $a_{1}=1$

Perron Frobenius Theorem: Implications

$x P^{k}=\sigma_{1}^{k}\left\{a_{1} u_{1}+a_{2}\left(\frac{\sigma_{2}}{\sigma_{1}}\right)^{k} u_{2}+\ldots+a_{n}\left(\frac{\sigma_{n}}{\sigma_{1}}\right)^{k} u_{n}\right\}$
$u_{1}=v_{0}$, thus $x P^{k}$ approaches to v_{0} as k goes to infinity with a speed in the order of σ_{2} / σ_{1} exponentially.

Show that $a_{1}=1$

- $1_{n \times 1}$ is the right eigenvector of P with eigenvalue 1 , since P is stochastic, i.e. $P^{*} 1_{n \times 1}=1_{n \times 1}$
- Hence, $u_{i}{ }^{*} 1_{n \times 1}=1$ for $i=1,0$ otherwise (relation between left and right eigen vectors)
- Now, $1=x^{*} 1_{n \times 1}=a_{1} u_{1}{ }^{*} 1_{n \times 1}=a_{1}$ (Why?)

Important Parameters of a random walk

Access time or hitting time ($h_{i j}$)

$h_{i j}$ is the expected number of steps before node j is first visited, starting from node i

Important Parameters of a random walk

Access time or hitting time ($h_{i j}$)

$h_{i j}$ is the expected number of steps before node j is first visited, starting from node i
$h_{i j}=1+\sum_{k} p_{i k} h_{k j}, i \neq j$

Important Parameters of a random walk

Access time or hitting time ($h_{i j}$)
$h_{i j}$ is the expected number of steps before node j is first visited, starting from node i
$h_{i j}=1+\sum_{k} p_{i k} h_{k j}, i \neq j$

Commute time ($c_{i j}$)
$c_{i j}=h_{i j}+h_{j i}$

Important Parameters of a random walk

Access time or hitting time ($h_{i j}$)
$h_{i j}$ is the expected number of steps before node j is first visited, starting from node i
$h_{i j}=1+\sum_{k} p_{i k} h_{k j}, i \neq j$

Commute time ($c_{i j}$)
$c_{i j}=h_{i j}+h_{j i}$

Cover Time $\operatorname{Cov}(G)$
$\operatorname{Cov}(s, G)$: expected number of steps it takes a walk that starts at s to visit all vertices

Important Parameters of a random walk

Access time or hitting time ($h_{i j}$)
$h_{i j}$ is the expected number of steps before node j is first visited, starting from node i
$h_{i j}=1+\sum_{k} p_{i k} h_{k j}, i \neq j$

Commute time ($c_{i j}$)
$c_{i j}=h_{i j}+h_{j i}$

Cover Time $\operatorname{Cov}(G)$
$\operatorname{Cov}(s, G)$: expected number of steps it takes a walk that starts at s to visit all vertices
$\operatorname{Cov}(G):$ maximum over s of $\operatorname{Cov}(s, G)$

Important Parameters of a random walk

Access time or hitting time ($h_{i j}$)

$h_{i j}$ is the expected number of steps before node j is first visited, starting from node i
$h_{i j}=1+\sum_{k} p_{i k} h_{k j}, i \neq j$

Commute time ($c_{i j}$)
$c_{i j}=h_{i j}+h_{j i}$

Cover Time $\operatorname{Cov}(G)$
$\operatorname{Cov}(s, G)$: expected number of steps it takes a walk that starts at s to visit all vertices
$\operatorname{Cov}(G)$: maximum over s of $\operatorname{Cov}(s, G)$
$\operatorname{Cov}^{+}(G)$: Cover and return to start

Mixing Rate

- How fast the random walk converges to its limiting distribution
- Mixing rate for some graphs can be very small: $O(\log n)$

Mixing Rate

- How fast the random walk converges to its limiting distribution
- Mixing rate for some graphs can be very small: $O(\operatorname{logn})$
- Mixing rate depends on the spectral gap: $1-\sigma_{2}$, where σ_{2} is the second highest eigen value
- Smaller the value of σ_{2}, larger is the spectral gap, faster is the mixing rate

PageRank (Page and Brin, 1998)

PageRank (Page and Brin, 1998)

Basic Intuition

A webpage is important if other important pages point to it

PageRank (Page and Brin, 1998)

Basic Intuition

A webpage is important if other important pages point to it

- $v(i)=\sum_{j \rightarrow i} \frac{v(j)}{\text { deg }^{\text {out }}(j)}$

PageRank (Page and Brin, 1998)

Basic Intuition

A webpage is important if other important pages point to it

- $v(i)=\sum_{j \rightarrow i} \frac{v(j)}{\operatorname{deg}^{\text {out }}(j)}$
- v is the stationary distribution of the Markov chain

Irreducibility and Aperiodicity

Irreducibility and Aperiodicity

How to guarantee this for a web graph?

