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Social Networks: underlying data

The underlying data is naturally a graph

Papers linked by citation

Authors linked by co-authorship

Bipartite graph of customers and products

Web-graph: who links to whom

Friendship networks: who knows whom

Follower-followee network
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Social Networks: what we are looking for

Rank nodes for a particular query
Top k matches for “Social Computing” from Citeseer

Who are the most likely co-authors of Manning.

Top k book recommendations from Amazon

Top k websites for a query

Top k Friend recommendation to X when he joins Facebook
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Why Random Walks?

A wide variety of interesting real world applications can be framed as
ranking entities in a graph

A graph-theoretic measure for ranking nodes as well as similarity: for
example, two entities are similar, if lots of short paths between them.

Random walks have proven to be a simple, but powerful mathematical
tool for extracting this information.
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What is Random Walk?

Given a graph and a starting point (node), we select a neighbor of it at
random, and move to this neighbor

Then we select a neighbor of this node and move to it, and so on

The (random) sequence of nodes selected this way is a random walk on
the graph
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Adjacency and Transition Matrix

n×n Adjacency matrix A

A(i, j): weight on edge from i to j

If the graph is undirected A(i, j) = A(j, i), i.e. A is symmetric

n×n Transition matrix P
P is row stochastic

P(i, j) = probability of stepping on node j from node i = A(i,j)
ΣjA(i,j)
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Adjacency and Transition Matrix: Example
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What is a random walk?
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Probability Distributions

xt(i): probability that the surfer is at node i at time t

xt+1(i): ∑j (Probability of being at node j)* Pr(j→ i) = ∑j xt(j)∗P(j, i)

xt+1 = xtP = x∗t−1P∗P = . . .= x0Pt

What if the surfer keeps walking for a long time?

Stationary Distribution
When the surfer keeps walking for a long time

When the distribution does not change anymore, i.e. xT+1 = xT

For well-behaved graphs, this does not depend on the start distribution
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What is a stationary distribution?

Stationary distribution at a node is related to the amount of time a random
walker spends visiting that node

Probability distribution at a node can be written as xt+1 = xtP

For the stationary distribution (say v0), we have v0 = v0P

This is the left eigenvector of the transition matrix
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Interesting questions

Does a stationary distribution always exist? Is it unique?
Yes, if the graph is “well-behaved”

How fast the random surfer approach this stationary distribution?
Mixing time
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Well behaved graphs

Irreducible
There is a path from every node to every other node.
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Well behaved graphs

Aperiodic
The GCD of all cycle lengths is 1. The GCD is also called period.
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Perron Frobenius Theorem: Implications

Theorem Statement
Let A = (aij) be an n×n positive matrix: aij > 0∀1≤ i, j≤ n. Then

There is a positive real number r, such that r is an eigenvalue of A and
any other eigenvalue is strictly smaller than r in absolute value.

Markov Chain: irreducible and aperiodic

For any matrix A with eigenvalue σ, |σ| ≤ maxi ∑j |Aij|.
Since P is row stochastic, the largest eigenvalue of the transition matrix
will be equal to 1 and all other eigenvalues will be strictly less than 1

Let the eigenvalues of P be {σi|i = 0 : n−1} in non-decreasing order of
σi

σ0 = 1 > σ1 ≥ σ2 ≥ . . .σn

Pawan Goyal (IIT Kharagpur) Random Walks for Social Networks September 2-4, 2014 14 / 43



Perron Frobenius Theorem: Implications

Theorem Statement
Let A = (aij) be an n×n positive matrix: aij > 0∀1≤ i, j≤ n. Then

There is a positive real number r, such that r is an eigenvalue of A and
any other eigenvalue is strictly smaller than r in absolute value.

Markov Chain: irreducible and aperiodic

For any matrix A with eigenvalue σ, |σ| ≤ maxi ∑j |Aij|.
Since P is row stochastic, the largest eigenvalue of the transition matrix
will be equal to 1 and all other eigenvalues will be strictly less than 1

Let the eigenvalues of P be {σi|i = 0 : n−1} in non-decreasing order of
σi

σ0 = 1 > σ1 ≥ σ2 ≥ . . .σn

Pawan Goyal (IIT Kharagpur) Random Walks for Social Networks September 2-4, 2014 14 / 43



Perron Frobenius Theorem: Implications

Theorem Statement
Let A = (aij) be an n×n positive matrix: aij > 0∀1≤ i, j≤ n. Then

There is a positive real number r, such that r is an eigenvalue of A and
any other eigenvalue is strictly smaller than r in absolute value.

