
CS21004 - Tutorial 12

Solution Sketch

1. Are the following problem decidable/undecidable?

(a) {〈B〉|B is a DFA that accepts a palindrome}
Solution: Yes, this is decidable. Given the DFA B, we can construct a DFA
C that accepts the reverse language {wR|w ∈ L(B)}. Now, we can construct
a DFA for the intersection of the two languages, L(B) and L(C). We can
now use emptyness testing. If this language is empty, B does not accept any
palindrome, otherwise it does.

(b) LMTM = {〈M,x〉|M ever moves left while computing on the input x}
Solution: Yes, this is decidable. Let k be the number of state of M and
|x| be the size of the input. We will know within k + |x| + 1 steps whether
M makes a left move. Idea is that within first |x| steps, if it does not make
a left move, it is guaranteed to reach the first blank. Then, in the next k
steps, if it does not take a left move, the input symbol is always the same
(blank), and by pigeonhole principle, some input state will repeat, and hence
the transition. In that case, we can guarantee that it is in a loop and will
never make a left move.

2. Identify which of the following languages are decidable / undecidable.

(a) L1 = {M |M is a Turing machine that halts on exactly 481 strings}
Solution: This is not decidable. We can prove it by a reduction from MP.

Let R be a TM that decides L1. We can use R to create a TM S that decides
MP as follows.

S on input < M,w >, creates a new TM M1 that does the following.

M1 on input x

– If x is within the first 481 strings in lexicographical ordering, it accepts
and halts.

– Otherwise, if x is the 482nd string, runs M on w, and if M accepts w, M1

accepts x and halts.

– Otherwise, it goes into a trivial loop.

Thus M1 halts on 482 strings if M accepts w, otherwise M1 halts on exactly
481 strings. Now, S runs R on M1.1



Thus

< M,w >∈MP →M1 halts on more than 481 strings → R accepts M1

< M,w >/∈MP →M1 halts on exactly 481 strings → R rejects M1

(b) L2 = {M |M is a Turing machine and |L(M)| is prime}
Solution: Solution: This is not decidable. We can prove it by a reduction
from MP.

Let R be a TM that decides L2. We can use R to create a TM S that decides
MP as follows.

S on input < M,w >, creates a new TM M1 that does the following.

M1 on input x

– If x is within the first 3 strings in lexicographical ordering, it accepts x.

– Otherwise, it runs M on w, and if M accepts w and x is the fourth string
in the lexicographical ordering, it accepts, otherwise it rejects.

Thus |L(M1)| is 3 (prime) or 4 (non-prime) depending on whether M accepts
w or not. Now, S runs R on M1.

Thus

< M,w >∈MP → |L(M1)| is prime → R accepts 〈M1,M1〉
< M,w >/∈MP → |L(M1)| is not prime → R rejects 〈M1,M1〉

(c) L3 = {〈M1,M2〉}|M1 and M2 are two TMs, and ε ∈ L(M1) ∪ L(M2)}
Solution: This is not decidable. We can prove it by a reduction from MP.

Let R be a TM that decides L3. We can use R to create a TM S that decides
MP as follows.

S on input < M,w >, creates a new TM M1 that does the following.

M1 on input x, runs M on w, and accepts if M accepts w. Thus L(M1)
is φ or Σ∗ depending on whether M accepts w or not. Now, S runs R on
〈M1,M1〉.
Thus

< M,w >∈MP → ε ∈ L(M1) ∪ L(M1)→ R accepts 〈M1,M1〉
< M,w >/∈MP → ε /∈ L(M1) ∪ L(M1)→ R rejects 〈M1,M1〉

(d) L4 = {〈k, x,M1,M2, . . . ,Mk〉|k is a natural number, x is a string, Mi is a TM
for all 1 ≤ i ≤ k, and at least k/2 TM’s of M1,M2, . . . ,Mk halt on x}
Solution: This is not decidable. We can prove it by a reduction from MP.

Let R be a TM that decides L4. We can use R to create a TM S that decides
MP as follows.

S on input < M,w >, creates a new TM M1 that does the following.

M1 on input w, runs M on w, accepts and halts if M accepts w. Now, S
runs R on 〈2, w,M1,M1〉.

2


