Semantic Matching using Neural Networks

Information Retrieval

CSE, IIT Kharagpur

March 20th, 2020

ff-idt I'm etc

Definition

".. conduct query/document analysis to represent the meanings of query/document with richer representations and then perform matching with the representations."

i.e., go beyong keyword (lexical) matching. We will discuss both unsupervised and supervised methods of semantic matching.

Relevance Beyond Keyword matching? Feedback _ Oursy Exponsion

Semantic Matching: What have we seen till now?

- Query expansion
- Relevance Feedback
- Translation Model (How to model word similarity?)

Semantic Matching: What have we seen till now?

- Query expansion
- Relevance Feedback
- Translation Model (How to model word similarity?)

Disrtributional Hypothesis

Words that occur in similar contexts tend to have similar meanings.

word similarity Distaibutional Semantic Models

My am automobiles Simlar b120 3 ass mon Sim'ler Pointaise Mutual information

Semantic Matching: What have we seen till now?

- Query expansion
- Relevance Feedback
- Translation Model (How to model word similarity?)

Disrtributional Hypothesis

Words that occur in similar contexts tend to have similar meanings.

Word embeddings have proved to be very important for modeling semantic similarity

Word2Vec – A distributed representation

Distributional representation – word embedding?

Any word w_i in the corpus is given a distributional representation by an embedding

Word2Vec – A distributed representation

Distributional representation – word embedding?

Any word w_i in the corpus is given a distributional representation by an embedding

$$w_i \in \mathbb{R}^d$$

i.e., a *d*-dimensional vector, which is mostly learnt!

Two Variations: CBOW and Skip-grams

- For each word w_i in vocabulary (size V), we have two vectors: v_i^{IN} and v_i^{OUT} , each of d-dimensions.
- Generally, you can just add these vectors and use $v_i = v_i^{IN} + v_i^{OUT}$
- Ideally, similar words will have similar vectors

How do we go about using these for the retrieval task

Basic Idea

Identify expansion terms using word2Vec cosine similaity

- Pre-retrieval: Taking nearest neighbors of query terms as the expansion terms
- Post-retrieval: Using a set of pseudo-relevant documents to restrict the search domain for the candidate expansion terms.

s inter

Language Model: Using Query Likelihood $P(q|d) = \prod_{t_q \in q} p(t_q|d)$

What happens in translation language model

Information Retrieval (IIT Kharagpur)

Neural Translation Language Model

Language Model: Using Query Likelihood

 $P(q|d) = \prod_{t_q \in q} p(t_q|d)$

What happens in translation language model

 $p(t_q|d) = \sum_{t_d \in d} p(t_q|t_d) p(t_d|d)$

You can use similarity between term embeddings for term-term translation probability, thus

$$p(t_q|t_d) = \frac{\cos(\vec{v}_{t_q}, \vec{v}_{t_d})}{\sum_{t \in V} \cos(\vec{v}_t, \vec{v}_{t_d})}$$

$$P(t_2/t_d)$$

Dual Embedding Space Model (DESM)

Dual Embedde

Word2vec optimizes IN-OUT dot product which captures the co-occurrence statistics of words from the training corpus:

- We can gain by using these two embeddings differently

Nalisnick et al., 2016. Improving Document Ranking with Dual Word Embeddings. (WWW '16 Companion).

Dual Embedding Space Model (DESM)

(C	B	JP <u>~</u>			CF.	system	Li	^	diout
	vale			seahawks			eminem		- <i>O</i> n
(IN-IN)	OUT-OUT	IN-OUT	IN-IN	OUT-OUT	IN-OUT	IN-IN	OUT-OUT	IN-OUT	
yaie	yaie	yale	seahawks	seahawks	seahawks	eminem	eminem	eminem	-
harvard	uconn	faculty -	49ers	broncos	highlights	rihanna	rihanna	rap	
nyu	harvard —	alumni 🗾 🗸	broncos	49ers	jerseys	ludacris	dre	featuring	
cornell	tulane	orientation	packers	nfl	tshirts	kanye	kanye	tracklist	
tulane	nyu 👝	haven	nfl	packers	seattle	beyonce	beyonce	diss	
tufts	tufts	graduate	steelers	steelers	hats	2pac	tupac	performs	

- IN-IN and OUT-OUT cosine similarities are high for words that are similar by function or type (typical) and the
- IN-OUT cosine similarities are high between words that often co-occur in the same query or document (topical).

DESM [Nalisnick et al., 2016]: Using IN-OUT similarity to model document aboutness.

► A document is represented by the centroid of its word OUT_vectors:

$$\vec{v}_{d,\mathsf{OUT}} = \frac{1}{|d|} \sum_{t_d,\in d} \underbrace{ \left\| \vec{v}_{t_d,\mathsf{OUT}} \right\|}_{t_d,\mathsf{OUT}}$$

Query-document similarity is average of cosine similarity over query words:

$$\mathsf{DESM}_{\mathsf{IN-OUT}}(q,d) = \underbrace{\frac{1}{q} \sum_{t_q \in q} \frac{\vec{v}_{t_q,\mathsf{IN}}^\top \vec{v}_{t_d,\mathsf{OUT}}}{\|\vec{v}_{t_q,\mathsf{IN}}\| \|\vec{v}_{t_d,\mathsf{OUT}}\|}}_{\mathsf{IN-OUT}}$$

OUT-OUT TN-IN

▶ IN-OUT captures more topical notion of similarity than IN-IN and OUT-OUT.

