(CS21004 - Tutorial 8

Solution Sketch

1. Show that following language is not context-free using pumping lemma

(a)

Li={a":n>0}

Hints: Given the opponent’s choice for m (Pumping lemma constant), we
pick a™ (= uvryz). Obviously, whatever the decomposition is, it must be of
the form v = a*, y = a'. Then wy = uzz (pump down) has length m!— (k+1).
This string is in L only if m! — (k+1) = j! for some j. But this is impossible,
since with & +1 < m, m! — (k +1) > (m — 1)!I. Therefore, the language is
not context-free.

Ly = {wtw®w,t € {0,1}*} and |w| = |t|}

Hints:

Suppose on the contrary that A is context-free. Then, let p be the pumping
length for A, such that any string in A of length at least p will satisfy the
pumping lemma. Now, we select a string s in A with s = 02P1P0P0%.

For s to satisfy the pumping lemma, there is a way that s can be written as
uvryz, with [vzy| < p and |vy| > 1, and for any i, uv'zy’z is a string in A.
There are only three cases to write s with the above conditions:

i. Case 1: vy contains only Os and these Os are chosen from the last 0%
of s. Let ¢ be a number with 7p > |vy| X (i + 1) > 6p. Then, either the
length of uvzy'z is not a multiple of 3, or this string is of the form wtw’
such that |w| = [t| = |w'| with w' is all Os and w is not all Os (that is,
w' # w).

ii. Case 2: vy does not contain any Os in the last 0% of s. Then either
the length of uv?xy?z is not a multiple of 3, or this string is of the form
wtw' such that |w| = [t| = |w'| with w' is all 0s and w is not all Os (that
is, W' # w).

iii. Case 3: vy is not all Os and some Os are from the last 0% of 5. As,
lvxy| < p , vy in this case must be a substring of 1707. Then either
the length of uv?xy?z is not a multiple of 3, or this string is of the form
wtw’ such that |w| = |t| = |w'| with w’ is all 0s and w is not all Os (that
is, w' # w).

In summary, we observe that there is no way s can satisfy the pumping
1

lemma. Thus, a contradiction occurs and we conclude that A is not a context-
free language.

2. Design NPDA for the following languages

(a) Lz ={a'(bc)li,j > 0,1 > j} — Give a PDA with 2 states (To Submit)

a,Ll/al
" a}g.‘rd‘d !J a "Ilb
n >
- - SRR %*'EOL -
}@% 1/L S
L € ale
& afa -
s & L)€

(b) Ly = {a™™|n # m}
Hints: Q = {qo,q1,q2} , ¥ = {a,b}, I' = {a,z}, F = {g2} The transition
function can be visualized as having several parts: a set to push a on the
stack -

6(Q07 a, Z) = {(q07 CLZ)}, 5(Q07 a, a’) = {(QO, CLCL)}
a set to pop a on reading b, where the NPDA switches from state ¢o to ¢; -

6(qo, b, a) = {(q1,€)}, 8(q1,b,a) = {(q1, €)}

a set to ensure m # n, where NPDA switches from state ¢; to ¢
5((]17 b7 Z) = {<927 Z)}7 5(611, €, (I) = {<927 6)}
and finally 6(gs, €, 2) = {(2,€))
3. Construct a NPDA that accepts the language generated by a grammar with pro-
ductions: S — aSbb|a

Hints: From NPDA to CFG conversion rules, the final NPDA contructed contains
3 states = {qo, q1, @2} with final state being gs.
For every terminal, we have §(q1,a,a) = {(q1,€)}, d(q1,0,0) = {(q1,€)}

For every production, §(qi,€,S) = {(q1,bbSa)}, 6(q1,¢,5) = {(q1,a)}
Start Transition : §(qo, €, €) = {(q1,$95)},

Accepting Transition : d(q1,€,%) = {(g2,¢€)},

The general rule for CFG to PDA conversion is :

a,a/e e, Alag ...
for every terminal a for every production
A—ao.. ey

g,e/$A % e,$/e

4. Consider the PDA P = ({¢},{0,1},{Z, A, B},0,q,Z, ®), where the transitions
are shown in the following figure. Convert this PDA to CFG as per PDA-to-CFG

conversion.

Start

Hints:

(¢,9,2) — 0(q,9,A)(q,9, Z)
(¢,9,Z) = 1(q,q,B)(q,q, Z)
(¢,9,A) — 0(q,q,A)(q,q, A)
(¢,9,B) = 1(q,4, B)(q,q, B)
(¢,4,B) =0

(,¢,4) =1

(0,9, Z) — €