Irreducibility and Aperiodicity

How to guarantee this for a web graph?
At any time-step the random surfer

- jumps (teleport) to any other node with probability c
- jumps to its direct neighbors with total probability $1-c$

Irreducibility and Aperiodicity

How to guarantee this for a web graph?
At any time-step the random surfer

- jumps (teleport) to any other node with probability c
- jumps to its direct neighbors with total probability $1-c$

$$
\tilde{P}=(1-c) P+c U
$$

Irreducibility and Aperiodicity

How to guarantee this for a web graph?
At any time-step the random surfer

- jumps (teleport) to any other node with probability c
- jumps to its direct neighbors with total probability $1-c$

$$
\begin{gathered}
\tilde{P}=(1-c) P+c U \\
U_{i j}=\frac{1}{n} \forall i, j
\end{gathered}
$$

Computing PageRank: The Power Method

- Start with any distribution x_{0}, e.g. uniform distribution
- Algorithm: multiply x_{0} by increasing powers of P until convergence
- After one step, $x_{1}=x_{0} P$, after k steps $x_{k}=x_{0} P^{k}$
- Regardless of where we start, we eventually reach the steady state v_{0}

PageRank: Example

Example web graph

From "Introduction to Information Retrieval" slides

PageRank: Example

Transition (probability) matrix

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
d_{0}	0.00	0.00	1.00	0.00	0.00	0.00	0.00
d_{1}	0.00	0.50	0.50	0.00	0.00	0.00	0.00
d_{2}	0.33	0.00	0.33	0.33	0.00	0.00	0.00
d_{3}	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_{4}	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_{5}	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_{6}	0.00	0.00	0.00	0.33	0.33	0.00	0.33

PageRank: Example

Transition matrix with teleporting

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
d_{0}	0.02	0.02	0.88	0.02	0.02	0.02	0.02
d_{1}	0.02	0.45	0.45	0.02	0.02	0.02	0.02
d_{2}	0.31	0.02	0.31	0.31	0.02	0.02	0.02
d_{3}	0.02	0.02	0.02	0.45	0.45	0.02	0.02
d_{4}	0.02	0.02	0.02	0.02	0.02	0.02	0.88
d_{5}	0.02	0.02	0.02	0.02	0.02	0.45	0.45
d_{6}	0.02	0.02	0.02	0.31	0.31	0.02	0.31

PageRank: Example

Power method vectors $\vec{x} P^{k}$

	$\overrightarrow{\boldsymbol{x}}$	$\vec{x} \boldsymbol{P}^{1}$	$\overrightarrow{\boldsymbol{x}} \boldsymbol{P}^{2}$	$\vec{x} P^{3}$	$\vec{x} P^{4}$	$\vec{x} P^{5}$	$\vec{x} P^{6}$	$\vec{x} P^{7}$	$\vec{x} P^{8}$	$\vec{x} P^{9}$	$\vec{x} P^{10}$	$\vec{x} P^{11}$	$\vec{x} P^{12}$	$\vec{x} P^{13}$
d_{0}	0.14	0.06	0.09	0.07	0.07	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05	0.05
d_{1}	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
d_{2}	0.14	0.25	0.18	0.17	0.15	0.14	0.13	0.12	0.12	0.12	0.12	0.11	0.11	0.11
d_{3}	0.14	0.16	0.23	0.24	0.24	0.24	0.24	0.25	0.25	0.25	0.25	0.25	0.25	0.25
d_{4}	0.14	0.12	0.16	0.19	0.19	0.20	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
d_{5}	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
d_{6}	0.14	0.25	0.23	0.25	0.27	0.28	0.29	0.29	0.30	0.30	0.30	0.30	0.31	0.31

PageRank: Example

Example web graph

Personalized PageRank

- We are looking for the vector v such that

$$
v=(1-c) v P+c r
$$

- r is a distribution over web-pages

Personalized PageRank

- We are looking for the vector v such that

$$
v=(1-c) v P+c r
$$

- r is a distribution over web-pages
- If r is the uniform distribution we get pagerank

Personalized PageRank

- We are looking for the vector v such that

$$
v=(1-c) v P+c r
$$

- r is a distribution over web-pages
- If r is the uniform distribution we get pagerank
- What happens if r is non-uniform?