Markov Chain: irreducible and aperiodic

For any matrix A with eigenvalue σ, |σ| ≤ maxi ∑j |Aij|.
Since P is row stochastic, the largest eigenvalue of the transition matrix
will be equal to 1 and all other eigenvalues will be strictly less than 1

Let the eigenvalues of P be {σi|i = 0 : n−1} in non-decreasing order of
σi

σ0 = 1 > σ1 ≥ σ2 ≥ . . .σn

Pawan Goyal (IIT Kharagpur) Random Walks for Social Networks September 2-4, 2014 14 / 43



Perron Frobenius Theorem: Implications

v0 = v0P (unique for a well-behaved graph)

Let x be an arbitrary initial distribution

x =
n

∑
i=1

aiui

xP =
n

∑
i=1

ai(uiP)

=
n

∑
i=1

ai(σiui)

Similarly, xPk =
n

∑
i=1

ai(σi
kui)

xPPP . . .P = xPk tends to v0 as k goes to infinity.

Pawan Goyal (IIT Kharagpur) Random Walks for Social Networks September 2-4, 2014 15 / 43



Perron Frobenius Theorem: Implications

v0 = v0P (unique for a well-behaved graph)

Let x be an arbitrary initial distribution

x =
n

∑
i=1

aiui

xP =
n

∑
i=1

ai(uiP)

=
n

∑
i=1

ai(σiui)

Similarly, xPk =
n

∑
i=1

ai(σi
kui)

xPPP . . .P = xPk tends to v0 as k goes to infinity.

Pawan Goyal (IIT Kharagpur) Random Walks for Social Networks September 2-4, 2014 15 / 43



Perron Frobenius Theorem: Implications

v0 = v0P (unique for a well-behaved graph)

Let x be an arbitrary initial distribution

x =
n

∑
i=1

aiui

xP =
n

∑
i=1

ai(uiP)

=
n

∑
i=1

ai(σiui)

Similarly, xPk =
n

∑
i=1

ai(σi
kui)

xPPP . . .P = xPk tends to v0 as k goes to infinity.

Pawan Goyal (IIT Kharagpur) Random Walks for Social Networks September 2-4, 2014 15 / 43



Perron Frobenius Theorem: Implications

v0 = v0P (unique for a well-behaved graph)

Let x be an arbitrary initial distribution

x =
n

∑
i=1

aiui

xP =
n

∑
i=1

ai(uiP)

=
n

∑
i=1

ai(σiui)

Similarly, xPk =
n

∑
i=1

ai(σi
kui)

xPPP . . .P = xPk tends to v0 as k goes to infinity.

Pawan Goyal (IIT Kharagpur) Random Walks for Social Networks September 2-4, 2014 15 / 43



Perron Frobenius Theorem: Implications

v0 = v0P (unique for a well-behaved graph)

Let x be an arbitrary initial distribution

x =
n

∑
i=1

aiui

xP =
n

∑
i=1

ai(uiP)

=
n

∑
i=1

ai(σiui)

Similarly, xPk =
n

∑
i=1

ai(σi
kui)

xPPP . . .P = xPk tends to v0 as k goes to infinity.

Pawan Goyal (IIT Kharagpur) Random Walks for Social Networks September 2-4, 2014 15 / 43



Perron Frobenius Theorem: Implications

v0 = v0P (unique for a well-behaved graph)

Let x be an arbitrary initial distribution

x =
n

∑
i=1

aiui

xP =
n

∑
i=1

ai(uiP)

=
n

∑
i=1

ai(σiui)

Similarly, xPk =
n

∑
i=1

ai(σi
kui)

xPPP . . .P = xPk tends to v0 as k goes to infinity.

Pawan Goyal (IIT Kharagpur) Random Walks for Social Networks September 2-4, 2014 15 / 43



Perron Frobenius Theorem: Implications

xPk = σ1
k{a1u1 +a2

(
σ2
σ1

)k
u2 + . . .+an

(
σn
σ1

)k
un}

u1 = v0, thus xPk approaches to v0 as k goes to infinity with a speed in the
order of σ2/σ1 exponentially.

Show that a1 = 1
1n×1 is the right eigenvector of P with eigenvalue 1, since P is stochastic,
i.e. P∗1n×1 = 1n×1

Hence, ui
∗1n×1 = 1 for i = 1, 0 otherwise (relation between left and right

eigen vectors)

Now, 1 = x∗1n×1 = a1u1
∗1n×1 = a1 (Why?)
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Important Parameters of a random walk

Access time or hitting time (hij)

hij is the expected number of steps before node j is first visited, starting from
node i

hij = 1+∑k pikhkj, i 6= j

Commute time (cij)

cij = hij +hji

Cover Time Cov(G)

Cov(s,G): expected number of steps it takes a walk that starts at s to visit all
vertices
Cov(G): maximum over s of Cov(s,G)
Cov+(G): Cover and return to start
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Mixing Rate

