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Semantic Matching

Definition
“.. conduct query/document analysis to represent the meanings of
query/document with richer representations and then perform matching with
the representations.”

i.e., go beyong keyword (lexical) matching.
We will discuss both unsupervised and supervised methods of semantic
matching.
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Semantic Matching: What have we seen till now?

Query expansion

Relevance Feedback

Translation Model (How to model word similarity?)

Disrtributional Hypothesis
Words that occur in similar contexts tend to have similar meanings.

Word embeddings have proved to be very important for modeling semantic
similarity
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Word2Vec – A distributed representation

Distributional representation – word embedding?
Any word wi in the corpus is given a distributional representation by an
embedding

wi 2 Rd

i.e., a d�dimensional vector, which is mostly learnt!
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Two Variations: CBOW and Skip-grams
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What do we finally have?

For each word wi in vocabulary (size V), we have two vectors: vIN
i and

vOUT
i , each of d�dimensions.

Generally, you can just add these vectors and use vi = vIN
i + vOUT

i

Ideally, similar words will have similar vectors

How do we go about using these for the retrieval task
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Pre-trained word embeddings for query expansion

Basic Idea
Identify expansion terms using word2Vec cosine similaity

Pre-retrieval: Taking nearest neighbors of query terms as the expansion
terms

Post-retrieval: Using a set of pseudo-relevant documents to restrict the
search domain for the candidate expansion terms.
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Neural Translation Language Model

Language Model: Using Query Likelihood
P(q|d) = ’tq2q p(tq|d)

What happens in translation language model

p(tq|d) = Âtd2d p(tq|td)p(td|d)

You can use similarity between term embeddings for term-term translation
probability, thus
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Dual Embedding Space Model (DESM)

Nalisnick et al., 2016. Improving Document Ranking with Dual Word
Embeddings. (WWW ’16 Companion).
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Dual Embedding Space Model (DESM)

IN-IN and OUT-OUT cosine similarities are high for words that are similar
by function or type (typical) and the

IN-OUT cosine similarities are high between words that often co-occur in
the same query or document (topical).
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Pre-trained word embeddings for document retrieval
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How do you evaluate this?
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Results: Reranking k-best list
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Results: whole ranking system
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Semantic Matching – with Supervision
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DSSM

Why supervised?
We learn to represent queries and documents in the latent vector space by
forcing the vector representations

for relevant query-document pairs (q,d+) to be close in the latent space;
and

for irrelevant query-document pairs (q,d�) to be far in the latent vector
space
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Understanding DSSM - How to represent text
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Understanding DSSM - Architecture
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DSSM - Training Objective
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Evaluation Details

16,510 English queries sampled from one year query log files of Bing

Each query is associated with 15 web document titles

Relevance judgement on a scale of 0 to 4
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DSSM - Results
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