Personalized PageRank

- We are looking for the vector v such that

$$
v=(1-c) v P+c r
$$

- r is a distribution over web-pages
- If r is the uniform distribution we get pagerank
- What happens if r is non-uniform? \rightarrow Pesonalization

Personalized PageRank

- The only difference is that we use a non-uniform teleportation distribution, i.e. at any time step, teleport to a set of webpages.
- In other words we are looking for the vector v such that

$$
v=(1-c) v P+c r
$$

Personalized PageRank

- The only difference is that we use a non-uniform teleportation distribution, i.e. at any time step, teleport to a set of webpages.
- In other words we are looking for the vector v such that

$$
v=(1-c) v P+c r
$$

- r is a non-uniform preference vector specific to a user.

Personalized PageRank

- The only difference is that we use a non-uniform teleportation distribution, i.e. at any time step, teleport to a set of webpages.
- In other words we are looking for the vector v such that

$$
v=(1-c) v P+c r
$$

- r is a non-uniform preference vector specific to a user.
- v gives "personalized views" of the web.

Topic Sensitive PageRank

- Divide the webpages into 16 broad categories

Topic Sensitive PageRank

- Divide the webpages into 16 broad categories
- For each category, compute the biased personalized pagerank vector by teleporting uniformly to websites under that category.

Topic Sensitive PageRank

- Divide the webpages into 16 broad categories
- For each category, compute the biased personalized pagerank vector by teleporting uniformly to websites under that category.
- At query time, the probability of query being from any of the above classes is computed

Topic Sensitive PageRank

- Divide the webpages into 16 broad categories
- For each category, compute the biased personalized pagerank vector by teleporting uniformly to websites under that category.
- At query time, the probability of query being from any of the above classes is computed
- Final pageRank vector is computed by a linear combination of the biased pagerank vectors computed offline

HITS - Hyperlink-Induced Topic Search

- There are two different types of web-pages for searching a broad topic: the authorities and the hubs

HITS - Hyperlink-Induced Topic Search

- There are two different types of web-pages for searching a broad topic: the authorities and the hubs
- Authorities: pages which are good sources of information about a given topic

HITS - Hyperlink-Induced Topic Search

- There are two different types of web-pages for searching a broad topic: the authorities and the hubs
- Authorities: pages which are good sources of information about a given topic
- Hub: provides pointers to many authorities

HITS - Hyperlink-Induced Topic Search

- There are two different types of web-pages for searching a broad topic: the authorities and the hubs
- Authorities: pages which are good sources of information about a given topic
- Hub: provides pointers to many authorities
- Works on a subgraph - can consist of top k search results for the given query from a standard text-based engine

Hubs and Authorities

- Given this subgraph, the idea is to assign two numbers to a node: a hub-score and an authority score

Hubs and Authorities

- Given this subgraph, the idea is to assign two numbers to a node: a hub-score and an authority score
- A node is a good hub if it points to many good authorities, whereas a node is a good authority if many good hubs point to it.
- $a(i) \leftarrow \sum_{j: j \in I(i)} h(j)$
- $h(i) \leftarrow \sum_{j: j \in O(i)} a(j)$

Hubs and Authorities

- $a=A^{T} h, h=A a$
- $h=A A^{T} h, a=A^{T} A a$

Hubs and Authorities

- $a=A^{T} h, h=A a$
- $h=A A^{T} h, a=A^{T} A a$
- h converges to the principal eigenvector of $A^{T} A$ and a converges to the principal eigenvector of $A^{T} A$