How fast the random walk converges to its limiting distribution

Mixing rate for some graphs can be very small: O(logn)

Mixing rate depends on the spectral gap: 1−σ2, where σ2 is the second
highest eigen value

Smaller the value of σ2, larger is the spectral gap, faster is the mixing rate
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PageRank (Page and Brin, 1998)

Basic Intuition
A webpage is important if other important pages point to it

v(i) = ∑
j→i

v(j)
degout(j)

v is the stationary distribution of the Markov chain
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Irreducibility and Aperiodicity

How to guarantee this for a web graph?
At any time-step the random surfer

jumps (teleport) to any other node with probability c

jumps to its direct neighbors with total probability 1− c

P̃ = (1− c)P+ cU

Uij =
1
n
∀i, j
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Computing PageRank: The Power Method

Start with any distribution x0, e.g. uniform distribution

Algorithm: multiply x0 by increasing powers of P until convergence

After one step, x1 = x0P, after k steps xk = x0Pk

Regardless of where we start, we eventually reach the steady state v0
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PageRank: Example

From “Introduction to Information Retrieval” slides
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Personalized PageRank

We are looking for the vector v such that

v = (1− c)vP+ cr

r is a distribution over web-pages

If r is the uniform distribution we get pagerank

What happens if r is non-uniform? → Pesonalization
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Personalized PageRank

The only difference is that we use a non-uniform teleportation distribution,
i.e. at any time step, teleport to a set of webpages.

In other words we are looking for the vector v such that

v = (1− c)vP+ cr

r is a non-uniform preference vector specific to a user.

v gives “personalized views” of the web.
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Topic Sensitive PageRank

Divide the webpages into 16 broad categories

For each category, compute the biased personalized pagerank vector by
teleporting uniformly to websites under that category.

At query time, the probability of query being from any of the above
classes is computed

Final pageRank vector is computed by a linear combination of the biased
pagerank vectors computed offline
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HITS - Hyperlink-Induced Topic Search

There are two different types of web-pages for searching a broad topic:
the authorities and the hubs

Authorities: pages which are good sources of information about a given
topic

Hub: provides pointers to many authorities

Works on a subgraph - can consist of top k search results for the given
query from a standard text-based engine
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Hubs and Authorities

Given this subgraph, the idea is to assign two numbers to a node: a
hub-score and an authority score

A node is a good hub if it points to many good authorities, whereas a
node is a good authority if many good hubs point to it.

a(i)← ∑
j:j∈I(i)

h(j)

h(i)← ∑
j:j∈O(i)

a(j)
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Hubs and Authorities

a = ATh, h = Aa

h = AATh, a = ATAa

h converges to the principal eigenvector of ATA and a converges to the
principal eigenvector of ATA

AAT(i, j) = ∑k A(i,k)A(j,k): number of nodes both i and j point to,
bibliographic coupling

ATA(i, j) = ∑k A(k, i)A(k, j): number of nodes which point to both i and j,
co-citation matrix
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HITS: Example

From “Introduction to Information Retrieval” slides
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Tightly Knit Communities Effect

HITS ranking is sensitive to the tightly knit communities, coined as the
TKC effect.

This happens when a small tightly-knit community of nodes rank highly,
although they are not most authoritative.

It has been shown that SALSA is less vulnerable to the TKC effect than
HITS.
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SALSA: The Stochastic Approach for Link-Structure
Analysis

Consider a bipartite graph G, two parts correspond to hubs and
authorities

Edge between hub r and authority s means that there is an informative
link from r to s

Authorities and hubs pertaining to the dominant topic of the pages in G
should be highly visible from many pages in G

Two separate random walks: Hub walk and Authority walk
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SALSA

Two distinct random walks
Each walk only visits nodes from one of the two sides of the graph

Traverses paths consisting of two G-edges in each step

Hub matrix H̃:

h̃ij = ∑
{k|(ih,ka),(jh,ka)∈G}

1
deg(ih)

· 1
deg(ka)

Authority matrix Ã:

ãij = ∑
{k|(kh,ia),(kh,ja)∈G}

1
deg(ia)

· 1
deg(kh)

ãi,j > 0 implies that a certain page k links to both pages i and j, thus j is
reachable from i by two steps: retracting along k→ i and following k→ j
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SALSA Vectors

A: adjacency matrix of the directed graph defined by its link structure

Ar: Row normalized version, obtained by dividing each nonzero entry of A
by the sum of entries in its row

Ac: Column normalized version

It can be shown that H̃ consists of the nonzero rows and columns of
ArAc

T

Similarly, Ã consists of the nonzero rows and columns of Ac
TAr
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