Sol 1: he e will need to prove Soundress \& completeness
Saindress: \rightarrow Every string generated by -this grammar has the same number of cis and b's. Ir duction over the length or of the derivation.

Base lase: $H=1$. The only string derivable with a derivation of length $N=1$ is $\in(S \rightarrow \epsilon)$: it trivially holds that the number of a 's and b 's in ϵ is the same

Inductinelase: Assure that all the strings cu derivable from S with derivation length $\leq N$ have an equal of a's 8 b's

Consider a string w^{\prime} derivable from S with a desivator of length $\mathrm{r}+1$. The first production rule used in the derivation that yields ω^{\prime} is $S \rightarrow$ asbs or $S \rightarrow p S S$. The remaining ir production con be split in 2 derivations: Ore that generate w, from first f \& another that generates w_{2} tram second s. By induction, in both $w_{1} \& w_{2}$, the number of $A^{\prime} s$ is equal to the number of b 's Since wis either $a w_{1} b w_{2}$ or $b w_{1} a w_{2} \Rightarrow$ Number of a's in wo is equal to the number of b's.

Completeness: \rightarrow Any string w with on equal number of a's and b's can be derived from s.

Induction over length of ω :
Base Case: $|\omega|=0, \omega=\epsilon$.
W can be derived from $S: S \rightarrow \epsilon$
Inductive Case: Assume that all the strings ω with an equal number of a^{\prime} 's and b's and of length up to 2 rr are derivable from S.

Consider now a string w^{\prime} with on equal number of $a^{\prime} s$ and b's of length $2(r+1)$. W.l.0.g. assume that the first symbol in w is an a.

Lot $2 \leq j \leq 2 N+2$ be the first index such that the substing of w from position 1 to position j has an equal number of $0^{\prime} 8$ and b's. Mote that in the core Case $j=2 N+2$.
$j=2 N+2 \Rightarrow w^{\prime}$ is of the for $a^{N r} b^{N} \&$ can be derived as $S \rightarrow$ aSbS \rightarrow ass aa $S b s b \rightarrow$ aasbb...am Other wise $\hat{\jmath}<2 N+2$. In that case, the symbol at position J roust be a ' b ', w ' can be written os $\omega^{\prime}=a \omega_{1} b \omega_{2}$, where w_{1} and w_{2} are both strings of length at most $2+6 \quad\left(\left|\omega_{1}\right|=j-2\right)$, each having ar equal number of $a^{\prime} s$ and $b^{\prime} s$.

Thus, by induction, beth w_{1} and w_{2} can be derived from S. $\Rightarrow w^{\prime}$ can also be derived trams

$$
S \rightarrow a S b S \rightarrow a w_{1} b S \rightarrow a w_{1} b w_{2}
$$

Sol 2

1. The variable D is useless because there is no a th $^{\text {th }}$ from S that can take to D The variable C i\& useless because it does not give, terminals (C always remains)

Reproving these rasiableas \& corresponding rules

$$
\begin{aligned}
& S \rightarrow a S a \mid A \\
& A \rightarrow b B b \mid E \\
& B \rightarrow|B b| E \\
& C b b \mid b E b
\end{aligned}
$$

Step. Remove E - production rules

$$
\begin{aligned}
\text { Step }
\end{aligned} \quad \begin{aligned}
& b \rightarrow E \quad A \rightarrow b b \quad B \rightarrow b b \\
& S \rightarrow a S a \mid A \\
& A \rightarrow b B b|E| b b \\
& B \rightarrow b B b \mid b b \\
& E \rightarrow b E b \mid b b
\end{aligned}
$$

Be E give rise to the same terminals

$$
\Rightarrow \quad \begin{aligned}
& \quad \rightarrow a \leq a \mid A \\
& A
\end{aligned} \quad b B b|B| b b
$$

Step 2. Remove unit - production rules

We will apply unit production removal to $A \rightarrow B$ before $S \rightarrow A$.

$$
A \rightarrow B \quad \operatorname{ng}^{\omega} \quad A \rightarrow b B b \mid b b
$$

now $S \rightarrow A \xrightarrow{\text { new }} S \rightarrow b \mathrm{Bb} / b b$ (others repetition)
That gives

$$
\begin{aligned}
& S \rightarrow a S a|b B b| b b \\
& A \rightarrow b B b \mid b b \\
& B \rightarrow b B b \mid b b
\end{aligned}
$$

