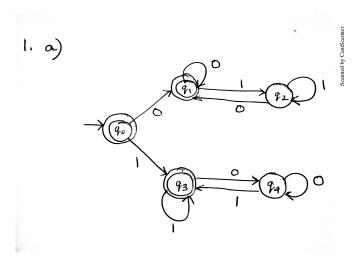
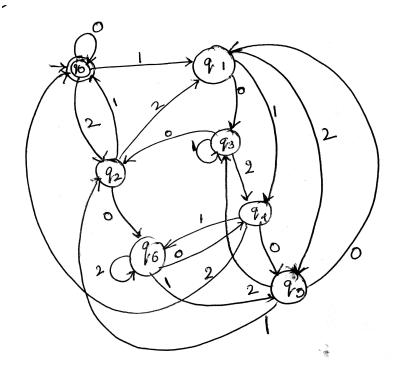
DFA and NFA Solution

21 Jan 2019

- 1. Construct DFAs for the following languages.
 - (a) $L_1 = \{\omega | \omega \text{ contains an equal number of occurrences of } 01 \text{ and } 10\}$ Solution

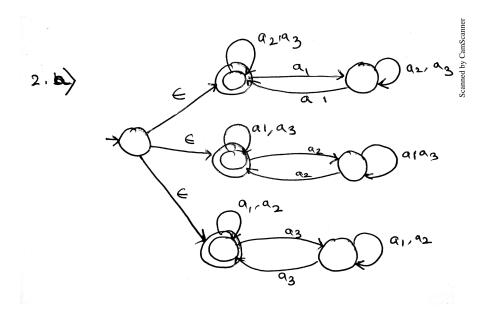


(b) Ternary Strings (base 3), (i.e. $\Sigma = \{0, 1, 2\}$) whose integer equivalent is divisible by 7. (To submit) Solution

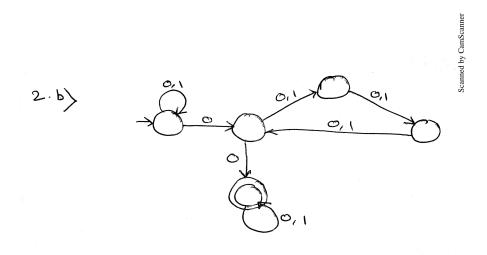


Scanned by CamScanner

- 2. Construct NFAs for the following languages.
 - (a) $L_2 = \{\omega | \omega \text{ is a string in which at least one } a_i \text{ occurs even number}$ of times (not necessarily consecutively), where $1 \leq i \leq 3$ over $\Sigma = \{a_1, a_2, a_3\}$. Solution



(b) $L_3 = \{\omega | \omega \text{ contains two 0s separated by a substring whose length is a multiple of 3 }, \Sigma = \{0, 1\}$. (To submit) Solution



- 3. Prove the following properties.
 - (a) For languages A and B, the shuffle of A and B is the language $L = \{\omega | \omega = a_1 b_1 \cdots a_k b_k\}$, where $a_1 \cdots a_k \in A$ and $b_1 \cdots b_k \in B$, $\forall a_i, b_i \in \Sigma^*$. Prove that the class of regular languages is closed under Shuffle operation. **Solution**

Let $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ be a DFA recognizing A and $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ be a DFA recognizing B. The NFA for shuffle of A and B will simulate both M_A and M_B on the input, while nondeterministically choosing which machine to run on a particular input symbol. So the NFA N will be obtained by a modified cross-product construction. Formally, let $N = (Q, \Sigma, \delta, q_0, F)$ where

- i. $Q = Q_A Q_B$
- ii. $q_0 = (q_A, q_B)$
- iii. $F = F_A F_B$
- iv. For $a \in \Sigma$, δ is given as $\delta((p_A, p_B), a) = \{(\delta_A(p_A, a), p_B), (p_A, \delta_B(p_B, a))\}$ In all other cases, δ is ϕ

The correctness can be established by showing that if N on an input w reaches a state (p_A, p_B) then there is a way to break up ω , so that running M_A on some of the substrings reaches p_A and running M_B on the remaining substrings reaches p_B .

The above observation can be proved by induction on the length of ω and can be used to prove the correctness of the construction.

(b) Let B and C be languages over $\Sigma = \{0, 1\}$. We have defined a language $L = B \leftarrow C$ as $L = \{\omega \in B | \text{ for some } y \in C, \text{ strings } \omega \text{ and } y \text{ contain equal numbers of 1's. }$. Show that the class of regular languages is closed under the \leftarrow operation. (To submit)

Solution

Let $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ and $M_C = (Q_C, \Sigma, \delta_C, q_C, F_C)$ be DFAs recognizing B and C respectively. Construct NFA $M=(Q, \Sigma, \delta, q_0, F)$ that recognizes $B \leftarrow C$ as follows. To decide whether its input ω is in $B \leftarrow C$, the machine M checks that $\omega \in B$, and in parallel, nondeterministically guesses a string y that contains the same number of 1's as contained in ω and checks that $y \in C$.

- i. $Q = Q_B X Q_C$
- ii. For $(q,r) \in Q$ and $a \in \Sigma$ define $\delta((q,r), a)$ $\{(\delta_B(q,0),r)\}$ if a=0 $\{(\delta_B(q,1), \delta_C(r,1))\}$ if a=1 $\{(q, \delta_C(r,0))\}$ if $a=\epsilon$

iii.
$$q_0 = (q_B, q_C)$$

iv. $F = F_B X F_C$

(c) A homomorphism is a mapping h with domain Σ^* for some alphabet Σ which preserves concatenation: $h(v \cdot w) = h(v) \cdot h(w)$. Prove that the class of regular languages is closed under Homomorphism operation. (Home) Solution Try to solve it yourself

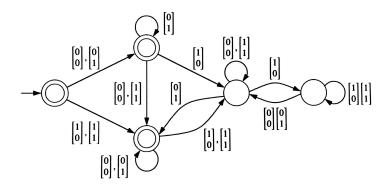
Solution Try to solve it yourself.

4. Consider $\Sigma = \left\{ \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$. A string $\sigma \in \Sigma^*$ can be interpreted as two binary numbers, for example

$$\sigma = \begin{bmatrix} 1\\0 \end{bmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} \begin{bmatrix} 1\\0 \end{bmatrix} \begin{bmatrix} 1\\0 \end{bmatrix} \begin{bmatrix} 1\\0 \end{bmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 101100\\010011 \end{bmatrix} = \begin{bmatrix} x\\y \end{bmatrix}$$

where $x, y \in \{0, 1\}^*$. Design a DFA which accepts strings in Σ^* such that $2x - y \leq 2$. Note that, for such a DFA transitions will be labeled with elements from $\Sigma = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$. (Home)

Solution:



Scanned by CamScanner