Information Retrieval (IIT Kharagpur) Semantic Matching using Neural Networks

How do you evaluate this?

Results: Reranking k-best list

010

	Expl	icitly Judged T	est Set
	NDCG@1	NDCG@3	NDCG@10
BM25	23.69	29.14	44.7
-)LSA	22.41*	28.25*	44.24*
DESM (IN-IN, trained on body text)	23.59	29.59	45.51*
DESM (IN-IN, trained on queries)	23.75	29.72	46.36*
DESM (IN-OUT, trained on body text)	24.06	<u>30.32*</u>	46.57*
DESM (IN-OUT, trained on queries)	25.02*	31.14*	47.89*

Pretty decent gains – e.g., 2% for NDCG@3

Gains are bigger for model trained on queries than docs

	Exp	licitly Judged T	est Set
	NDCG@1	NDCG@3	NDCG@10
BM25	21.44	26.09	37.53
LSA	04.61*	04.63*	04.83*
DESM (IN-IN, trained on body text)	06.69*	06.80*	07.39*
DESM (IN-IN, trained on queries)	05.56*	05.59*	06.03*
DESM (IN-OUT, trained on body text)	01.01*	01.16*	01.58*
DESM (IN-OUT, trained on queries)	00.62*	00.58*	00.81*
BM25 + DESM (IN-IN, trained on body text)	21.53	26.16	37.48
BM25 + DESM (IN-IN, trained on queries)	21.58	26.20	37.62
BM25 + DESM (IN-OUT, trained on body text)	21.47	26.18	37.55
BM25 + DESM (IN-OUT, trained on queries)	21.54	26.42*	37.86*

Unsupervied

Semantic Matching – with Supervision

DSSM

- Represent query and document as vectors q and d in a latent vector space
- Estimate the matching degree between q and d using cosine similarity

Why supervised?

We **learn** to represent queries and documents in the latent vector space by forcing the vector representations

- for relevant query-document pairs (q, d^+) to be close in the latent space; and
- for irrelevant query-document pairs (q, d⁻) to be far in the latent vector space

Understanding DSSM - How to represent text

How to represent text (e.g., Shinjuku Gyoen)?

<u>1. Bag of Words (BoW</u>) [large vocabulary (500000 words)] { 0, ..., 0 (apple), 0, ..., 0, 1 (gyoen), 0, ..., 0, 1 (shinjuku), 0, ..., 0 }

500K

2. Bag of Letter Trigrams (BoLT) [small vocabulary (30621 letter 3-grams)]

 $\{ 0, \ldots, 0 \text{ (abc)}, 0, \ldots, 1 \text{ (_gy)}, 0, \ldots, 0, 1 \text{ (_sh)}, 0, \ldots, 0, 1 \text{ (en_)}, 0, \ldots, 0, 1 \text{ (gyo)}, 0, \ldots, 0, 1 \text{ (hin)}, 0, \ldots, 0, 1 \text{ (inj)}, 0, \ldots, 0, 1 \text{ (juk)}, 0, \ldots, 0, 1 \text{ (ku_)}, 0, \ldots, 0, 1 \text{ (oen)}, 0, \ldots, 0, 1 \text{ (shi)}, 0, \ldots, 0, 1 \text{ (uku)}, 0, \ldots, 0, 1 \text{ (yoe)}, 0 \ \}$

Bat mammal Nood 2 Vectors

Understanding DSSM - Architecture

1ax 0) 600 ypesh Cas -May $e' \sim i$ 2 ~

Likelihood

$$\prod_{(q,d^+)\in\mathsf{DATA}}P(d^+\mid q)\to\max$$

• □ ▶ < □ ▶ < □ ▶</p>

$$P(d^{+} \mid q) = \underbrace{\frac{e^{\gamma \cos(\mathbf{q}, \mathbf{d}^{+})}}{\sum_{d \in D} e^{\gamma \cos(\mathbf{q}, \mathbf{d})}}}_{\substack{d \in D^{+} \cup D^{-} \\ e^{\gamma \cos(\mathbf{q}, \mathbf{d})}} \approx \underbrace{\frac{e^{\gamma \cos(\mathbf{q}, \mathbf{d}^{+})}}{\sum_{d \in D^{+} \cup D^{-} \\ e^{\gamma \cos(\mathbf{q}, \mathbf{d})}}}$$

< 3

æ

- 16,510 English queries sampled from one year query log files of Bing
- Each query is associated with 15 web document titles
- Relevance judgement on a scale of 0 to 4

C

	NDCG				
Model	@1	@ 3	@10		
TF-IDF	0.319	0.382	0.462		
BM25	0.308	0.373	0.455		
WTM	0.332	0.400	0.478		
LSA	0.298	0.372	0.455		
PLSA	0.295	0.371	0.456		
DAE 👌	0.310	0.377	0.459		
BLTM	0.337	0.403	C.+0U		
DPM	0.329	0.401	0.479		
DSSM	0.362	0.425	0.498		

3

イロト イヨト イヨト

f. of words Nos ave chr 0 Nove Final ~,'d D st pool ムN 3000 9 STA