At this step, A is useless because no path from start to A

$$
\begin{aligned}
\Rightarrow \quad & S \rightarrow a S a|b B b| b b \\
& B \rightarrow B b \mid b b
\end{aligned}
$$

Step 3: Let 48 introduce $X \& Y$ as new non-terminals for $a \quad 2 b$.

$$
\begin{aligned}
& S \rightarrow X S X|Y B Y| Y Y \\
& B \rightarrow Y B Y \mid Y Y \\
& X \rightarrow a \quad Y \rightarrow b
\end{aligned}
$$

Step 4. $S \rightarrow X S X \Rightarrow S \rightarrow X D$

$$
\begin{aligned}
& S \rightarrow Y B Y \Rightarrow Y C \\
& S \rightarrow B Y
\end{aligned}
$$

$$
\begin{array}{rlr}
S & S \rightarrow X D|Y C| \gamma Y & X \rightarrow a \\
B \rightarrow Y C \mid Y \gamma & Y \rightarrow b
\end{array}
$$

$$
C \rightarrow B Y
$$

$$
D \rightarrow S x
$$

Soln Ba L_{2} is not context - tree. tet us try to prove pt using pumping Lemma.

Game with the Demon
Step. The Demon picks k
Step 2. You pick $2=a^{k} b^{k} c^{k}$,

$$
121=3 k \geq k
$$

Step 3. Demon segments $2=U v \omega x y$

$$
v w x^{\prime} \mid \leq k, \quad v x \neq \epsilon
$$

Step 4. Let us find some i such that

$$
u v^{\prime} \omega x^{\prime} y \notin \alpha_{2}
$$

Lotus consider possible $v 8 x$
Case 1: Either or x runs across the boundoy

$$
a, 3 \text { or } b, c
$$

take $i=2$ \& the resultant string is not of the form $a^{*} b^{*} c^{*}$
Case 2: Bor v and x belong to the same block.
\rightarrow If they belong to block ' 0 ' or block ' b ',
then $i=0 \Rightarrow$ number of $C>\neq 1 \neq 3$ Not allowed
If they belong to block ' C ' $\Rightarrow i=28 \mathrm{HC}>\mathrm{Hal} \Rightarrow \mathrm{b}$

Case 3: v and x belong to adjacent blocks
\rightarrow If the blocks are C 'r and b's
$\Rightarrow \quad i=0$ will give more c^{\prime} 's that either a's or b's
\rightarrow If the blocks are bis and $C^{\prime} 8$

- Consider subcases
- $x=\epsilon \Rightarrow i=0$ will give less b's than cir $x \neq t \Rightarrow i=2$ will give less a's thar c's

In all cases, we car use either $i=0$ or $i=2$ to get a string $\notin L \Rightarrow L_{2}$ is not context-tase

Solution bb: Game with the Demon
Step. Demon picks k
Step 2. You pick $2=a^{k} b^{k^{2}} \in \mathcal{L}$
Step 3. Demon picker u,v,w,xy
$z=$ vary, \quad vow x $\leq k, \quad v x \neq k$
(a) Sep 4 : You can choose $i=2$

Case 1. v and x both contains a's only
$\Rightarrow u v^{2} w x^{2} y$ will contain more a's then the square root of b
Case 2. v and x both contain b's only
$\Rightarrow U v^{2} w x^{2} y$ will contain rose b'r than the square of a
Case 3. One of vor x contains a's os well as b's
$\Rightarrow U v^{2} \omega x^{2} y$ will vo r be of the form $a^{*} b^{*}$
Case 4 . v belongs to $A^{\prime} \mathrm{E}, x$ belongs to b's v

$$
\begin{aligned}
& \text { Case 4., } v \text { belongs } 16, x \text { belongs to bs } v=\epsilon \rightarrow i=k, j>k^{2} \Rightarrow \notin \alpha \\
& \Rightarrow a^{\prime} b, \quad i \geq k, k^{2} \leq j \leq k^{2}+k \leq(k+1)^{2}\left[\begin{array}{l}
v=1=k+1, j<(k+1)^{2} \& \alpha \\
v \neq \Leftrightarrow i=k
\end{array}\right.
\end{aligned}
$$