Hubs and Authorities

- $a=A^{T} h, h=A a$
- $h=A A^{T} h, a=A^{T} A a$
- h converges to the principal eigenvector of $A^{T} A$ and a converges to the principal eigenvector of $A^{T} A$
- $A A^{T}(i, j)=\sum_{k} A(i, k) A(j, k)$: number of nodes both i and j point to, bibliographic coupling

Hubs and Authorities

- $a=A^{T} h, h=A a$
- $h=A A^{T} h, a=A^{T} A a$
- h converges to the principal eigenvector of $A^{T} A$ and a converges to the principal eigenvector of $A^{T} A$
- $A A^{T}(i, j)=\sum_{k} A(i, k) A(j, k)$: number of nodes both i and j point to, bibliographic coupling
- $A^{T} A(i, j)=\sum_{k} A(k, i) A(k, j)$: number of nodes which point to both i and j, co-citation matrix

HITS: Example

How to compute hub and authority scores

- Do a regular web search first
- Call the search result the root set
- Find all pages that are linked to or link to pages in the root set
- Call first larger set the base set
- Finally, compute hubs and authorities for the base set (which we'll view as a small web graph)

HITS: Example

Root set and base set (1)

The base set

From "Introduction to Information Retrieval" slides

HITS: Example

Example web graph

From "Introduction to Information Retrieval" slides

HITS: Example

Raw matrix A for HITS

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
d_{0}	0	0	1	0	0	0	0
d_{1}	0	1	1	0	0	0	0
d_{2}	1	0	1	2	0	0	0
d_{3}	0	0	0	1	1	0	0
d_{4}	0	0	0	0	0	0	1
d_{5}	0	0	0	0	0	1	1
d_{6}	0	0	0	2	1	0	1

HITS: Example

Hub vectors $h_{0}, \vec{h}_{i}=\frac{1}{d_{i}} A^{*} a_{i}, i \geq 1$

	\vec{h}_{0}	\vec{h}_{1}	\vec{h}_{2}	\vec{h}_{3}	\vec{h}_{4}	\vec{h}_{5}
d_{0}	0.14	0.06	0.04	0.04	0.03	0.03
d_{1}	0.14	0.08	0.05	0.04	0.04	0.04
d_{2}	0.14	0.28	0.32	0.33	0.33	0.33
d_{3}	0.14	0.14	0.17	0.18	0.18	0.18
d_{4}	0.14	0.06	0.04	0.04	0.04	0.04
d_{5}	0.14	0.08	0.05	0.04	0.04	0.04
d_{6}	0.14	0.30	0.33	0.34	0.35	0.35

HITS: Example

Authority vector $\vec{a}=\frac{1}{c_{i}} A^{T *} \vec{h}_{i-1}, i \geq 1$

	a_{1}	\vec{a}_{2}	\vec{a}_{3}	\vec{a}_{4}	\vec{a}_{5}	\vec{a}_{6}	\vec{a}_{7}
d_{0}	0.06	0.09	0.10	0.10	0.10	0.10	0.10
d_{1}	0.06	0.03	0.01	0.01	0.01	0.01	0.01
d_{2}	0.19	0.14	0.13	0.12	0.12	0.12	0.12
d_{3}	0.31	0.43	0.46	0.46	0.46	0.47	0.47
d_{4}	0.13	0.14	0.16	0.16	0.16	0.16	0.16
d_{5}	0.06	0.03	0.02	0.01	0.01	0.01	0.01
d_{6}	0.19	0.14	0.13	0.13	0.13	0.13	0.13

HITS: Example

Example web graph

From "Introduction to Information Retrieval" slides

Tightly Knit Communities Effect

- HITS ranking is sensitive to the tightly knit communities, coined as the TKC effect.
- This happens when a small tightly-knit community of nodes rank highly, although they are not most authoritative.

Tightly Knit Communities Effect

- HITS ranking is sensitive to the tightly knit communities, coined as the TKC effect.
- This happens when a small tightly-knit community of nodes rank highly, although they are not most authoritative.
- It has been shown that SALSA is less vulnerable to the TKC effect than HITS.

