
CS21004 - Tutorial 8

Solution Sketch

1. Show that following language is not context-free using pumping lemma

(a) L1 = {an! : n ≥ 0}
Hints: Given the opponent’s choice for m (Pumping lemma constant), we
pick am!(= uvxyz). Obviously, whatever the decomposition is, it must be of
the form v = ak, y = al. Then w0 = uxz (pump down) has length m!−(k+l).
This string is in L only if m!− (k+ l) = j! for some j. But this is impossible,
since with k + l ≤ m, m! − (k + l) > (m − 1)!. Therefore, the language is
not context-free.

(b) L2 = {wtwR|w, t ∈ {0, 1}∗} and |w| = |t|}
Hints:
Suppose on the contrary that A is context-free. Then, let p be the pumping
length for A, such that any string in A of length at least p will satisfy the
pumping lemma. Now, we select a string s in A with s = 02p1p0p02p.
For s to satisfy the pumping lemma, there is a way that s can be written as
uvxyz, with |vxy| ≤ p and |vy| ≥ 1, and for any i, uvixyiz is a string in A.
There are only three cases to write s with the above conditions:

i. Case 1: vy contains only 0s and these 0s are chosen from the last 02p

of s. Let i be a number with 7p > |vy| × (i+ 1) ≥ 6p. Then, either the
length of uvixyiz is not a multiple of 3, or this string is of the form wtw′

such that |w| = |t| = |w′| with w′ is all 0s and w is not all 0s (that is,
w′ 6= w).

ii. Case 2: vy does not contain any 0s in the last 02p of s. Then either
the length of uv2xy2z is not a multiple of 3, or this string is of the form
wtw′ such that |w| = |t| = |w′| with w′ is all 0s and w is not all 0s (that
is, w′ 6= w).

iii. Case 3: vy is not all 0s and some 0s are from the last 02p of s. As,
|vxy| ≤ p , vxy in this case must be a substring of 1p0p. Then either
the length of uv2xy2z is not a multiple of 3, or this string is of the form
wtw′ such that |w| = |t| = |w′| with w′ is all 0s and w is not all 0s (that
is, w′ 6= w).

In summary, we observe that there is no way s can satisfy the pumping

1

lemma. Thus, a contradiction occurs and we conclude that A is not a context-
free language.

2. Design NPDA for the following languages

(a) L3 = {ai(bc)j|i, j ≥ 0, i ≥ j} – Give a PDA with 2 states (To Submit)

(b) L4 = {anbm|n 6= m}
Hints: Q = {q0, q1, q2} , Σ = {a, b}, Γ = {a, z}, F = {q2} The transition
function can be visualized as having several parts: a set to push a on the
stack -

δ(q0, a, z) = {(q0, az)}, δ(q0, a, a) = {(q0, aa)}
a set to pop a on reading b, where the NPDA switches from state q0 to q1 -

δ(q0, b, a) = {(q1, ε)}, δ(q1, b, a) = {(q1, ε)}
a set to ensure m 6= n, where NPDA switches from state q1 to q2

δ(q1, b, z) = {(q2, z)}, δ(q1, ε, a) = {(q2, ε)}
and finally δ(q2, ε, z) = {(q2, ε)}

3. Construct a NPDA that accepts the language generated by a grammar with pro-
ductions: S → aSbb|a
Hints: From NPDA to CFG conversion rules, the final NPDA contructed contains
3 states = {q0, q1, q2} with final state being q2.
For every terminal, we have δ(q1, a, a) = {(q1, ε)}, δ(q1, b, b) = {(q1, ε)}
For every production, δ(q1, ε, S) = {(q1, bbSa)}, δ(q1, ε, S) = {(q1, a)}
Start Transition : δ(q0, ε, ε) = {(q1, $S)},
Accepting Transition : δ(q1, ε, $) = {(q2, ε)},
The general rule for CFG to PDA conversion is :

2

4. Consider the PDA P = ({q}, {0, 1}, {Z,A,B}, δ, q, Z, φ), where the transitions
are shown in the following figure. Convert this PDA to CFG as per PDA-to-CFG
conversion.

Hints:
(q, q, Z)→ 0(q, q, A)(q, q, Z)
(q, q, Z)→ 1(q, q, B)(q, q, Z)
(q, q, A)→ 0(q, q, A)(q, q, A)
(q, q, B)→ 1(q, q, B)(q, q, B)
(q, q, B)→ 0
(q, q, A)→ 1
(q, q, Z)→ ε
with (q, q, Z) being the start variable.

3

