CS21004 - Tutorial 10

April 1st, 2019

Instructions: For the problems with 'to submit', please write the answers neatly in loose sheets and submit to the TA before the end of the tutorial.

- 1. Let $max(L) = \{w | w \in L \text{ but for no string } wx(x \neq \epsilon) \text{ is in } L\}$. Are the CFL's closed under the max operation?
- 2. Prove or disprove. Let C be a context-free language and R be a regular language. Then C - R is necessarily context-free, and so is R - C. (To submit)
- 3. Let $half(L) = \{w | \text{ for some } x \text{ such that } |x| = |w|, wx \in L\}$. Notice that oddlength words in L do not contribute to half(L). Are the CFLs closed under half operation? (To submit)
- 4. A shuffle of two strings α and β is a string γ of length $|\alpha| + |\beta|$, in which α and β are non-overlapping subsequences (not neccessarily substrings). For example, all shuffles of *ab* and *cd* are *abcd*, *cabd*, *cdab*, *acbd*, *acdb* and *cadb*. For two languages A and B, we define *shuffle*(A, B) as the language consisting of all shuffles of $\alpha \in A$ and all $\beta \in B$. Prove or disprove the following statements. (To submit)
 - (a) If L is a CFL and R is a regular language then shuffle(L, R) is a CFL.
 - (b) If L_1 and L_2 are CFLs then $shuffle(L_1, L_2)$ is a CFL.
- 5. Consider $L = \{a^n b^n c^n | n \ge 0\}$. Is \overline{L} a CFL? (Home)