SALSA: The Stochastic Approach for Link-Structure Analysis

- Consider a bipartite graph G, two parts correspond to hubs and authorities
- Edge between hub r and authority s means that there is an informative link from r to s

SALSA: The Stochastic Approach for Link-Structure Analysis

- Consider a bipartite graph G, two parts correspond to hubs and authorities
- Edge between hub r and authority s means that there is an informative link from r to s
- Authorities and hubs pertaining to the dominant topic of the pages in G should be highly visible from many pages in G

SALSA: The Stochastic Approach for Link-Structure Analysis

- Consider a bipartite graph G, two parts correspond to hubs and authorities
- Edge between hub r and authority s means that there is an informative link from r to s
- Authorities and hubs pertaining to the dominant topic of the pages in G should be highly visible from many pages in G
- Two separate random walks: Hub walk and Authority walk

SALSA

Two distinct random walks

- Each walk only visits nodes from one of the two sides of the graph
- Traverses paths consisting of two G-edges in each step

SALSA

Two distinct random walks

- Each walk only visits nodes from one of the two sides of the graph
- Traverses paths consisting of two G-edges in each step
- Hub matrix \tilde{H} :

$$
\tilde{h}_{i j}=\sum_{\left\{k \mid\left(i_{n}, k_{a}\right),\left(j_{h}, k_{a}\right) \in G\right\}} \frac{1}{\operatorname{deg}\left(i_{h}\right)} \cdot \frac{1}{\operatorname{deg}\left(k_{a}\right)}
$$

SALSA

Two distinct random walks

- Each walk only visits nodes from one of the two sides of the graph
- Traverses paths consisting of two G-edges in each step
- Hub matrix \tilde{H} :

$$
\tilde{h}_{i j}=\sum_{\left\{k \mid\left(i_{n}, k_{a}\right),\left(j_{h}, k_{a}\right) \in G\right\}} \frac{1}{\operatorname{deg}\left(i_{h}\right)} \cdot \frac{1}{\operatorname{deg}\left(k_{a}\right)}
$$

- Authority matrix \tilde{A} :

$$
\tilde{a}_{i j}=\sum_{\left\{k \mid\left(k_{h}, i_{a}\right),\left(k_{h}, j_{a}\right) \in G\right\}} \frac{1}{\operatorname{deg}\left(i_{a}\right)} \cdot \frac{1}{\operatorname{deg}\left(k_{h}\right)}
$$

SALSA

Two distinct random walks

- Each walk only visits nodes from one of the two sides of the graph
- Traverses paths consisting of two G-edges in each step
- Hub matrix \tilde{H} :

$$
\tilde{h}_{i j}=\sum_{\left\{k \mid\left(i_{n}, k_{a}\right),\left(j_{h}, k_{a}\right) \in G\right\}} \frac{1}{\operatorname{deg}\left(i_{h}\right)} \cdot \frac{1}{\operatorname{deg}\left(k_{a}\right)}
$$

- Authority matrix \tilde{A} :

$$
\tilde{a}_{i j}=\sum_{\left\{k \mid\left(k_{h}, i_{a}\right),\left(k_{h}, j_{a}\right) \in G\right\}} \frac{1}{\operatorname{deg}\left(i_{a}\right)} \cdot \frac{1}{\operatorname{deg}\left(k_{h}\right)}
$$

- $\tilde{a}_{i, j}>0$ implies that a certain page k links to both pages i and j, thus j is reachable from i by two steps: retracting along $k \rightarrow i$ and following $k \rightarrow j$

SALSA Vectors

- A: adjacency matrix of the directed graph defined by its link structure

SALSA Vectors

- A: adjacency matrix of the directed graph defined by its link structure
- A_{r} : Row normalized version, obtained by dividing each nonzero entry of A by the sum of entries in its row
- A_{c} : Column normalized version

SALSA Vectors

- A: adjacency matrix of the directed graph defined by its link structure
- A_{r} : Row normalized version, obtained by dividing each nonzero entry of A by the sum of entries in its row
- A_{c} : Column normalized version
- It can be shown that \tilde{H} consists of the nonzero rows and columns of $A_{r} A_{c}{ }^{T}$

SALSA Vectors

- A: adjacency matrix of the directed graph defined by its link structure
- A_{r} : Row normalized version, obtained by dividing each nonzero entry of A by the sum of entries in its row
- A_{c} : Column normalized version
- It can be shown that \tilde{H} consists of the nonzero rows and columns of $A_{r} A_{c}{ }^{T}$
- Similarly, \tilde{A} consists of the nonzero rows and columns of $A_{c}{ }^{T} A_{r}$

