CS21004 - Tutorial 8

Solution Sketch

- 1. Show that following language is not context-free using pumping lemma
 - (a) $L_1 = \{a^{n!} : n \ge 0\}$

Hints: Given the opponent's choice for m (Pumping lemma constant), we pick $a^{m!}(=uvxyz)$. Obviously, whatever the decomposition is, it must be of the form $v = a^k$, $y = a^l$. Then $w_0 = uxz$ (pump down) has length m! - (k+l). This string is in L only if m! - (k+l) = j! for some j. But this is impossible, since with $k + l \leq m$, m! - (k + l) > (m - 1)!. Therefore, the language is not context-free.

(b) $L_2 = \{wtw^R | w, t \in \{0, 1\}^*\}$ and $|w| = |t|\}$ *Hints:*

Suppose on the contrary that A is context-free. Then, let p be the pumping length for A, such that any string in A of length at least p will satisfy the pumping lemma. Now, we select a string s in A with $s = 0^{2p} 1^p 0^p 0^{2p}$.

For s to satisfy the pumping lemma, there is a way that s can be written as uvxyz, with $|vxy| \leq p$ and $|vy| \geq 1$, and for any i, uv^ixy^iz is a string in A. There are only three cases to write s with the above conditions:

- i. Case 1: vy contains only 0s and these 0s are chosen from the last 0^{2p} of s. Let i be a number with $7p > |vy| \times (i+1) \ge 6p$. Then, either the length of $uv^i xy^i z$ is not a multiple of 3, or this string is of the form wtw' such that |w| = |t| = |w'| with w' is all 0s and w is not all 0s (that is, $w' \neq w$).
- ii. Case 2: vy does not contain any 0s in the last 0^{2p} of s. Then either the length of uv^2xy^2z is not a multiple of 3, or this string is of the form wtw' such that |w| = |t| = |w'| with w' is all 0s and w is not all 0s (that is, $w' \neq w$).
- iii. Case 3: vy is not all 0s and some 0s are from the last 0^{2p} of s. As, $|vxy| \leq p$, vxy in this case must be a substring of $1^{p}0^{p}$. Then either the length of $uv^{2}xy^{2}z$ is not a multiple of 3, or this string is of the form wtw' such that |w| = |t| = |w'| with w' is all 0s and w is not all 0s (that is, $w' \neq w$).

In summary, we observe that there is no way s can satisfy the pumping

lemma. Thus, a contradiction occurs and we conclude that A is not a contextfree language.

- 2. Design NPDA for the following languages
 - (a) $L_3 = \{a^i(bc)^j | i, j \ge 0, i \ge j\}$ Give a PDA with 2 states (To Submit)

(b) $L_4 = \{a^n b^m | n \neq m\}$

Hints: $Q = \{q_0, q_1, q_2\}$, $\Sigma = \{a, b\}$, $\Gamma = \{a, z\}$, $F = \{q_2\}$ The transition function can be visualized as having several parts: a set to push a on the stack -

$$\begin{split} &\delta(q_0, a, z) = \{(q_0, az)\}, \, \delta(q_0, a, a) = \{(q_0, aa)\}\\ &\text{a set to pop a on reading b, where the NPDA switches from state } q_0 \text{ to } q_1 \text{ -}\\ &\delta(q_0, b, a) = \{(q_1, \epsilon)\}, \, \delta(q_1, b, a) = \{(q_1, \epsilon)\}\\ &\text{a set to ensure } m \neq n, \text{ where NPDA switches from state } q_1 \text{ to } q_2\\ &\delta(q_1, b, z) = \{(q_2, z)\}, \, \delta(q_1, \epsilon, a) = \{(q_2, \epsilon)\}\\ &\text{and finally } \delta(q_2, \epsilon, z) = \{(q_2, \epsilon)\} \end{split}$$

3. Construct a NPDA that accepts the language generated by a grammar with productions: $S \rightarrow aSbb|a$

Hints: From NPDA to CFG conversion rules, the final NPDA contructed contains 3 states = $\{q_0, q_1, q_2\}$ with final state being q_2 . For every terminal, we have $\delta(q_1, a, a) = \{(q_1, \epsilon)\}, \ \delta(q_1, b, b) = \{(q_1, \epsilon)\}$ For every production, $\delta(q_1, \epsilon, S) = \{(q_1, bbSa)\}, \ \delta(q_1, \epsilon, S) = \{(q_1, a)\}$ Start Transition : $\delta(q_0, \epsilon, \epsilon) = \{(q_1, \$S)\},$ Accepting Transition : $\delta(q_1, \epsilon, \$) = \{(q_2, \epsilon)\},$ The general rule for CFG to PDA conversion is :

4. Consider the PDA $P = (\{q\}, \{0, 1\}, \{Z, A, B\}, \delta, q, Z, \phi)$, where the transitions are shown in the following figure. Convert this PDA to CFG as per PDA-to-CFG conversion.

 $\begin{array}{l} \textit{Hints:}\\ (q,q,Z) \rightarrow 0(q,q,A)(q,q,Z)\\ (q,q,Z) \rightarrow 1(q,q,B)(q,q,Z)\\ (q,q,A) \rightarrow 0(q,q,A)(q,q,A)\\ (q,q,B) \rightarrow 1(q,q,B)(q,q,B)\\ (q,q,B) \rightarrow 0\\ (q,q,A) \rightarrow 1\\ (q,q,Z) \rightarrow \epsilon\\ \textit{with } (q,q,Z) \textit{ being the start variable.} \end{array}$